1
|
Jian C, Huang X, Long H, Liao M, Wu X. Heteroarylation of Sulfenamides for Modular Synthesis of Antimicrobial Sulfilimines via Sulfinimidoyl Fluoride Intermediates. Org Lett 2025; 27:5464-5470. [PMID: 40392228 DOI: 10.1021/acs.orglett.5c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
We herein disclose a mild metal-free strategy for the construction of heteroaryl-derived sulfilimines. Central to this approach is the in situ generated sulfinimidoyl fluoride intermediate that exhibits an optimal balance of reactivity and stability for efficient S(IV)-derived SuFEx reactions with heteroarenes without Lewis acids or base additives. This protocol enables the rapid incorporation of a broad range of heteroarenes to afford diverse sulfilimine scaffolds with potent antimicrobial activities against plant pathogens.
Collapse
Affiliation(s)
- Chunyan Jian
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xuan Huang
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongyan Long
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| | - Minghong Liao
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xingxing Wu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
2
|
Chen AN, He Y, Zhang Z, Wang YC, Xie YY. Electrochemically Promoted Synthesis of N-Sulfonyl Sulfinimidate Esters and Sulfilimines from Sulfonamides, Thiophenols, Thioethers, and Alcohols. J Org Chem 2025; 90:6672-6685. [PMID: 40340455 DOI: 10.1021/acs.joc.5c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
In this work, we report an electrochemical method for the straightforward preparation of scarcely accessible sulfinimidate esters from readily available sulfonamides, thiophenols, and alcohols. Mechanistic experiments show that sulfur oxidation at the anodic surface generates an electrophilic intermediate, which subsequently undergoes nucleophilic substitution. Moreover, sulfilimines can be obtained in moderate-to-excellent yields when thioethers are used as the S-donor instead of thiophenols via a dehydrogenateive imination process. This method is also characterized by mild reaction condition, operational simplicity, high atomic economic efficiency, easy later drug synthesis, and modification, as well as scaling up to a gram scale.
Collapse
Affiliation(s)
- An-Ning Chen
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Yan He
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Zhang Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Ying-Chun Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Yu-Yang Xie
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| |
Collapse
|
3
|
Xu Z, Jia T, Zhang X, Liang Q, Yang L, Jia T. Sulfenamide-Catalyzed Diastereoselective Synthesis of Epoxides in Small Molecules and Polymers. ACS Catal 2025:8991-9005. [DOI: 10.1021/acscatal.5c02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2025]
Affiliation(s)
- Zeyu Xu
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy
- Ocean University of China
| | - Tianyuan Jia
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, 29 Bulan Rd., Shenzhen, Guangdong 518000, P. R. China
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Xinping Zhang
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy
- Ocean University of China
| | - Qingjin Liang
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy
- Ocean University of China
| | - Liang Yang
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, 29 Bulan Rd., Shenzhen, Guangdong 518000, P. R. China
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Tiezheng Jia
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy
- Ocean University of China
- The Key Laboratory of Biomedical Imaging Science and System
- Chinese Academy of Sciences
| |
Collapse
|
4
|
Boyer ZW, Kwon NY, Ellman JA. Ruthenium-Catalyzed Enantioselective Alkylation of Sulfenamides: A General Approach for the Synthesis of Drug Relevant S-Methyl and S-Cyclopropyl Sulfoximines. J Am Chem Soc 2025; 147:14954-14959. [PMID: 40289728 PMCID: PMC12083213 DOI: 10.1021/jacs.5c03841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Sulfoximines are increasingly utilized in pharmaceuticals and agrochemicals with all sulfoximine clinical candidates incorporating either an S-methyl or an S-cyclopropyl substituent. Here, we report on a general and efficient sequence for the asymmetric synthesis of both of these sulfoximine substitution patterns. The asymmetric synthesis of sulfilimine intermediates by the first Ru-catalyzed enantioselective alkylation of sulfenamides enables the first examples of enantioselective S-alkylation with monosubstituted diazo compounds. The reaction proceeds at ≤1 mol % Ru-catalyst loading, and for tert-butyl diazoacetate, high yields and ≥98:2 er are achieved for an exceedingly broad range of sulfenamides, including with S-(hetero)aryl, -alkenyl, -methyl, -benzyl, -branched alkyl, and -tert-butyl substituents and for sterically and electronically diverse N-acyl groups. Sulfenamides derived from densely functionalized advanced drug intermediates also alkylated with 99:1 er. After oxidation of an N-pivaloyl S-tert-butyl acetate substituted sulfilimine to the corresponding sulfoximine, treatment with trifluoracetic acid in an aprotic solvent resulted in decarboxylation to the S-methyl N-pivaloyl sulfoximine, while aqueous HCl resulted in both decarboxylation and cleavage of the N-acyl group to give the S-methyl NH sulfoximine. Alternatively, sulfoximine alkylation with dibromoethane followed by acid-mediated decarboxylation provided the S-cyclopropyl sulfoximine. The efficient asymmetric synthesis of the preclinical candidate LTGO-33 and the formal asymmetric synthesis of the phase II clinical candidate ART0380 demonstrate the utility of the disclosed approach.
Collapse
Affiliation(s)
- Zachary W Boyer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Na Yeon Kwon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
5
|
Xiong Q, Liao M, Zhao S, Wu S, Hong Y, Chi YR, Zhang X, Wu X. Asymmetric Synthesis of S(IV)-Stereogenic Sulfinimidate Esters by Sulfinamide Activation. Angew Chem Int Ed Engl 2025; 64:e202500170. [PMID: 40078089 DOI: 10.1002/anie.202500170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 03/11/2025] [Indexed: 03/14/2025]
Abstract
Catalyst-controlled approaches for the synthesis of S-stereogenic compounds have propelled significant advancements in asymmetric synthetic chemistry. In contrast, control over S-heteroatom (e.g., O) bond formation to access sulfinimidate esters remains an underexplored area. Drawing inspiration from recent progress in electrophilic amide activation, herein, we present a sulfinamide activation strategy for the enantioselective synthesis of S-chiral sulfinimidate esters. This method involves the activation of racemic sulfinamides by sulfonyl chloride, yielding a reactive aza-sulfinyl mixed anhydride intermediate. Employing a naturally occurring cinchonidine catalyst, the process achieves excellent enantiocontrol in the subsequent formation of S─O bonds with alcohols involving a dynamic kinetic resolution (DKR) process, resulting in sulfinimidate esters with excellent enantioselectivity. The catalytically obtained enantioenriched sulfinimidate esters offer a versatile platform for the construction of S-stereogenic frameworks, including sulfilimines and sulfoximines, with promising applications in asymmetric synthesis and drug discovery.
Collapse
Affiliation(s)
- Qiang Xiong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Minghong Liao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Sha Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Sitian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ya Hong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xinglong Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Xingxing Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
6
|
Wu XB, Shen Y, Jiang HJ, Gong LZ. Cu-Catalyzed Enantioselective S-Arylation of Sulfenamides Enabled by Confined Ligands. Org Lett 2025; 27:2845-2851. [PMID: 40110930 DOI: 10.1021/acs.orglett.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Chiral sulfilimines, aza analogues of sulfoxides, are essential in natural products and pharmaceuticals, highlighting the importance of their synthesis in asymmetric catalysis. However, efficient approaches for synthesizing chiral diaryl sulfilimines are still rare and challenging, particularly for those with two sterically similar aryl groups. Herein, we present a mild and efficient protocol for generating diverse enantioenriched diaryl and aryl alkyl sulfilimines via copper-catalyzed enantioselective S-arylation of N-acyl sulfenamides with diaryliodonium salts. A bulky PyBox ligand is crucial for stereocontrol, delivering various sulfilimines with up to 95% ee (51 examples).
