1
|
Sun JY, Zheng Y, Zhang Z, Li XH, Liu GC, Wang XL. In Situ Carboxylate-Functionalized {Mo 12O 38} 4--Based Three-Dimensional Supramolecular Framework as a Copper-Triggered Heterogeneous Catalyst for Alkene Oxidation. Inorg Chem 2025. [PMID: 40317261 DOI: 10.1021/acs.inorgchem.5c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
It is of great research value to develop an efficient and stable catalyst that can achieve the oxidation of alkenes to obtain epoxides, which can serve as a multifunctional intermediate with important commercial value. Based on this, a three-dimensional (3D) supramolecular framework H[CuI(H3bdcbpy)2(Mo12O38)(H2O)] (1, H4bdcbpy·2Cl = N,N'-bis(3,5-dicarboxybenzyl-4,4'-bipyridine·dichloride) was obtained from carboxylate-functionalized 1D coordination polymers, which were derived from an unusual in situ [Mo12O38]4- cluster and Cu-electron-deficient carboxylate complex units. The catalytic performance of 1 in the epoxidation of alkenes using TBHP was examined, revealing its remarkable efficiency in the conversion of cis-cyclooctene, with a high conversion rate of 99% and an outstanding selectivity of 100%. Complex 1 exhibited higher catalytic activity than the unmodified H4bdcbpy·2Cl, CuCl2·2H2O, and Na2MoO4·2H2O, as well as the most previously reported polyoxometalate (POM)-based metal-organic complexes (POMOCs). Moreover, the reaction kinetics and mechanism of the catalytic reaction were explored using free radical trapping experiments and control experiments. The stability of catalyst 1 was also investigated.
Collapse
Affiliation(s)
- Jia-Yu Sun
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Yuan Zheng
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Zhong Zhang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Xiao-Hui Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Guo-Cheng Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Xiu-Li Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
2
|
Fang R, Zhang D, Dong J, Feng Y, Liu C, Yao L, Chi Y, Hu C. An open hollow polyoxovanadate cage based on {Nb(V 5)} pentagons with size-selective encapsulation properties. Chem Commun (Camb) 2025; 61:6182-6185. [PMID: 40165539 DOI: 10.1039/d5cc01376c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
An open hollow polyoxovanadate (POV) cage, V14Nb2P8, has been successfully constructed using {Nb(V5)} pentagons as building blocks. The POV cage features a crown-ether-like {V4P4O8} opening that can selectively coordinate with Cs+ ions. Additionally, it has a hollow cavity that acts as a molecular container to accommodate size-appropriate organic molecules.
Collapse
Affiliation(s)
- Renbo Fang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Di Zhang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Jing Dong
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China.
| | - Yeqin Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Chengpeng Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Liaoyuan Yao
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| |
Collapse
|
3
|
Wu D, Li Z, Zhang Q, Jiang H, Wang C, Wang L, Wei G, Pang X, Fu M, Zhang G, Hou G, Yu S. In Situ Reaction Forms Uniform Mixed Heterometallic Ln III2Mn II4 (Ln = Dy III and Gd III) Clusters: Assembly Mechanism and Insights into Performance. Inorg Chem 2025; 64:6083-6091. [PMID: 40106724 DOI: 10.1021/acs.inorgchem.4c05336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The unclear assembly mechanism seriously hinders the preparation and application of 3d-4f heterometallic clusters. Two new heterometallic nanoclusters [Dy2Mn4(HL)4(OAc)6]·5EtOH·H2O (1) and [Gd2Mn4(HL)4(OAc)6]·4EtOH·4H2O (2) were obtained from the in situ condensation reaction of 3-amino-1,2-propanediol with 2-hydroxy-1-naphthaldehyde. The intermediate species in the cluster 1 synthesis process were tracked by time-dependent high-resolution electrospray ionization mass spectrometry (HRESI-MS), further revealing the possible formation mechanism (Dy → DyL2 →DyMn2L2 → DyMn3L2 → DyMn4L3 → Dy2Mn4L4). Magnetic studies indicated that the antiferromagnet LnIII-MnII (Ln = DyIII and GdIII) interaction was operative in both titled clusters. Furthermore, the performance of the clusters was regulated by adjusting the type of rare earth ions (DyIII and GdIII). The research results showed that cluster 2 containing GdIII exhibited an excellent longitudinal relaxation rate (r1) with 1.95 mM-1 s-1 under 0.5 T and a relatively suitable r2/r1 value (3.88), which indicated that it can be used as a new and efficient T1 MR contrast agent. Cluster 1 containing DyIII displayed antipathogenic activities against clinical MRSA strain with an MIC of 32 μg/mL. This work not only provided a reference for revealing the assembly mechanism of 3d-4f heterometallic clusters but also confirmed its potential application in the biomedical field.
