1
|
Dixit A, Paegel BM. Solid-phase DNA-encoded library synthesis: a master builder's instructions. Nat Protoc 2025:10.1038/s41596-025-01190-4. [PMID: 40404924 DOI: 10.1038/s41596-025-01190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/01/2025] [Indexed: 05/24/2025]
Abstract
Solid-phase DNA-encoded library (DEL) synthesis is a next-generation drug discovery technology with powerful activity-based and cellular lead identification capabilities. Solid-phase DELs combine the one-bead-one-compound approach with DNA encoding to furnish beads that display multiple copies of photocleavable library members and DNA encoding tags. Sequential chemical synthesis and enzymatic DNA ligation reactions yield an encoded library in which individual library members are physically isolable, enabling various high-throughput screening modalities. This advancement from on-DNA synthesis, in which small molecules are directly attached to their DNA-encoding tags, decouples the library member from the steric bulk of the DNA tag, which prevents biased binding to a target. Here we provide step-by-step instructions for solid-phase DEL synthesis, incorporating all of our most recent quality control innovations to ensure robust library production. The protocol begins with on-bead synthesis of a linker containing a spectroscopic handle for chromatographic analysis, an ionization enhancer for mass spectrometry and an alkyne for installation of DNA encoding sites via copper-catalyzed azide-alkyne cycloaddition click chemistry. Coupling of a photocleavable linker before library synthesis enables compound liberation from the bead for activity-based screening. Powerful combinatorial split-and-pool parallel synthesis tactics transform modest collections of small-molecule building blocks into large DELs of all possible building block combinations. Post synthesis, decoding and mass analysis of single DEL beads as well as whole-library deep sequencing provides rigorous chemical and bioinformatic quality control and establishes suitability for screening. The solid-phase chemistry is highly accessible: expertise in chemical synthesis is not necessary and solid-phase synthesis apparatus is routinely available in molecular biology laboratories. This procedure requires ~1 month to complete.
Collapse
Affiliation(s)
- Anjali Dixit
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Brian M Paegel
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Disney MD. The Druggable Transcriptome Project: From Chemical Probes to Precision Medicines. Biochemistry 2025; 64:1647-1661. [PMID: 40131857 PMCID: PMC12005196 DOI: 10.1021/acs.biochem.5c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025]
Abstract
RNA presents abundant opportunities as a drug target, offering significant potential for small molecule medicine development. The transcriptome, comprising both coding and noncoding RNAs, is a rich area for therapeutic innovation, yet challenges persist in targeting RNA with small molecules. RNA structure can be predicted with or without experimental data, but discrepancies with the actual biological structure can impede progress. Prioritizing RNA targets supported by genetic or evolutionary evidence enhances success. Further, small molecules must demonstrate binding to RNA in cells, not solely in vitro, to validate both the target and compound. Effective small molecule binders modulate functional sites that influence RNA biology, as binding to nonfunctional sites requires recruiting effector mechanisms, for example degradation, to achieve therapeutic outcomes. Addressing these challenges is critical to unlocking RNA's vast potential for small molecule medicines, and a strategic framework is proposed to navigate this promising field, with a focus on targeting human RNAs.
Collapse
Affiliation(s)
- Matthew D. Disney
- Department
of Chemistry, The Herbert Wertheim UF Scripps
Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, Florida 33458, United States
- Department
of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
3
|
Lee KJ, Wang HM, Kim M, Park JH, Kim J, Jang S, Im D, Goh B, Shin MH, Shim JH, Kim S, Seo J, Lim HS. Encoded Display of Chemical Libraries on Nanoparticles as a Versatile Selection Tool To Discover Protein Ligands. J Am Chem Soc 2025; 147:11726-11740. [PMID: 40011448 DOI: 10.1021/jacs.4c13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
DNA-encoded library (DEL) technology is a powerful tool for discovering potent ligands for biological targets but constrained by limitations, including the insolubility of DNA in organic solvents and its instability under various reaction conditions, which restrict the reactivity scope and structural diversity achievable in library synthesis. Here, we present a new strategy called nanoDEL, where library molecules and DNA tags are displayed on the surface of nanoparticles. Since nanoparticles disperse well in both organic solvents and aqueous solutions, DEL synthesis can be accomplished using well-established organic solvent-based conditions, eliminating the need for aqueous conditions. Moreover, nanoDEL enables air-sensitive reactions that are inaccessible with conventional DEL methods relying on aqueous conditions. Notably, in nanoDEL, multiple copies of a DNA tag are attached to an individual nanoparticle to encode a single compound, significantly enhancing tolerance to DNA-damaging conditions. Even when most DNA tags are damaged, sequence analysis remains feasible via amplification of intact tags. Consequently, nanoDEL facilitates the convenient use of existing organic reactions without the necessity to develop DNA-compatible reactions. The potential of nanoDEL was validated by affinity selection against streptavidin as a model system and successfully applied to the discovery of potent small-molecule inhibitors for a kinase and stapled peptide inhibitors targeting a protein-protein interaction, exhibiting dissociation constants in the nanomolar range. Furthermore, we demonstrated that a large combinatorial library can be efficiently synthesized on nanoparticles using a synthetic scheme including moisture-sensitive reaction steps, which are not feasible with conventional DELs.