Collapse
Affiliation(s)
- Xiao-Bao Wu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Shen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
He M, Zhang R, Ma D. Assembly of (Hetero)aryl Sulfoximines via Copper-Catalyzed S-Arylation of Sulfinamides with (Hetero)aryl Halides. Org Lett 2025; 27:2947-2951. [PMID: 40102049 DOI: 10.1021/acs.orglett.5c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The combination of CuI and 4-(dimethylamino)picolinamide offers an effective catalytic system for the successful coupling of (hetero)aryl halides (I and Br) with sulfinamides for the first time. A large number of functional groups and heterocycles were tolerated under the coupling conditions, providing a powerful approach for diverse synthesis of pharmaceutically important (hetero)aryl sulfoximines. The efficiency of the coupling reaction was highly dependent upon the electronic nature of (hetero)aryl halides and the substituents at the amide part of sulfinamides. By using enantioenriched sulfinamides as the coupling partners, the reaction proceeds in a highly stereospecific manner to afford (hetero)aryl sulfoximines with excellent enantioselectivity.
Collapse
Affiliation(s)
- Mingchuang He
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Lu, Shanghai 200062, China
| | - Rongxing Zhang
- Shenzhen Key Laboratory of Cross-Coupling Reactions & Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Dawei Ma
- Shenzhen Key Laboratory of Cross-Coupling Reactions & Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
8
|
Yan XB, Zhao R, Miao YH, Liu MM, Mei GJ. Regioselective N-arylation of N-Acylsulfenamides Enabled by o-Quinone Diimides. Org Lett 2025; 27:2146-2150. [PMID: 40013773 DOI: 10.1021/acs.orglett.5c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The functionalization of N-acylsulfenamides is a research focus in organosulfur chemistry, as the N-S array has unique properties and versatile applications. Although great progress has been made in S-functionalization, the N-functionalization, especially the N-arylation of N-acylsulfenamides, has rarely been explored because of the lower nucleophilicity of the N-site. Herein, we report a Brønsted acid-catalyzed regioselective N-arylation reaction of N-acylsulfenamides with o-quinone diimides. Under mild and metal-free conditions, a wide range of N-arylated N-acylsulfenamides have been prepared in good yields with excellent regioselectivity. The ease of gram-scale synthesis and transformations into useful sulfonamides demonstrates their synthetic practicality.
Collapse
Affiliation(s)
- Xue-Bin Yan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Hang Miao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Meng-Meng Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Guang-Jian Mei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Shen Y, Wu XB, Jiang HJ, Gong LZ. Anionic Stereogenic-at-Cobalt(III) Complex-Enabled Asymmetric Oxidation of N, N-Dialkyl Sulfenamides. Org Lett 2025; 27:2060-2064. [PMID: 40008849 DOI: 10.1021/acs.orglett.4c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
An asymmetric oxidation of N,N-dialkyl sulfenamides is exhibited by using anionic stereogenic-at-cobalt(III) complexes as catalysts. This protocol provides an alternative approach to access a diverse set of chiral tertiary sulfinamides with high enantioselectivities (24 examples, up to 94:6 e.r.). Additionally, control experiments suggest that this protocol could be accomplished through a chiral cationic S(IV) intermediate.
Collapse
Affiliation(s)
- Yue Shen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao-Bao Wu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Greenwood NS, Boyer ZW, Ellman JA, Gnamm C. Sulfilimines from a Medicinal Chemist's Perspective: Physicochemical and in Vitro Parameters Relevant for Drug Discovery. J Med Chem 2025; 68:4079-4100. [PMID: 39787298 PMCID: PMC11867876 DOI: 10.1021/acs.jmedchem.4c02714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
While sulfoximines are nowadays a well established functional group for medicinal chemistry, the properties of sulfilimines are significantly less well studied, and no sulfilimine has progressed to the clinic to date. In this account, the physicochemical and in vitro properties of sulfilimines are reported and compared to those of sulfoximines and other more traditional functional groups. Furthermore, the impact on the physicochemical and in vitro properties of real drug scaffolds is studied in two series of sulfilimine-containing analogs of imatinib and hNE inhibitors. We show that sulfilimines can be chemically and configurationally stable under physiologically relevant conditions and that they are basic and highly polar and thus are often beneficial for solubility and metabolic stability, although at the cost of reduced permeability. We conclude that S-cyclopropyl,S-(hetero)aryl and S,S-di(hetero)aryl sulfilimines are so far neglected but potentially valuable S(IV) based pharmacophores that deserve to be considered as part of the medicinal chemistry toolbox.
Collapse
Affiliation(s)
- Nathaniel S Greenwood
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zachary W Boyer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Christian Gnamm
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| |
Collapse
|
11
|
Gao Y, Liu Z, Tian S, Min Y, Li X, Chen Y, Hong X, Zhang W, Wang L. Catalytic Enantioselective Synthesis of Boron-Stereogenic and Axially Chiral BODIPYs via Rhodium(II)-Catalyzed C-H (Hetero) Arylation with Diazonaphthoquinones and Diazoindenines. Angew Chem Int Ed Engl 2025; 64:e202418888. [PMID: 39467832 DOI: 10.1002/anie.202418888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
The molecular engineering of boron dipyrromethenes (BODIPYs) has garnered widespread attention due to their structural diversity enabling tailored physicochemical properties for optimal applications. However, catalytic enantioselective synthesis of structurally diverse boron-stereogenic BODIPYs through intermolecular desymmetrization and BODIPYs with atroposelectivity remains elusive. Here, we showcase rhodium(II)-catalyzed site-specific C-H (hetero)arylations of prochiral BODIPYs and polysubstituted BODIPYs with diazonaphthoquinonesand diazoindenines, providing efficient pathways for the rapid assembly of versatile (hetero)arylated boron-stereogenic and axially chiral BODIPYs through long-range desymmetrization and axial rotational restriction modes. The synthetic application of the procedures has been emphasized by the efficient synthesis of BODIPY derivatives with various functions. Photophysical properties, bioimaging, and lipid droplet-specific targeting capability of tailored BODIPYs are also demonstrated, indicating their promising applications in biomedical research, medicinal chemistry, and material science.
Collapse
Affiliation(s)
- Yankun Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
| | - Zizhen Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
| | - Sichao Tian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
| | - Ying Min
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
| | - Xiangyu Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
| | - Yuxi Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Weidong Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
| | - Lei Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
- Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, Hainan, 570311, China
| |
Collapse
|
12
|
Fang W, Meng YD, Ding SY, Wang JY, Pei ZH, Shen ML, Yao CZ, Li Q, Gu Z, Yu J, Jiang HJ. Asymmetric S-Arylation of Sulfenamides to Access Axially Chiral Sulfilimines Enabled by Anionic Stereogenic-at-Cobalt(III) Complexes. Angew Chem Int Ed Engl 2025; 64:e202419596. [PMID: 39625341 DOI: 10.1002/anie.202419596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
An efficient enantioselective coupling reaction between sulfenamides and cyclic diaryliodonium salts is established via adaptive Cu/anionic stereogenic-at-Co(III) complex combined catalysis, precisely synthesizing a broad range of axially chiral sulfilimines with excellent enantioselectivities, diastereoselectivities, regioselectivities, and chemoselectivities (67 examples under same conditions, up to 98 % ee). The following thermodynamically controlled pyramidal inversion enables efficient stereodivegent synthesis of all four stereoisomers. Mechanistic studies suggest that anionic stereogenic-at-cobalt(III) complexes serve as counteranions of diaryliodonium and anionic ligand of Cu(I) catalyst simultaneously, which could be regarded as an explanation for outstanding selectivities.