Collapse
Affiliation(s)
- Dongze Wu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Ziying Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Qinhua Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Hongfei Jiang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Chunli Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Lei Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Guangcheng Wei
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Xuliang Pang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Ming Fu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Guangtao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Shui Yu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| |
Collapse
|
4
|
Chang H, Chen L, Samolova E, Pan Y, Acosta KA, Lemmon CE, Gembicky M, Paesani F, Schimpf AM. Electroreduction-Driven Formation and Connectivity of Polyoxometalate Coordination Networks. Inorg Chem 2025; 64:1630-1636. [PMID: 39818816 PMCID: PMC11795523 DOI: 10.1021/acs.inorgchem.4c04891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
We present the synthesis of metal oxide coordination networks based on Preyssler-type polyoxoanions ([NaP5W30O110]14- and [NaP5MoW29O110]14-) bridged with metal-aquo complexes ([M(H2O)n]m+, Mm+ = Co2+, Ni2+, Zn2+, Y3+), induced by electrochemical reduction. Networks bridged with first-row transition metals are isostructural with a previously reported Co-bridged structure, while the Y3+-bridged structure is new. All networks feature an uncommon binding motif of the metal cation to the oxygen atoms at cap positions, which we hypothesize is due to increased electron density at the cap upon reduction. Oxidation of a Zn2+-bridged network resulted in a new structure in which Zn2+-Ocap bonds are lost, indicating the importance of reduction in the connectivity of these polyoxometalate-based coordination networks.
Collapse
Affiliation(s)
- Haeun Chang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Linfeng Chen
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Erika Samolova
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Institute
of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Yuanhui Pan
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Kody A. Acosta
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Carl E. Lemmon
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Milan Gembicky
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093, United States
| | - Alina M. Schimpf
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Gong P, Wang Y, Zhao J, Yang GY. Antimonotungstate-Based Heterometallic Framework Formed by the Synergistic Strategy of In Situ-Generated Krebs-Type Building Units and the Substitution Reaction and Its High-Efficiency Biosensing KRAS Gene. Inorg Chem 2025; 64:315-326. [PMID: 39801389 DOI: 10.1021/acs.inorgchem.4c04589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
A novel antimonotungstate (AT)-based heterometallic framework {[Er(H2O)6]2[Fe4(H2pdc)4(B-β-SbW9O33)2]}·50H2O (1, H2pdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-FeIII-substituted Krebs-type [Fe4(H2pdc)4(B-β-SbW9O33)2]6- subunit and two [Er(H2O)6]3+ cations. This subunit can be regarded as a product of carboxylic oxygen atoms of H2pdc ligands replacing active water ligands in the [Fe4(H2O)10(B-β-SbW9O33)2]6- species. Apparently, the substitution action of carboxylic oxygen atoms of H2pdc ligands for active water ligands, together with the coordination function of Er3+ ions, plays a connection role in the architecture of the three-dimensional (3-D) heterometallic framework. Based on the stability and high redox activity of 1, a glassy carbon electrode modified by 1 is used for the construction of an electrochemical biosensor (ECBS). Thus, such 1-based ECBS can sensitively detect the KRAS gene (a key genetic marker for identifying the occurrence of malignant tumors) and displays a low detection limit (0.106 pM), high selectivity, and reproducibility. This work not only provides a feasible approach to prepare novel multicomponent POM-based heterometallic frameworks but also establishes a new platform for biosensing the KRAS gene and extends the application scope of POM-based functional materials.