Collapse
Affiliation(s)
- Kang Ju Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hee Myeong Wang
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Minkyung Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jun Hyung Park
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jungyeon Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Seungyoon Jang
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Dahye Im
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Beomjoon Goh
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Min Hyeon Shin
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Ji Hoon Shim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Sungjee Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jongcheol Seo
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, South Korea
- Carmel Biosciences, Pohang 37673, South Korea
| |
Collapse
|
4
|
Taghavi A, Springer NA, Zanon PRA, Li Y, Li C, Childs-Disney JL, Disney MD. The evolution and application of RNA-focused small molecule libraries. RSC Chem Biol 2025; 6:510-527. [PMID: 39957993 PMCID: PMC11824871 DOI: 10.1039/d4cb00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/06/2025] [Indexed: 02/18/2025] Open
Abstract
RNA structure plays a role in nearly every disease. Therefore, approaches that identify tractable small molecule chemical matter that targets RNA and affects its function would transform drug discovery. Despite this potential, discovery of RNA-targeted small molecule chemical probes and medicines remains in its infancy. Advances in RNA-focused libraries are key to enable more successful primary screens and to define structure-activity relationships amongst hit molecules. In this review, we describe how RNA-focused small molecule libraries have been used and evolved over time and provide underlying principles for their application to develop bioactive small molecules. We also describe areas that need further investigation to advance the field, including generation of larger data sets to inform machine learning approaches.
Collapse
Affiliation(s)
- Amirhossein Taghavi
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology 130 Scripps Way Jupiter FL 33458 USA
| | - Noah A Springer
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology 130 Scripps Way Jupiter FL 33458 USA
- Department of Chemistry, The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Patrick R A Zanon
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology 130 Scripps Way Jupiter FL 33458 USA
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, The University of Florida Gainesville FL 32610 USA
- Department of Computer & Information Science & Engineering, University of Florida Gainesville FL 32611 USA
| | - Chenglong Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, The University of Florida Gainesville FL 32610 USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology 130 Scripps Way Jupiter FL 33458 USA
| | - Matthew D Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology 130 Scripps Way Jupiter FL 33458 USA
- Department of Chemistry, The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| |
Collapse
|
5
|
Ma Z, Zou B, Zhao J, Zhang R, Zhu Q, Wang X, Xu L, Gao X, Hu X, Feng W, Luo W, Wang M, He Y, Yu Z, Cui W, Zhang Q, Kuai L, Su W. Development of a DNA-encoded library screening method "DEL Zipper" to empower the study of RNA-targeted chemical matter. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100204. [PMID: 39716586 DOI: 10.1016/j.slasd.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/15/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024]
Abstract
To date, RNA-targeted chemical matter is under explored due to a lack of robust screening assays. In this study, we present a novel RNA-targeted small molecule screening approach using a specialized DNA-encoded library (DEL). Our findings reveal that the specialized DEL library, called "DEL Zipper", can significantly reduce single-stranded DNA-RNA region interaction signals during various kinds of RNA selection. By performing the selection against both G-quadruplex, we have identified novel hits that interact with RNA targets and the results are validated through binding. This study demonstrates that the "DEL Zipper" method is a robust screening assay that has potential for discovering small molecule ligands for diverse RNA targets.
Collapse
Affiliation(s)
- Zhongyao Ma
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Bin Zou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jiannan Zhao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Rui Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qiaoqiao Zhu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaofeng Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Linan Xu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiang Gao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xinyue Hu
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wei Feng
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wen Luo
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Min Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yunyun He
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zhifeng Yu
- WuXi AppTec, 55 Cambridge Parkway, 8th Floor, Cambridge, MA 02142, United States
| | - Weiren Cui
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qi Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Letian Kuai
- WuXi AppTec, 55 Cambridge Parkway, 8th Floor, Cambridge, MA 02142, United States.
| | - Wenji Su
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China.