Collapse
Affiliation(s)
- Wei Fang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Yan-Dong Meng
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Shu-Ying Ding
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Ju-Yan Wang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Zheng-Hao Pei
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Meng-Lan Shen
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Chuan-Zhi Yao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Qiankun Li
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
13
|
Fan FX, Xu H, Tang SX, Dang Y, Wang F. Iron-catalysed stereoselective NH transfer enables dynamic kinetic resolution of sulfoxides. Nat Commun 2025; 16:1471. [PMID: 39922827 PMCID: PMC11807215 DOI: 10.1038/s41467-025-56860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
Transition metal-catalysed asymmetric nitrene transfer provides a powerful means to access various bioactive N-containing compounds as single enantiomers. However, enantioselective NH transfer that allows concise assembly of unprotected enantioenriched amines remains an enduring challenge. We report here an iron-catalysed stereoselective NH imidation of sulfoxide, which is integrated with photocatalytic racemisation of sulfoxide, enabling a dynamic kinetic resolution (DKR) strategy for direct and asymmetric synthesis of NH-sulfoximines. This approach is distinct from the existing methods by avoiding protecting group manipulations and/or the use of chiral substrates. Computational studies on the NH imidation reaction suggest the involvement of an iron-aminyl radical intermediate, and its reaction with sulfoxide proceeds through a synchronous nucleophilic addition of sulfoxide to nitrogen center and ligand-to-metal single electron transfer process to form the N-S bond. In addition, the stereoselectivity is primarily dictated by the difference in dispersion interactions of the transition states.
Collapse
Affiliation(s)
- Fang-Xu Fan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Shi-Xiong Tang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China.
| | - Fei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
14
|
Jiang HJ, Fang W, Chen X, Yu XR, Meng YD, Fang LP, Shen ML, Yao CZ, Li Q, Hong X, Yu J. Unlocking Chiral Sulfinimidoyl Electrophiles: Asymmetric Synthesis of Sulfinamides Catalyzed by Anionic Stereogenic-at-Cobalt(III) Complexes. J Am Chem Soc 2025; 147:2137-2147. [PMID: 39748605 DOI: 10.1021/jacs.4c16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Asymmetric catalysis involving a sulfoxide electrophile intermediate presents an efficient methodology for accessing stereogenic-at-sulfur compounds, such as sulfinate esters, sulfinamides, etc., which have garnered increasing attention in modern pharmaceutical sciences. However, as the aza-analog of sulfoxide electrophiles, the asymmetric issues about electrophilic sulfinimidoyl species remain largely unexplored and represent a significant challenge in sulfur stereochemistry. Herein, we exhibit an anionic stereogenic-at-cobalt(III) complex-catalyzed asymmetric synthesis of chiral sulfinamides via chiral sulfinimidoyl iodide intermediates. Mechanistic investigations reveal that the catalytic cycle is initiated by asymmetric oxidative iodination, generating sulfinimidoyl iodides. These active intermediates subsequently undergo an enantiospecific nucleophilic substitution with water, affording a diverse array of enantioenriched sulfinamides. Notably, these sulfinamides exhibit promising antifungal activities against Sclerotinia sclerotiorum and serve as ideal platform molecules facilitating the stereospecific transformation into various stereogenic aza-sulfur compounds.
Collapse
Affiliation(s)
- Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Wei Fang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Xinran Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xin-Ran Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Yan-Dong Meng
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Li-Ping Fang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Meng-Lan Shen
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Chuan-Zhi Yao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Qiankun Li
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
15
|
Xiao Z, Pu M, Li Y, Yang W, Wang F, Feng X, Liu X. Asymmetric Catalytic Synthesis of Allylic Sulfenamides from Vinyl α-Diazo Compounds by a Rearrangement Route. Angew Chem Int Ed Engl 2025; 64:e202414712. [PMID: 39226119 DOI: 10.1002/anie.202414712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
The asymmetric rearrangement of allylic sulfilimines is an effective route to synthetically attractive targets, such as allylic sulfenamides. The current methods are limited to chirality transfer from chiral allylic sulfilimine precursors. Herein, we report a general and fundamentally new rearrangement route to access optically enriched allylic sulfenamides and their derivatives. The process involves S-alkylation and an unusual S-to-N rearrangement step. A chiral nickel complex enables the transformation of a broad scope of sulfenamides and vinyl α-diazo pyrazoleamides under mild conditions. Various allylic sulfenamides have been synthesized with excellent γ-regioselectivity and enantioselectivity, and can be efficiently converted into sulfinamide and 4-aminobutenoic acid derivatives. In addition, DFT calculations demonstrate the connection between the spin state and conformation of the nickel vinyl carbenoid, as well as an unknown rearrangement process.
Collapse
Affiliation(s)
- Zhijie Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Maoping Pu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yuzhen Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wei Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610047, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
16
|
Liu Q, Feng X, Xie F, Lai Y, Jiang H, Jiao Y, Wang J. Synthesis of Sulfenamides via Photoredox N-S Coupling of Dialkyl Azodicarboxylates and Thiols. Org Lett 2025; 27:409-414. [PMID: 39729373 DOI: 10.1021/acs.orglett.4c04454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
We herein report a photoredox N-S coupling reaction between dialkyl azodicarboxylates and thiols to access sulfenamide scaffolds. This reaction proceeds under mild, green, and operationally simple conditions, offering a broad scope of sulfenamides with high yields and excellent atom efficiency. Mechanistic investigations revealed this reaction followed a photoinitiated radical pathway in which iodide plays a crucial role as both a radical initiator and a single-electron reductant.
Collapse
Affiliation(s)
- Qun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Xiaoyun Feng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Fenghao Xie
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yingchao Lai
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Haokun Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yujing Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
17
|
Chen WL, Fang S, Song JL, Hu Q, Zhang SS, Shu B. Base-Promoted Sulfur Arylation of Sulfenamides to Oxonium Aryne Precursors: Chemoselective Synthesis of Sulfilimines and o-Sulfanylanilines. J Org Chem 2025; 90:448-457. [PMID: 39680633 DOI: 10.1021/acs.joc.4c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In this study, a metal-free and efficient method for the synthesis of sulfilimines and o-sulfanylanilines in high yields with excellent chemoselectivities from oxonium aryne precursors with sulfenamides has been developed. This method features mild reaction conditions, simple operations, a general substrate scope, and good tolerance of functional groups. In addition, scale-up synthesis, related applications, and preliminary mechanistic explorations were also investigated.
Collapse
Affiliation(s)
- Wang-Liang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Sheng Fang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Jia-Lin Song
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qiong Hu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
18
|
Zhang ZK, Yuan Y, Peng H, Han Y, Zhang J, Yang J. Synthesis of Sulfinamidines via Iron-Catalyzed Nitrene Transfer Reaction with Sulfenamides. J Org Chem 2024; 89:17609-17614. [PMID: 39557583 DOI: 10.1021/acs.joc.4c02286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
An iron-catalyzed nitrene transfer reaction for the rapid synthesis of sulfinamidines from readily available sulfenamides is reported. This method features mild conditions, short reaction times, and a broad substrate scope, allowing the preparation of a variety of sulfinamidines in good to excellent yields. The synthetic utility of the sulfinamidine products was further demonstrated through their conversion to other valuable sulfur(VI) compounds, such as sulfondiimidoyl fluorides, sulfinamidiate esters, and sulfonimidamides. Preliminary efforts in the development of an asymmetric variant showed moderate enantioselectivity.