Collapse
Affiliation(s)
- Peijun Gong
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Yanying Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
6
|
Wu PX, Lin YJ, Sun YQ, Zheng ST. A Two-Dimensional Layered Heteropolyoxoniobate Based on Cubic Sn(IV)-Containing {Sn 12Nb 56O 200} Cages with Good Proton Conductivity Property. Inorg Chem 2024; 63:24488-24493. [PMID: 39670789 DOI: 10.1021/acs.inorgchem.4c04197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The first example of a Sn(IV)-containing heteropolyoxoniobate K6H18[Cu(en)2]8{[Sn(OH)2]12 (HNb7O22)8}·2en·88H2O (1) is built from nanoscale high-nuclearity cubic {[Sn(OH)2]12(HNb7O22)8} cluster and [Cu(en)2]2+ complexes. The cubic {[Sn(OH)2]12(HNb7O22)8} cage is composed of eight {Nb7O22} clusters and 12 SnO6 octahedrons. The eight {Nb7O22} fragments are situated at the vertices of the cubic cage, while the 12 SnO6 octahedrons are positioned along the edges of the cubic cage. The [Cu(en)2]2+ complexes link the {[Sn(OH)2]12(HNb7O22)8} clusters into two-dimensional (2D) (4,4) grid-like layers. The N-H···O hydrogen bonds between the [Cu(en)2]2+ complexes and the {[Sn(OH)2]12(HNb7O22)8} clusters link the layers to form a 3D supramolecular structure. Compound 1 exhibits a good proton conductivity of 3.1 × 10-2 S cm-1 at 85 °C and 98% relative humidity.
Collapse
Affiliation(s)
- Ping-Xin Wu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian350108, China
| | - Yu-Jin Lin
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian350108, China
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian350108, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian350108, China
| |
Collapse
|
7
|
Tang MJ, Zhu ZH, Li YL, Qin WW, Liang FP, Wang HL, Zou HH. Specific smart sensing of electron-rich antibiotics or histidine improves the antenna effect, luminescence, and photodynamic sterilization capabilities of lanthanide polyoxometalates. J Colloid Interface Sci 2024; 680:235-246. [PMID: 39504753 DOI: 10.1016/j.jcis.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Excessive discharge of antibiotics seriously threatens human health and is thus a global public health problem. This highlights the urgent need to develop intelligent sensing materials for specific antibiotics that are highly visual, fast, convenient, and inexpensive. Herein, two reverse α-octamolybdate polyoxometalates (POMs; Mo8) were used to chelate lanthanide ions to obtain lanthanide POMs (LnPOMs; LnMo16; Ln = Eu, Sm, Tb, Gd) with highly sensitive smart photoresponses to specific antibiotics (ofloxacin [OFN], norfloxacin [NOR], enrofloxacin [ENR], and oxytetracycline [OTC]) and histidine (His) with luminescence turn-on. Specific antibiotics and His, which has an electron-rich structure, can efficiently enhance the antenna effect, thereby greatly improving the luminescence of EuMo16. Surprisingly, OFN and NOR both enhanced the luminescence of Eu(III) ions and Mo8, whereas ENR and OTC only enhanced the luminescence of Eu(III) ions, showing a differentiated sensitization effect. More notably, the combination of POMs and Ln(III) ions enhanced the ability of LnPOMs to produce reactive oxygen species under light irradiation, and these LnPOMs showed significant sterilization effects on Escherichia coli and Staphylococcus aureus. To our knowledge, this is the first time electron-rich antibiotics or amino acids were used to enhance the luminescence of LnPOMs, achieving luminescence-enhanced photoresponse to specific antibiotics and amino acids.
Collapse
Affiliation(s)
- Meng-Juan Tang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Zhong-Hong Zhu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, PR China
| | - Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Wen-Wen Qin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Hai-Ling Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, PR China.