| |
Collapse
|
6
|
Nie Q, Xu T, Fang X, Dan Y, Zhang G, Li Y, Li J, Li Y. The Furan-Thiol-Amine Reaction Facilitates DNA-Compatible Thiopyrrole-Grafted Macrocyclization and Late-Stage Amine Transformation. Org Lett 2025; 27:498-503. [PMID: 39722477 DOI: 10.1021/acs.orglett.4c04505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
We here report an efficient DNA-compatible furan-thiol-amine reaction for macrocyclization and late-stage amine transformation. This reaction, conducted under mild conditions, enables the facile cyclization of DNA-conjugated linear peptides into thiopyrrole-grafted macrocycles regardless of ring size or side-chain modification with good to excellent conversion yields. Additionally, this strategy was employed for the late-stage transformation of terminal amines, serving as critical intermediates in the construction of DNA-encoded peptide libraries. Diverse amines were successfully converted into their corresponding thiopyrrole scaffolds, thereby expanding the structural diversity that can be achieved within DNA-encoded libraries.
Collapse
Affiliation(s)
- Qigui Nie
- Chongqing Fuling Hospital, Chongqing University, Chongqing 40800, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yanrong Dan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jianbo Li
- BioPic (Chongqing) Biotechnology Company, Ltd., Chongqing 401329, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
7
|
Song Y, Cui J, Zhu J, Kim B, Kuo ML, Potts PR. RNATACs: Multispecific small molecules targeting RNA by induced proximity. Cell Chem Biol 2024; 31:1101-1117. [PMID: 38876100 DOI: 10.1016/j.chembiol.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
RNA-targeting small molecules (rSMs) have become an attractive modality to tackle traditionally undruggable proteins and expand the druggable space. Among many innovative concepts, RNA-targeting chimeras (RNATACs) represent a new class of multispecific, induced proximity small molecules that act by chemically bringing RNA targets into proximity with an endogenous RNA effector, such as a ribonuclease (RNase). Depending on the RNA effector, RNATACs can alter the stability, localization, translation, or splicing of the target RNA. Although still in its infancy, this new modality has the potential for broad applications in the future to treat diseases with high unmet need. In this review, we discuss potential advantages of RNATACs, recent progress in the field, and challenges to this cutting-edge technology.
Collapse
Affiliation(s)
- Yan Song
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA.
| | - Jia Cui
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Jiaqiang Zhu
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Boseon Kim
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Mei-Ling Kuo
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Patrick Ryan Potts
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
8
|
Kovachka S, Tong Y, Childs-Disney JL, Disney MD. Heterobifunctional small molecules to modulate RNA function. Trends Pharmacol Sci 2024; 45:449-463. [PMID: 38641489 PMCID: PMC11774243 DOI: 10.1016/j.tips.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
RNA has diverse cellular functionality, including regulating gene expression, protein translation, and cellular response to stimuli, due to its intricate structures. Over the past decade, small molecules have been discovered that target functional structures within cellular RNAs and modulate their function. Simple binding, however, is often insufficient, resulting in low or even no biological activity. To overcome this challenge, heterobifunctional compounds have been developed that can covalently bind to the RNA target, alter RNA sequence, or induce its cleavage. Herein, we review the recent progress in the field of RNA-targeted heterobifunctional compounds using representative case studies. We identify critical gaps and limitations and propose a strategic pathway for future developments of RNA-targeted molecules with augmented functionalities.
Collapse
Affiliation(s)
- Sandra Kovachka
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yuquan Tong
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA; The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, 130 Scripps Way, Jupiter, FL 33458, USA; The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
9
|
Wang Y, Wang J, Yan Z, Hou J, Wan L, Yang Y, Liu Y, Yi J, Guo P, Han D. Structural investigation of pathogenic RFC1 AAGGG pentanucleotide repeats reveals a role of G-quadruplex in dysregulated gene expression in CANVAS. Nucleic Acids Res 2024; 52:2698-2710. [PMID: 38266156 PMCID: PMC10954463 DOI: 10.1093/nar/gkae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
An expansion of AAGGG pentanucleotide repeats in the replication factor C subunit 1 (RFC1) gene is the genetic cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS), and it also links to several other neurodegenerative diseases including the Parkinson's disease. However, the pathogenic mechanism of RFC1 AAGGG repeat expansion remains enigmatic. Here, we report that the pathogenic RFC1 AAGGG repeats form DNA and RNA parallel G-quadruplex (G4) structures that play a role in impairing biological processes. We determine the first high-resolution nuclear magnetic resonance (NMR) structure of a bimolecular parallel G4 formed by d(AAGGG)2AA and reveal how AAGGG repeats fold into a higher-order structure composed of three G-tetrad layers, and further demonstrate the formation of intramolecular G4s in longer DNA and RNA repeats. The pathogenic AAGGG repeats, but not the nonpathogenic AAAAG repeats, form G4 structures to stall DNA replication and reduce gene expression via impairing the translation process in a repeat-length-dependent manner. Our results provide an unprecedented structural basis for understanding the pathogenic mechanism of AAGGG repeat expansion associated with CANVAS. In addition, the high-resolution structures resolved in this study will facilitate rational design of small-molecule ligands and helicases targeting G4s formed by AAGGG repeats for therapeutic interventions.