Collapse
Affiliation(s)
- Zhi-Kun Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yin Yuan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Huiling Peng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yidan Han
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
19
|
V R PP, Mercy A AH, K N, S S, Nandi GC. A Rapid, Mild and Direct Route to Sulfonimidoyl Fluoride from Sulfenamide. J Org Chem 2024; 89:16426-16432. [PMID: 39478286 DOI: 10.1021/acs.joc.4c01644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We develop a rapid and mild protocol to access sulfonimidoyl fluoride-[S(VI)] from sulfenamide-[S(II)] directly. The transformation occurs via the reaction of sulfenamide with NCS (N-chlorosuccinimide), water, and TBAF in acetonitrile. Water and TBAF act as the source for S═O bond formation and fluoride, respectively. The reaction takes a very short time (within 5 min). The drug molecules, such as Carbamazepine and Levetiracetam attached sulfonimidoyl fluorides are also achieved following this protocol. Furthermore, sulfonimidoyl fluoride is transformed into sulfonimidamide in the presence of AlCl3. To the best of our knowledge, it is the first report detailing the synthesis of sulfonimidoyl fluoride-[S(VI)] directly from S(II)-sulfenamide.
Collapse
Affiliation(s)
- Padma Priya V R
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| | - Antony Haritha Mercy A
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| | - Natarajan K
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| | - Sugapriya S
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| | - Ganesh Chandra Nandi
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India
| |
Collapse
|
20
|
Balhara R, Chatterjee R, Jindal G. Mechanism and stereoselectivity in metal and enzyme catalyzed carbene insertion into X-H and C(sp 2)-H bonds. Chem Soc Rev 2024; 53:11004-11044. [PMID: 39392229 DOI: 10.1039/d4cs00742e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Constructing highly proficient C-X (X = O, N, S, etc.) and C-C bonds by leveraging TMs (transition metals) (Fe, Cu, Pd, Rh, Au, etc.) and enzymes to catalyze carbene insertion into X-H/C(sp2)-H is a highly versatile strategy. This is primarily achieved through the in situ generation of metal carbenes from the interaction of TMs with diazo compounds. Over the last few decades, significant advancements have been made, encompassing a wide array of X-H bond insertions using various TMs. These reactions typically favor a stepwise ionic pathway where the nucleophilic attack on the metal carbene leads to the generation of a metal ylide species. This intermediate marks a critical juncture in the reaction cascade, presenting multiple avenues for proton transfer to yield the X-H inserted product. The mechanism of C(sp2)-H insertion reactions closely resembles those of X-H insertion reactions and thus have been included here. A major development in carbene insertion reactions has been the use of engineered enzymes as catalysts. Since the seminal report of a non-natural "carbene transferase" by Arnold in 2013, "P411", several heme-based enzymes have been reported in the literature to catalyze various abiological carbene insertion reactions into C(sp2)-H, N-H and S-H bonds. These enzymes possess an extraordinary ability to regulate the orientation and conformations of reactive intermediates, facilitating stereoselective carbene transfers. However, the absence of a suitable stereochemical model has impeded the development of asymmetric reactions employing a lone chiral catalyst, including enzymes. There is a pressing need to investigate alternative mechanisms and models to enhance our comprehension of stereoselectivity in these processes, which will be crucial for advancing the fields of asymmetric synthesis and biocatalysis. The current review aims to provide details on the mechanistic aspects of the asymmetric X-H and C(sp2)-H insertion reactions catalyzed by Fe, Cu, Pd, Rh, Au, and enzymes, focusing on the detailed mechanism and stereochemical model. The review is divided into sections focusing on a specific X-H/C(sp2)-H bond type catalyzed by different TMs and enzymes.
Collapse
Affiliation(s)
- Reena Balhara
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru-560012, Karnataka, India.
| | - Ritwika Chatterjee
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru-560012, Karnataka, India.
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru-560012, Karnataka, India.
| |
Collapse
|
21
|
Champlin AT, Kwon NY, Ellman JA. Enantioselective S-Alkylation of Sulfenamides by Phase-Transfer Catalysis. Angew Chem Int Ed Engl 2024; 63:e202408820. [PMID: 39058627 PMCID: PMC11514311 DOI: 10.1002/anie.202408820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
A general phase-transfer catalyst (PTC) mediated enantioselective alkylation of N-acylsulfenamides is reported. Essential to achieving high selectivity was the use of the triethylacetyl sulfenamide protecting group along with aqueous KOH as the base under biphasic aqueous conditions to enable the reaction to be performed at -40 °C. With these key parameters, enantiomeric ratios up to 97.5 : 2.5 at the newly generated chiral sulfur center were achieved with an inexpensive cinchona alkaloid derived PTC. Broad scope and excellent functional group compatibility was observed for a variety of S-(hetero)aryl and branched and unbranched S-alkyl sulfenamides. Moreover, to achieve high selectivity for the opposite enantiomer, a pseudoenantiomeric catalyst was designed and synthesized from inexpensive cinchonidine. Given that sulfoximines are a bioactive pharmacophore of ever-increasing interest, selected product sulfilimines were oxidized to the corresponding sulfoximines with subsequent reductive cleavage affording the free-NH sulfoximines in high yields. The utility of the disclosed method was further demonstrated by the efficient asymmetric synthesis of atuveciclib, a phase I clinical candidate for which only chiral HPLC separation had previously been reported for isolation of the desired (R)-sulfoximine stereoisomer.
Collapse
Affiliation(s)
| | | | - Jonathan A. Ellman
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520 (USA)
| |
Collapse
|
22
|
Wu X, Zheng J, He FS, Wu J. Ligand-Enabled Copper-Catalyzed Ullmann-Type S-C Bond Formation to Access Sulfilimines. Org Lett 2024; 26:8200-8205. [PMID: 39264317 DOI: 10.1021/acs.orglett.4c03116] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A copper-catalyzed Ullmann-type cross-coupling reaction of sulfenamides with aryl iodides is developed. The key to success is the use of a 2-methylnaphthalen-1-amine-derived amide ligand, which enables the formation of an S-C bond to access functionalized sulfilimines in good to excellent yields at room temperature. This method has the advantages of mild conditions, a broad substrate scope, good functional group compatibility, and high chemoselectivity. The utility of this protocol is highlighted through late-stage modification of drug-relevant molecules and sulfilimine product derivatization.
Collapse
Affiliation(s)
- Xianda Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Jiayi Zheng
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Fu-Sheng He
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, Zhejiang, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
23
|
Ren H, Zhou N, Ma W, Zhang P, Tu D, Lu CS, Yan H. Dative Bonding Activation Enables Precise Functionalization of the Remote B-H Bond of nido-Carborane Clusters. J Am Chem Soc 2024; 146:26543-26555. [PMID: 39267603 DOI: 10.1021/jacs.4c10728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The innovation of synthetic strategies for selective B-H functionalization is a pivotal objective in the realm of boron cluster chemistry. However, the precise, efficient, and rapid functionalization of a B-H bond of carboranes that is distant from the existing functional groups remains intractable owing to the limited approaches for site-selective control from the established methods. Herein, we report a dative bonding activation strategy for the selective functionalization of a nonclassical remote B-H site of nido-carboranes. By leveraging the electronic effects brought by the exopolyhedral B(9)-dative bond, a cross-nucleophile B-H/S-H coupling protocol of the distal B(5)-H bond has been established. The dative bond not only amplifies the subtle reactivity difference among B-H bonds but also significantly changes the reactive sites, further infusing nido-carboranes with additional structural diversity. This reaction paradigm features mild conditions, rapid conversion, efficient production, broad scope, and excellent group tolerance, thus enabling the applicability to an array of complex bioactive molecules. The efficient and scalable reaction platform is amenable to the modular construction of photofunctional molecules and boron delivery agents for boron neutron capture therapy. This work not only provides an unprecedented solution for the selective diversification of distal B-H sites in nido-carboranes but also holds the potential for expediting the discovery of novel carborane-based functional molecules.
Collapse
Affiliation(s)
- Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ningning Zhou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ping Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Yu T, Jin Z, Ji Y, Yang A, Jia P. Photoredox-Catalyzed Difunctionalization of Alkenes with Sulfilimines. Org Lett 2024; 26:7944-7948. [PMID: 39255005 DOI: 10.1021/acs.orglett.4c02971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Herein, we disclose a facile photoinduced difunctionalization of alkenes, enabling the synthesis of valuable β-amino alcohols, β-amino ethers, and 1,2-diamines with diverse nucleophiles. The protocol relies on the use of readily accessible dibenzothiophene-based sulfilimines as novel N-radical precursors, showcasing high functional-group tolerance and exclusive regioselectivity under mild reaction conditions.