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
8
|
Zhao HF, Liu FF, Ding QR, Wang D, Zhang J, Zhang L. Modulated assembly and structural diversity of heterometallic Sn-Ti oxo clusters from inorganic tin precursors. NANOSCALE 2024; 16:16451-16457. [PMID: 39171723 DOI: 10.1039/d4nr02644f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Through modulating the multidentate ligands, solvent environments, and inorganic tin precursors during the synthesis processes, we have successfully prepared a series of unprecedented heterometallic Sn-Ti oxo clusters with structural diversity and different physiochemical attributes. Initially, two Sn6Ti10 clusters were synthesized using trimethylolpropane as a structure-oriented ligand and SnCl4·5H2O as a tin source. Then, when a larger pentadentate ligand di(trimethylolpropane) was used instead of trimethylolpropane and aprotic acetonitrile solvent was introduced into the reaction system, four low-nuclearity Sn-Ti oxo clusters were discovered, including two Sn1Ti1, one Sn2Ti2 and one Sn2Ti6. Finally, two mixed-valence state clusters, SnII4SnIV2TiIV14 and SnII4SnIV4TiIV20, were obtained by transforming the tin precursor from SnCl4·5H2O to SnCl2·2H2O and adjusting the acetonitrile solution with trace acetic acid/formic acid. Sn8Ti20 is the highest-nuclearity heterometallic Sn-Ti oxo cluster to date. Moreover, comparative electrocatalytic CO2 reduction experiments were carried out, and it was concluded that the Sn8Ti20-decorated electrode showed the most satisfactory performance due to the influence of mixed-valence states of the Sn atoms and the charging effects provided by 20 Ti4+ ions. This study presents important guiding significance for the design, synthesis and application optimization of functional heterometallic nanoclusters.
Collapse
Affiliation(s)
- Hui-Fang Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Fang-Fang Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Qing-Rong Ding
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Di Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Cong YC, Zhu ZK, Sun C, Li XX, Zheng ST. Indium-Assisted Construction of {SiNb 18O 54}-Based Aggregates and Their Assembly into Extended Polyoxoniobate Architectures. Inorg Chem 2024. [PMID: 39259874 DOI: 10.1021/acs.inorgchem.4c03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this research, indium ions were introduced into polyoxoniobates (PONbs) reaction systems to facilitate the construction of different {SiNb18O54}-based aggregates, including an {In(en)2{SiNb18O54}2} (en = ethylenediamine) dimer, an {[InO2][In2(en)O3]2{SiNb18O54}3} trimer, and an {[In(en)2][InO2][In7(en)5O9]{SiNb18O54}4} tetramer. Interestingly, these aggregates were further assembled into three uncommon extended PONb architectures in the presence of [Cu(en)2]2+ complexes, namely, H3[Cu(en)2(H2O)][Cu(en)2]6[Cu(en)2]2{[In(en)2][K2{SiNb18O54}(H2O)6]2}·1.5en·16H2O, H9{[Cu(en)2]6{[Cu(en)2]3[Cu(en)2(H2O)][In(H2O)2][In2(en)(H2O)2(OH)]2{SiNb18O54}3}·5en·29H2O, and H14[Cu(en)2]0.5[Cu(en)2(H2O)]{[Cu(en)2]2{[Cu(en)2]3[Cu(en)2(H2O)]5[K(H2O)2][In(H2O)2][In(en)2][In7(OH)9(en)5]{SiNb18O54}4}·7en·39H2O. In addition, all of them have good water vapor adsorption capacities and moderate proton transport capabilities. The above results indicate that introducing suitable heteroatoms to induce the aggregation PONb building blocks and further assembling them into new structures is an effective strategy to enrich the PONbs' structural diversity and develop new functional materials.
Collapse
Affiliation(s)
- Yu-Chen Cong
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zeng-Kui Zhu
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
10
|
Lin JM, Mei ZB, Guo C, Li JR, Kuang Y, Shi JW, Liu JJ, Li X, Li SL, Liu J, Lan YQ. Synthesis of Isotypic Giant Polymolybdate Cages for Efficient Photocatalytic C-C Coupling Reactions. J Am Chem Soc 2024; 146:22797-22806. [PMID: 39087792 DOI: 10.1021/jacs.4c08043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The construction of isotypic high-nuclearity inorganic cages with identical pristine parent structure and increasing nuclearity is highly important for molecular growth and structure-property relationship study, yet it still remains a great challenge. Here, we provide an in situ growth approach for successfully synthesizing a series of new giant hollow polymolybdate dodecahedral cages, Mo250, Mo260-I, and Mo260-E, whose structures are growth based on giant polymolybdate cage Mo240. Remarkably, they show two pathways of nuclear growth based on Mo240, that is, the growth of 10 and 20 Mo centers on the inner and outer surfaces to afford Mo250 and Mo260-I, respectively, and the growth of 10 Mo centers both on the inner and outer surfaces to give Mo260-E. To the best of our knowledge, this is the first study to display the internal and external nuclear growth of a giant hollow polyoxometalate cage. More importantly, regular variations in structure and nuclearity confer these polymolybdate cages with different optical properties, oxidative activities, and hydrogen atom transfer effect, thus allowing them to exhibit moderate to excellent photocatalytic performance in oxidative cross-coupling reactions between different unactivated alkanes and N-heteroarenes. In particular, Mo240 and Mo260-E with better comprehensive abilities can offer the desired coupling product with yield up to 92% within 1 h.