Collapse
Affiliation(s)
- Yang Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Junyan Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhenzhen Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jianing Hou
- Institute of Molecular Medicine (IMM) Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liqi Wan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yingquan Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yu Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jie Yi
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Da Han
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM) Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
10
|
Ma P, Zhang S, Huang Q, Gu Y, Zhou Z, Hou W, Yi W, Xu H. Evolution of chemistry and selection technology for DNA-encoded library. Acta Pharm Sin B 2024; 14:492-516. [PMID: 38322331 PMCID: PMC10840438 DOI: 10.1016/j.apsb.2023.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 02/08/2024] Open
Abstract
DNA-encoded chemical library (DEL) links the power of amplifiable genetics and the non-self-replicating chemical phenotypes, generating a diverse chemical world. In analogy with the biological world, the DEL world can evolve by using a chemical central dogma, wherein DNA replicates using the PCR reactions to amplify the genetic codes, DNA sequencing transcripts the genetic information, and DNA-compatible synthesis translates into chemical phenotypes. Importantly, DNA-compatible synthesis is the key to expanding the DEL chemical space. Besides, the evolution-driven selection system pushes the chemicals to evolve under the selective pressure, i.e., desired selection strategies. In this perspective, we summarized recent advances in expanding DEL synthetic toolbox and panning strategies, which will shed light on the drug discovery harnessing in vitro evolution of chemicals via DEL.
Collapse
Affiliation(s)
- Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Qianping Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Zhang S, Zhang H, Liu X, Qi P, Tan T, Wang S, Gao H, Xu H, Zhou Z, Yi W. Mask and Release Strategy-Enabled Diversity-Oriented Synthesis for DNA-Encoded Library. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307049. [PMID: 38044314 PMCID: PMC10853742 DOI: 10.1002/advs.202307049] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Indexed: 12/05/2023]
Abstract
An ideal DNA-encoded library (DEL) selection requires the library to consist of diverse core skeletons and cover chemical space as much as possible. However, the lack of efficient on-DNA synthetic approaches toward core skeletons has greatly restricted the diversity of DEL. To mitigate this issue, this work disclosed a "Mask & Release" strategy to streamline the challenging on-DNA core skeleton synthesis. N-phenoxyacetamide is used as a masked phenol and versatile directing group to mediate diversified DNA-compatible C-H functionalization, introducing the 1st-dimensional diversity at a defined site, and simultaneously releasing the phenol functionality, which can facilitate the introduction of the 2nd diversity. This work not only provides a set of efficient syntheses toward DNA-conjugated drug-like core skeletons such as ortho-alkenyl/sulfiliminyl/cyclopropyl phenol, benzofuran, dihydrobenzofuran but also provides a paradigm for on-DNA core skeleton synthetic method development.
Collapse
Affiliation(s)
- Silin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Haiman Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Xiawen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Ping Qi
- Guangzhou Institute for Food InspectionGuangzhou511400China
| | - Tingting Tan
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Shengdong Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical PharmacologyThe NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| |
Collapse
|
12
|
Qin S, Feng L, Zhao Q, Yan Z, Lyu X, Li K, Mu B, Chen Y, Lu W, Wang C, Suo Y, Yue J, Cui M, Li Y, Zhao Y, Duan Z, Zhu J, Lu X. Discovery and Optimization of WDR5 Inhibitors via Cascade Deoxyribonucleic Acid-Encoded Library Selection Approach. J Med Chem 2024; 67:1079-1092. [PMID: 38166388 DOI: 10.1021/acs.jmedchem.3c01463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The DNA-encoded library (DEL) is a powerful hit generation tool for chemical biology and drug discovery; however, the optimization of DEL hits remained a daunting challenge for the medicinal chemistry community. In this study, hit compounds targeting the WIN binding domain of WDR5 were discovered by the initial three-cycle linear DEL selection, and their potency was further enhanced by a cascade DEL selection from the focused DEL designed based on the original first run DEL hits. As expected, these new compounds from the second run of focused DEL were more potent WDR5 inhibitors in the protein binding assay confirmed by the off-DNA synthesis. Interestingly, selected inhibitors exhibited good antiproliferative activity in two human acute leukemia cell lines. Taken together, this new cascade DEL selection strategy may have tremendous potential for finding high-affinity leads against WDR5 and provide opportunities to explore and optimize inhibitors for other targets.