Collapse
Affiliation(s)
- Tingwei Yu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhe Jin
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Ji
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Penghao Jia
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
25
|
Wang F, Xiang W, Xie Y, Huai L, Zhang L, Zhang X. Synthesis of chiral sulfilimines by organocatalytic enantioselective sulfur alkylation of sulfenamides. SCIENCE ADVANCES 2024; 10:eadq2768. [PMID: 39270024 PMCID: PMC11397483 DOI: 10.1126/sciadv.adq2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Sulfilimines are versatile synthetic intermediates and important moieties in bioactive molecules. However, their applications in drug discovery are underexplored, and efficient asymmetric synthetic methods are highly desirable. Here, we report a transition metal-free pentanidium-catalyzed sulfur alkylation of sulfenamides with exclusive chemoselectivity over nitrogen and high enantioselectivity. The reaction conditions were mild, and a wide range of enantioenriched aryl and alkyl sulfilimines were obtained. The synthetic utility and practicability of this robust protocol were further demonstrated through gram-scale reactions and late-stage functionalization of drugs.
Collapse
Affiliation(s)
- Fucheng Wang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wanxing Xiang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yiting Xie
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Linge Huai
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Luoqiang Zhang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xin Zhang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Yuan Y, Han Y, Zhang ZK, Sun S, Wu K, Yang J, Zhang J. Enantioselective Arylation of Sulfenamides to Access Sulfilimines Enabled by Palladium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409541. [PMID: 38935325 DOI: 10.1002/anie.202409541] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Sulfur-containing functional groups have garnered considerable attention due to their common occurrence in ligands, pharmaceuticals, and insecticides. Nevertheless, enantioselective synthesis of sulfilimines, particularly diaryl sulfilimines remains a challenging and persistent goal. Herein we report a highly enantio- and chemoselective cross-coupling of sulfenamides with aryl diazonium salt to construct diverse S(IV) stereocenters by Pd catalysis. Bisphosphine ligands bearing sulfinamide groups play a crucial role in achieving high reactivity and selectivity. This approach provides a general, modular and divergent framework for quickly synthesizing chiral sulfilimines and sulfoximines that are otherwise challenging to access. In addition, the origins of the high chemoselectivity and enantioselectivity were extensively investigated using density functional theory calculations.
Collapse
Affiliation(s)
- Yin Yuan
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Yidan Han
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, China
| | - Zhi-Kun Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Shijin Sun
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Ke Wu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
27
|
Bao W, Wang XJ, Wang SH, Chen SW, Liu HH, Xiang SH, Tan B. Design of Stable Chiral Aminosulfonium Ylides and Their Catalytic Asymmetric Synthesis. Angew Chem Int Ed Engl 2024:e202412508. [PMID: 39213133 DOI: 10.1002/anie.202412508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The isolation and catalytic enantioselective synthesis of configurationally stable S-stereogenic sulfonium ylides have been significant challenges in the field of asymmetric synthesis. These reactive intermediates are crucial for a variety of synthetic transformations, yet their inherent tendency towards rapid inversion at the sulfur stereocenter has hindered their practical utilization. Conventional approaches have focused on strategies that incorporate a C=S bond-containing cyclic framework to help mitigate this stereochemical lability. In this work, we present an alternative tactic that leverages the stabilizing influence of an adjacent N-atom and cyclic sulfide moiety. Exploiting a copper catalyzed enantioselective intermolecular carbene transfer reaction, structurally diverse S-stereogenic aminosulfonium ylides have been achieved in excellent yields and enantioselectivities. Experimental results indicate that the careful selection of 2-diazo-1,3-diketone precursors is crucial for achieving optimal stereoinduction in this transformation. The resulting highly enantioenriched aminosulfonium ylides allow for further stereospecific elaborations to furnish aminosulfonium ylide oxides and sulfinamide. This work expands the boundaries of chiral sulfonium ylide chemistry, providing access to a broad range of previously elusive S-stereogenic aminosulfonium ylide scaffolds.
Collapse
Affiliation(s)
- Wen Bao
- School of Basic Medical Sciences & School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xu-Jie Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Wang
- School of Basic Medical Sciences & School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shi-Wu Chen
- School of Basic Medical Sciences & School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Huan-Huan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
28
|
Arichi N, Amano T, Wu S, Inuki S, Ohno H. Synthesis of Sulfilimines via Visible-Light-Mediated Triplet Energy Transfer to Sulfonyl Azides. Chemistry 2024; 30:e202401842. [PMID: 38923056 DOI: 10.1002/chem.202401842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Sulfilimines and their derivatives have garnered considerable interest in both synthetic and medicinal chemistry. Photochemical nitrene transfer to sulfides is known as a conventional synthetic approach to sulfilimines. However, the existing methods have a limited substrate scope stemming from the incompatibility of singlet nitrene intermediates with nucleophilic functional groups. Herein, we report the synthesis of N-sulfonyl sulfilimines via visible-light-mediated energy transfer to sulfonyl azides, uncovering the previously overlooked reactivity of triplet nitrenes with sulfides. This reaction features broad functional group tolerance, water compatibility, and amenability to the late-stage functionalization of drugs. Thus, this work represents an important example of energy transfer chemistry that overcomes challenges in traditional synthetic methods.
Collapse
Affiliation(s)
- Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tsuyoshi Amano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shuhan Wu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
29
|
Fimm M, Saito F. Enantioselective Synthesis of Sulfinamidines via Asymmetric Nitrogen Transfer from N-H Oxaziridines to Sulfenamides. Angew Chem Int Ed Engl 2024; 63:e202408380. [PMID: 38747676 DOI: 10.1002/anie.202408380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 07/21/2024]
Abstract
Sulfinamidines are promising aza-SIV chiral building blocks in asymmetric synthesis and drug discovery. However, no report has documented their enantioselective synthesis. Here we present an enantioselective synthesis of sulfinamidines via electrophilic amination of sulfenamides using an enantiopure N-H oxaziridine. The resulting enantiomerically enriched primary sulfinamidines are configurationally stable at 90 °C in solution and show remarkable stability against organic acids and bases under non-aqueous conditions. We also demonstrate a one-pot, three-component, enantioselective synthesis of sulfinamides using N-H oxaziridine reagents.
Collapse
Affiliation(s)
- Marc Fimm
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377, München, Germany
| | - Fumito Saito
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377, München, Germany
| |
Collapse
|
30
|
Patel S, Greenwood NS, Mercado BQ, Ellman JA. Rh(II)-Catalyzed Enantioselective S-Alkylation of Sulfenamides with Acceptor-Acceptor Diazo Compounds Enables the Synthesis of Sulfoximines Displaying Diverse Functionality. Org Lett 2024; 26:6295-6300. [PMID: 39004842 PMCID: PMC11292377 DOI: 10.1021/acs.orglett.4c02402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The Rh(II)-catalyzed enantioselective S-alkylation of sulfenamides with α-amide diazoacetates at 1 mol % catalyst loading to obtain sulfilimines in high yields and enantiomeric ratios of up to 99:1 is reported. The enantioenriched sulfilimine products incorporate versatile amide functionality poised for further elaboration to diverse sulfoximines with multiple stereogenic centers, including by highly diastereoselective sulfilimine and sulfoximine α-alkylation with alkylating agents and epoxides and by interconversion of the amide to N-tert-butanesulfinyl aldimines, followed by diastereoselective additions.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
31
|
Liu Z, Wu H, Zhang H, Wang F, Liu X, Dong S, Hong X, Feng X. Iron-Catalyzed Asymmetric Imidation of Sulfides via Sterically Biased Nitrene Transfer. J Am Chem Soc 2024; 146:18050-18060. [PMID: 38878303 DOI: 10.1021/jacs.4c04855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Transition-metal-catalyzed enantioselective nitrene transfer to sulfides has emerged as one of the most powerful strategies for rapid construction of enantioenriched sulfimides. However, achieving stereocontrol over highly active earth-abundant transition-metal nitrenoid intermediates remains a formidable challenge compared with precious metals. Herein, we disclose a chiral iron(II)/N,N'-dioxide-catalyzed enantioselective imidation of dialkyl and alkyl aryl sulfides using iminoiodinanes as nitrene precursors. A series of chiral sulfimides were obtained in moderate-to-good yields with high enantioselectivities (56 examples, up to 99% yield, 98:2 e.r.). The utility of this methodology was demonstrated by late-stage modification of complex molecules and synthesis of the chiral insecticide sulfoxaflor and the intermediates of related bioactive compounds. Based on experimental studies and theoretical calculations, a water-bonded high-spin iron nitrenoid species was identified as the key intermediate. The observed stereoselectivity was original from the steric repulsion between the amide unit of the ligand in the chiral cave and the bulky substituent of sulfides. Additionally, dioxazolones proved to be suitable acylnitrene precursors in the presence of an iron(III)/N,N'-dioxide complex, resulting in the formation of enantioselectivity-reversed sulfimides (14 examples, up to 81% yield, 97:3 e.r.).
Collapse
Affiliation(s)
- Zhenzhong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongli Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Helong Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fang Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
32
|
Han K, Liu H, Rotella ME, Xu Z, Tao L, Chen S, Kozlowski MC, Jia T. A combined experimental and computational study of ligand-controlled Chan-Lam coupling of sulfenamides. Nat Commun 2024; 15:4747. [PMID: 38834552 PMCID: PMC11150460 DOI: 10.1038/s41467-024-49089-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
The unique features of the sulfenamides' S(II)-N bond lead to interesting stereochemical properties and significant industrial functions. Here we present a chemoselective Chan-Lam coupling of sulfenamides to prepare N-arylated sulfenamides. A tridentate pybox ligand governs the chemoselectivity favoring C-N bond formation, and overrides the competitive C-S bond formation by preventing the S,N-bis-chelation of sulfenamides to copper center. The Cu(II)-derived resting state of catalyst is captured by UV-Vis spectra and EPR technique, and the key intermediate is confirmed by the EPR isotope response using 15N-labeled sulfenamide. A computational mechanistic study reveals that N-arylation is both kinetically and thermodynamically favorable, with deprotonation of the sulfenamide nitrogen atom occurring prior to reductive elimination. The origin of ligand-controlled chemoselectivity is explored, with the interaction between the pybox ligand and the sulfenamide substrate controlling the energy of the S-arylation and the corresponding product distribution, in agreement with the EPR studies and kinetic results.
Collapse
Affiliation(s)
- Kaiming Han
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong, P. R. China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
| | - Hong Liu
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong, P. R. China
| | - Madeline E Rotella
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, USA
| | - Zeyu Xu
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong, P. R. China
| | - Lizhi Tao
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong, P. R. China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China.
| | - Marisa C Kozlowski
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, USA.
| | - Tiezheng Jia
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong, P. R. China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
33
|
Han Y, Yuan Y, Qi S, Zhang ZK, Kong X, Yang J, Zhang J. Copper-Catalyzed Sulfur Alkylation of Sulfenamides with N-Sulfonylhydrazones. Org Lett 2024; 26:3906-3910. [PMID: 38683227 DOI: 10.1021/acs.orglett.4c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Sulfilimines are valuable compounds in both organic synthesis and pharmaceuticals. In this study, we present a copper-catalyzed sulfur alkylation of sulfenamides with N-sulfonylhydrazones. In contrast to prior findings, hydrazones derived from aldehydes act as donor-type carbene precursors, effectively engaging in coupling with sulfenamides via a copper catalyst, demonstrating exclusive S selectivity. The utility of the protocol was highlighted in the rapid access to a wide range of sulfoximine derivatives.
Collapse
Affiliation(s)
- Yidan Han
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, People's Republic of China
| | - Yin Yuan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Shutao Qi
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Zhi-Kun Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Xiangfei Kong
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541006, People's Republic of China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
- Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 519000, People's Republic of China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China
| |
Collapse
|
34
|
Zhang M, Liu L, Tan Y, Jing Y, Liu Y, Wang Z, Wang Q. Decarboxylative Radical Sulfilimination via Photoredox, Copper, and Brønsted Base Catalysis. Angew Chem Int Ed Engl 2024; 63:e202318344. [PMID: 38126567 DOI: 10.1002/anie.202318344] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Sulfilimines, the aza-variants of sulfoxides, are key structural motifs in natural products, pharmaceuticals, and agrochemicals; and sulfilimine synthesis is therefore important in organic chemistry. However, methods for radical sulfilimination remain elusive, and as a result, the structural diversity of currently available sulfilimines is limited. Herein, we report the first protocol for decarboxylative radical sulfilimination reactions between sulfenamides and N-hydroxyphthalimide esters of primary, secondary, and tertiary alkyl carboxylic acids, which were achieved via a combination of photoredox, copper, and Brønsted base catalysis. This novel protocol provided a wide variety of sulfilimines, in addition to serving as an efficient route for the synthesis of S-alkyl/S-aryl homocysteine sulfilimines and S-(4-methylphenyl) homocysteine sulfoximine. Moreover, it could be used for late-stage introduction of a sulfilimine group into structurally complex molecules, thereby avoiding the need to preserve labile organosulfur moieties through multistep synthetic sequences. A mechanism involving photocatalytic substrate transformation and copper-mediated C(sp3 )-S bond formation is proposed.
Collapse
Affiliation(s)
- Mingjun Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Lixia Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuhao Tan
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yue Jing
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ziwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300071, P. R. China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
35
|
Greenwood NS, Cerny NP, Deziel AP, Ellman JA. Synthesis of N-Acylsulfenamides from (Hetero)Aryl Iodides and Boronic Acids by One-Pot Sulfur-Arylation and Dealkylation. Angew Chem Int Ed Engl 2024; 63:e202315701. [PMID: 38015869 PMCID: PMC10813656 DOI: 10.1002/anie.202315701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
A general one-pot approach to diverse N-acylsulfenamides from a common S-phenethylsulfenamide starting material is reported. This approach was demonstrated by C-S bond formation utilizing commercially abundant (hetero)aryl iodides and boronic acids to provide sulfilimine intermediates that undergo thermal elimination of styrene. In contrast, all prior approaches to N-acylsulfenamides rely on thiol inputs to introduce sulfenamide S-substituents. A broad scope of reaction inputs was demonstrated including for approved drugs and drug precursors with dense display of functionality. Several different types of sulfur functionalization were performed on a sulfenamide derived from a complex precursor of the blockbuster anticoagulant drug apixaban, highlighting the utility of this approach for the introduction of high oxidation state sulfur groups in complex bioactive compounds. Mechanistic studies established that the key styrene elimination step proceeds by a concerted elimination that does not require reagents or catalysts, and therefore, this one-pot approach should be applicable to the synthesis of N-acylsulfenamides utilizing diverse electrophiles and reaction conditions for C-S bond formation.