Collapse
Affiliation(s)
- Shaozhao Qin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Lijian Feng
- Etern BioPharma (Shanghai) Co., Ltd. F2-B13, No. 80, 1505 Lane, Zuchongzhi Road, Shanghai 201203, China
| | - Qingyi Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Kaige Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Yujie Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Chao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jinfeng Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Mengqing Cui
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Yingjie Li
- Etern BioPharma (Shanghai) Co., Ltd. F2-B13, No. 80, 1505 Lane, Zuchongzhi Road, Shanghai 201203, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhiqiang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Jidong Zhu
- Etern BioPharma (Shanghai) Co., Ltd. F2-B13, No. 80, 1505 Lane, Zuchongzhi Road, Shanghai 201203, China
| | - Xiaojie Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
13
|
Pan K, Yao Y, Zhang Y, Gu Y, Wang Y, Ma P, Hou W, Yang G, Zhang S, Xu H. Enolate-Azide [3 + 2]-Cycloaddition Reaction Suitable for DNA-Encoded Library Synthesis. Bioconjug Chem 2023; 34:1459-1466. [PMID: 37443440 DOI: 10.1021/acs.bioconjchem.3c00235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The DNA-encoded chemical library (DEL) is a powerful hit selection technique in either basic science or innovative drug discovery. With the aim to circumvent the issue concerning DNA barcode damage in a conventional on-DNA copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC), we have successfully developed the first DNA-compatible enolate-azide [3 + 2] cycloaddition reaction. The merits of this DEL chemistry include metal-free reaction and high DNA fidelity, high conversions and easy operation, broad substrate scope, and ready access to the highly substituted 1,4,5-trisubstituted triazoles. Thus, it will not only further enrich the DEL chemistry toolbox but also will have great potential in practical DEL synthesis.
Collapse
Affiliation(s)
- Kangyin Pan
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Ying Yao
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wei Hou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
14
|
Abstract
DNA-encoded libraries (DELs) are widely used in the discovery of drug candidates, and understanding their design principles is critical for accessing better libraries. Most DELs are combinatorial in nature and are synthesized by assembling sets of building blocks in specific topologies. In this study, different aspects of library topology were explored and their effect on DEL properties and chemical diversity was analyzed. We introduce a descriptor for DEL topological assignment (DELTA) and use it to examine the landscape of possible DEL topologies and their coverage in the literature. A generative topographic mapping analysis revealed that the impact of library topology on chemical space coverage is secondary to building block selection. Furthermore, it became apparent that the descriptor used to analyze chemical space dictates how structures cluster, with the effects of topology being apparent when using three-dimensional descriptors but not with common two-dimensional descriptors. This outcome points to potential challenges of attempts to predict DEL productivity based on chemical space analyses alone. While topology is rather inconsequential for defining the chemical space of encoded compounds, it greatly affects possible interactions with target proteins as illustrated in docking studies using NAD/NADP binding proteins as model receptors.
Collapse
Affiliation(s)
- William K Weigel
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Alba L Montoya
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M Franzini
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Dr., Salt Lake City, Utah 84112, United States
| |
Collapse
|
15
|
Garner AL. Contemporary Progress and Opportunities in RNA-Targeted Drug Discovery. ACS Med Chem Lett 2023; 14:251-259. [PMID: 36923915 PMCID: PMC10009794 DOI: 10.1021/acsmedchemlett.3c00020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The surprising discovery that RNAs are the predominant gene products to emerge from the human genome catalyzed a renaissance in RNA biology. It is now well-understood that RNAs act as more than just a messenger and comprise a large and diverse family of ribonucleic acids of differing sizes, structures, and functions. RNAs play expansive roles in the cell, contributing to the regulation and fine-tuning of nearly all aspects of gene expression and genome architecture. In line with the significance of these functions, we have witnessed an explosion in discoveries connecting RNAs with a variety of human diseases. Consequently, the targeting of RNAs, and more broadly RNA biology, has emerged as an untapped area of drug discovery, making the search for RNA-targeted therapeutics of great interest. In this Microperspective, I highlight contemporary learnings in the field and present my views on how to catapult us toward the systematic discovery of RNA-targeted medicines.
Collapse
Affiliation(s)
- Amanda L. Garner
- Department of Medicinal Chemistry,
College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, Michigan 48109, United States
| |
Collapse
|