Collapse
Affiliation(s)
- Nathaniel S Greenwood
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Nicholas P Cerny
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Anthony P Deziel
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| |
Collapse
|
36
|
Gao L, Wang YQ, Zhang YQ, Fu YH, Liu YY, Zhang QW. Nickel-Catalyzed Enantioselective Synthesis of Dienyl Sulfoxide. Angew Chem Int Ed Engl 2023:e202317626. [PMID: 38085222 DOI: 10.1002/anie.202317626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 12/29/2023]
Abstract
Sulfoxides are widely used in the pharmaceutical industry and as ligands in asymmetric catalysis. However, the efficient asymmetric synthesis of this structural motif remains limited. In this study, we disclosed a Ni-catalyzed enantioconvergent reaction that utilizes both racemic allenyl carbonates and β-sulfinyl esters. Our method employs cheap and more sustainable Ni(II) as a precatalyst and successfully overcomes the challenging poisoning effect and instability of sulfenate generated in situ. This enables the synthesis of a series of dienyl sulfoxides with enantioselectivity of up to 98 % ee. The product exhibits tremendous potential in various applications, including diastereoselective Diels-Alder reactions, coordination with transition metals, and incorporation into medicinal compounds, among others. Using a combination of experimental and computational methods, we have uncovered an interesting associated outersphere mechanism that contrasts with conventional mechanisms commonly observed in asymmetric transition metal catalysis.
Collapse
Affiliation(s)
- Li Gao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yin-Qi Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ya-Qian Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Han Fu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Yu Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qing-Wei Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
37
|
Huang G, Ye J, Tan M, Chen Y, Lu X. Copper-Catalyzed Aerobic S-Amination of Sulfenamides for the Synthesis of Sulfinamidines. J Org Chem 2023; 88:16116-16121. [PMID: 37982347 DOI: 10.1021/acs.joc.3c01353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Herein, we present a copper-catalyzed oxidative amination of sulfenamides for the synthesis of sulfinamidines. By the employment of air as the terminal oxidant, a diverse array of secondary and primary amines can be efficiently transformed into their corresponding products. This method is well-suited for last-stage functionalization, and the underlying mechanism has been investigated. The transformation is characterized by exceptional chemoselectivity, mild conditions, facile operation, and broad substrate compatibility, which have significant implications for the fields of pharmaceuticals and organic synthesis.
Collapse
Affiliation(s)
- Guoling Huang
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| | - Jianlin Ye
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| | - Minxi Tan
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| | - Yuetong Chen
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| | - Xunbo Lu
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang, 524048, P. R. China
| |
Collapse
|
38
|
Guo Y, Zhuang Z, Feng X, Ma Q, Li N, Jin C, Yoshida H, Tan J. Selective S-Arylation of Sulfenamides with Arynes: Access to Sulfilimines. Org Lett 2023; 25:7192-7197. [PMID: 37733632 DOI: 10.1021/acs.orglett.3c02785] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Sulfilimines, the aza analogues of sulfoxides, are of increasing interest in medicinal and agrochemical research programs. However, the development of efficient routes for their synthesis has remained relatively unexplored. In this study, we report a transition metal-free, selective S-arylation reaction between sulfenamides and arynes, enabling the facile preparation of structurally diverse sulfilimines under mild and redox-neutral conditions in good yields. The application value of our method was further demonstrated by scale-up synthesis, downstream derivatization, and robustness screen.
Collapse
Affiliation(s)
- Yifeng Guo
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Zhe Zhuang
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Xiaoying Feng
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Quanyu Ma
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Ningning Li
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Chaochao Jin
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Hiroto Yoshida
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Jiajing Tan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
39
|
Xie P, Zheng Y, Luo Y, Luo J, Wu L, Cai Z, He L. Synthesis of Sulfilimines via Multicomponent Reaction of Arynes, Sulfamides, and Thiosulfonates. Org Lett 2023; 25:6133-6138. [PMID: 37579216 DOI: 10.1021/acs.orglett.3c02217] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In this work, a facile and efficient method for the synthesis of sulfilimines through multicomponent reaction of arynes, sulfamides, and thiosulfonates was developed. A variety of structurally diverse substrates and functional groups were very compatible in the reaction, giving the corresponding sulfilimines in good to high yields. This protocol could be conducted on a gram scale, and the product was easily converted to sulfide and sulfoximine. Mechanism studies revealed that sulfenamide generated in situ is the key intermediate for the reaction.
Collapse
Affiliation(s)
- Pei Xie
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yating Zheng
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yuping Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jinyun Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Leifang Wu
- Analysis and Testing Center of Shihezi University, Shihezi University, Shihezi 832000, P. R. China
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
40
|
Liu JT, Brandes DS, Greenwood NS, Ellman JA. Synthesis of N-Acylsulfenamides from Amides and N-Thiosuccinimides. SYNTHESIS-STUTTGART 2023; 55:2353-2360. [PMID: 37457378 PMCID: PMC10348737 DOI: 10.1055/s-0041-1738430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein is reported a robust and general method for the preparation of N-acylsulfenamides, important functionalities that have recently been utilized as central inputs for the asymmetric synthesis of high oxidation state sulfur compounds. This straightforward transformation proceeds by reaction of primary amides, carbamates, sulfonamides, sulfinamides, and ureas with stable N-thiosuccinimides or N-thiophthalimides, which in turn are prepared in a single step from commercial thiols. The use of stable N-thiosuccinimide and N-thiophthalimide reactants is desirable because it obviates the use of highly reactive sulfenyl chlorides.
Collapse
Affiliation(s)
- Jessica T Liu
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Daniel S Brandes
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
41
|
Abstract
An efficient and metal-free approach for the synthesis of sulfilimines from sulfenamides with aryne and cyclohexyne precursors has been developed. The reaction proceeds through unusual S-C bond formation, which offers a novel and practical entry to access a wide range of sulfilimines in moderate to good yields with excellent chemoselectivity. Moreover, this protocol is amenable to gram-scale synthesis and is applicable to the transformation of the products into useful sulfoximines.
Collapse
Affiliation(s)
- Xianda Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Minghong Chen
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Fu-Sheng He
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
42
|
Greenwood NS, Ellman JA. Sulfur-Arylation of Sulfenamides via Ullmann-Type Coupling with (Hetero)aryl Iodides. Org Lett 2023; 25:4759-4764. [PMID: 37338140 PMCID: PMC10330900 DOI: 10.1021/acs.orglett.3c01874] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Sulfur-(hetero)arylation of sulfenamides with commercially abundant (hetero)aryl iodides by Ullmann-type coupling with inexpensive copper(I) iodide as the catalyst is reported. A broad scope of reaction inputs was demonstrated, including both aryl and alkyl sulfenamides and highly sterically hindered aryl and 5- and 6-membered ring heteroaryl iodides. Relevant to many bioactive high oxidation state sulfur compounds, the (hetero)arylation of S-methyl sulfenamides is reported, including for complex aryl iodides. Smiles rearrangement of electron-deficient S-heteroaryl sulfilimines is also disclosed.
Collapse
Affiliation(s)
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520, United States
| |
Collapse
|
43
|
Wu X, Li Y, Chen M, He FS, Wu J. Metal-Free Chemoselective S-Arylation of Sulfenamides To Access Sulfilimines. J Org Chem 2023. [PMID: 37327035 DOI: 10.1021/acs.joc.3c00961] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel and efficient S-arylation of sulfenamides with diaryliodonium salts for the synthesis of sulfilimines is developed. The reaction proceeds smoothly under transition-metal-free and air conditions, giving rapid access to sulfilimines in good to excellent yields via selective S-C bond formation. This protocol is scalable and exhibits a broad substrate scope, good functional group tolerance, and excellent chemoselectivity.
Collapse
Affiliation(s)
- Xianda Wu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
| | - Yuqing Li
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
| | - Minghong Chen
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
| | - Fu-Sheng He
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang 3180000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
44
|
Champlin AT, Ellman JA. Preparation of Sulfilimines by Sulfur-Alkylation of N-Acyl Sulfenamides with Alkyl Halides. J Org Chem 2023; 88:7607-7614. [PMID: 37221855 PMCID: PMC10257216 DOI: 10.1021/acs.joc.3c00750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sulfur alkylation of N-acyl sulfenamides with alkyl halides provides sulfilimines in 47% to 98% yields. A broad scope was established with a variety of aryl and alkyl sulfenamides, including for different N-acyl groups. Alkyl halides with different steric and electronic properties were effective inputs, including methyl, primary, secondary, benzyl, and propargyl halides. A proof-of-concept asymmetric phase-transfer alkylation was also demonstrated. A sulfilimine product was readily converted to an N-acyl and to a free sulfoximine, which represent important motifs in medicinal chemistry.
Collapse
Affiliation(s)
- Andrew T. Champlin
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
45
|
Zhou Q, Li J, Wang T, Yang X. Base-Promoted S-Arylation of Sulfenamides for the Synthesis of Sulfilimines. Org Lett 2023. [PMID: 37267093 DOI: 10.1021/acs.orglett.3c01436] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Sulfilimines are key intermediates to common motifs in medicines and agrochemicals. Typically, this class of compounds are prepared by imidation of thioethers, transition-metal-catalyzed or base-promoted sulfur alkylation and transition-metal-catalyzed sulfur arylation. Here, we report a practical and efficient base-mediated sulfur arylation reaction for the preparation of sulfilimines. A wide range of N-acyl and N-aryl sulfenamides react with various diaryliodonium salts smoothly to afford the sulfilimines in high yields with excellent chemoselectivities.
Collapse
Affiliation(s)
- Qinglong Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jiaomeng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Tianyi Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
46
|
Greenwood NS, Ellman JA. Sulfur-Arylation of Sulfenamides via Chan-Lam Coupling with Boronic Acids: Access to High Oxidation State Sulfur Pharmacophores. Org Lett 2023; 25:2830-2834. [PMID: 37042652 PMCID: PMC10163624 DOI: 10.1021/acs.orglett.3c00779] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Sulfur-arylation of sulfenamides is reported. This reaction proceeds via a Chan-Lam-type coupling with commercially abundant boronic acids to give sulfilimines. A broad scope was established with a variety of readily accessible aryl and alkyl sulfenamide and boronic acid inputs. Synthetic utility and functional group compatibility were further demonstrated through the direct late-stage introduction of sulfilimines into approved drugs. Derivatization of the sulfilimine products provided access to medicinally relevant sulfoximines and sulfondiimines.
Collapse
Affiliation(s)
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
47
|
Huang G, Lu X, Liang F. Redox-Neutral Strategy for Sulfilimines Synthesis via S-Arylation of Sulfenamides. Org Lett 2023; 25:3179-3183. [PMID: 37104714 DOI: 10.1021/acs.orglett.3c01077] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In this investigation, an unprecedented transition-metal-free and redox-neutral synthesis of sulfilimines was realized through the S-arylation of readily obtainable sulfenamides employing diaryliodonium salts. The pivotal step encompassed the resonance between bivalent nitrogen-centered anions, engendered postdeprotonation of sulfenamides under alkaline conditions, and sulfinimidoyl anions. The experimental outcomes demonstrate that sulfinimidoyl anionic species function as efficacious nucleophilic reagents, affording sulfilimines with notable to exceptional yields and superlative chemoselectivity, all executed within a transition-metal-free protocol and under exceptionally mild conditions.
Collapse
Affiliation(s)
- Guoling Huang
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang 524048, P. R. China
| | - Xunbo Lu
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang 524048, P. R. China
| | - Fangpeng Liang
- Laboratory of Marine Green Fine Chemicals, School of Chemistry and Chemical Engineering, Lingnan Normal University (LNU), 29 Cunjin Road, Zhanjiang 524048, P. R. China
| |
Collapse
|
48
|
Chen SY, Zheng YC, Liu XG, Song JL, Xiao L, Zhang SS. Synthesis of Indole-Substituted Trifluoromethyl Sulfonium Ylides by Cp*Rh(III)-Catalyzed Diazo-carbenoid Addition to Trifluoromethylthioether. J Org Chem 2023; 88:5512-5519. [PMID: 37011236 DOI: 10.1021/acs.joc.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The indole-substituted trifluoromethyl sulfonium ylide has been developed via Cp*Rh(III)-catalyzed diazo-carbenoid addition to trifluoromethylthioether and is the first example of an Rh(III)-catalyzed diazo-carbenoid addition reaction with trifluoromethylthioether. Several kinds of indole-substituted trifluoromethyl sulfonium ylide were constructed under mild reaction conditions. The reported method exhibited high functional group compatibility and broad substrate scope. In addition, the protocol was found to be complementary to the method disclosed by a Rh(II) catalyst.
Collapse
Affiliation(s)
- Shao-Yong Chen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yi-Chuan Zheng
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Xu-Ge Liu
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lin Xiao
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
49
|
Liang Q, Wells LA, Han K, Chen S, Kozlowski MC, Jia T. Synthesis of Sulfilimines Enabled by Copper-Catalyzed S-Arylation of Sulfenamides. J Am Chem Soc 2023; 145:6310-6318. [PMID: 36894165 PMCID: PMC10106277 DOI: 10.1021/jacs.2c12947] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Herein, an unprecedented synthetic route to sulfilimines via a copper-catalyzed Chan-Lam-type coupling of sulfenamides is presented. A key to success in this novel transformation is the chemoselective S-arylation of S(II) sulfenamides to form S(IV) sulfilimines, overriding the competitive, and more thermodynamically favored, C-N bond formation that does not require a change in the sulfur oxidation state. Computations reveal that the selectivity arises from a selective transmetallation event where bidentate sulfenamide coordination through the sulfur and oxygen atoms favors the S-arylation pathway. The mild and environmentally benign catalytic conditions enable broad functional group compatibility, allowing a variety of diaryl or alkyl aryl sulfilimines to be efficiently prepared. The Chan-Lam coupling procedure could also tolerate alkenylboronic acids as coupling partners to afford alkenyl aryl sulfilimines, a class of scaffolds that cannot be directly synthesized via conventional imination strategies. The benzoyl-protecting groups could be conveniently removed from the product, which, in turn, could be readily transformed into several S(IV) and S(VI) derivatives.
Collapse
Affiliation(s)
- Qingjin Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong, 518055, P. R. China
| | - Lucille A. Wells
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Kaiming Han
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Shufeng Chen
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania 19104, United States
| | - Tiezheng Jia
- Research Center for Chemical Biology and Omics Analysis, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong, 518055, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, P. R. China
| |
Collapse
|
50
|
Tsuzuki S, Kano T. Asymmetric Synthesis of Chiral Sulfimides through the O-Alkylation of Enantioenriched Sulfinamides and Addition of Carbon Nucleophiles. Angew Chem Int Ed Engl 2023; 62:e202300637. [PMID: 36807500 DOI: 10.1002/anie.202300637] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/22/2023]
Abstract
Chiral sulfimides, the aza-analogues of sulfoxides, are valuable compounds in organic synthesis and medicinal chemistry. Herein, we report an efficient method for preparing chiral sulfimides from easily available enantioenriched sulfinamides. The key step of this method is a stereospecific oxygen-selective alkylation of enantioenriched sulfinamides, which is accomplished by using isopropyl iodide, K2 CO3 , and DMPU. The resulting chiral sulfinimidate esters are transformed to chiral sulfimides by the nucleophilic addition of the Grignard reagents under simple conditions. This transformation enables access to the enantioenriched diaryl or dialkyl sulfimides bearing two similar carbon substituents, which are difficult to synthesize by previous methods.
Collapse
Affiliation(s)
- Saori Tsuzuki
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.,Department of Chemistry, Graduate School of Science, Kyoto University Sakyo, Kyoto, 606-8502, Japan
| | - Taichi Kano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|