Collapse
Affiliation(s)
- Jiao-Min Lin
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Zhi-Bin Mei
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| | - Jun-Rong Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yi Kuang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jing-Wen Shi
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jing-Jing Liu
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| | - Shun-Li Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jiang Liu
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
11
|
Zhang Y, Cheng Z, Zeng B, Jiang J, Zhao J, Wang M, Chen L. Recent research progress of selenotungstate-based biomolecular sensing materials. Dalton Trans 2024; 53:10805-10813. [PMID: 38836698 DOI: 10.1039/d4dt01340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Polyoxometalates (POMs) have drawn significant attention on account of their structural designability, compositional diversity and great potential applications. As an indispensable branch of POMs, selenotungstates (SeTs) have been synthesized extensively. Some SeTs have been applied as sensing materials for detecting biomarkers (e.g., metabolites, hormones, cancer markers). To gain a comprehensive understanding of advancements in SeT-based sensing materials, we present an overview that encapsulates the sensing performances and mechanisms of SeT-based biosensors. SeT-based biosensors are categorized into electrochemical catalytic biosensors, electrochemical affinity biosensors, "turn-off" fluorescence biosensors and "turn-on" fluorescence biosensors. We anticipate the expansive potential of SeT-based biosensors in wearable and implantable sensing technologies, which promises to catalyze significant breakthroughs in SeT-based biosensors.
Collapse
Affiliation(s)
- Yan Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhendong Cheng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| | - Baoxing Zeng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Miao Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
12
|
Cong YC, Xiao HP, Cai PW, Sun C, Sun YQ, Qi MQ, Li XX, Zheng ST. An Organodiphosphate-Containing Polyoxoniobate Ring and Its Assembly into a Three-Dimensional Framework through Hydrogen Bonding. Inorg Chem 2024; 63:9204-9211. [PMID: 38701353 DOI: 10.1021/acs.inorgchem.4c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
In this work, a novel organodiphosphate-containing inorganic-organic hybrid polyoxoniobate (PONb) ring {(PO3CH2CH2PO3H)4Nb8O16}4- (Nb8P8) has been achieved by a one-pot hydrothermal method. The ring is constructed from a tetragonal {Nb8O36} motif and four {PO3CH2CH2PO3H} ligands. Interestingly, Nb8P8 can be joined together via K-H2O clusters {K2(H2O)4(OH)2} to form one-dimensional chains {[K2(H2O)4(OH)2]Nb8P8}n and further linked by {Cu(en)2}2+ (en = ethylenediamine) complexes, resulting in a three-dimensional supramolecular framework {[Cu(en)2]2[K2(H2O)4(OH)2]Nb8P8}·3en·H2O (1). 1 exhibits good chemical and thermal stability and has a high water vapor adsorption capacity of ≤224 cm3 g-1 (22.71 mol·mol-1) at 298 K, outperforming most of the known polyoxometalate-based materials. Impedance measurements prove that 1 can transfer protons with moderate conductivity. This study not only contributes to the structural diversity of organodiphosphate-containing PONbs and PONb rings but also provides a reference for the development of PONb-based materials with unique performance.
Collapse
Affiliation(s)
- Yu-Chen Cong
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Hui-Ping Xiao
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ping-Wei Cai
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ming-Qiang Qi
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
13
|
Sun Y, Xie S, Tang Z, Zhao J, Chen L. An Innovative Sb III-W VI-Cotemplated Antimonotungstate with Potential in Sensing Paroxetine Electrochemically. Inorg Chem 2024; 63:7123-7136. [PMID: 38591874 DOI: 10.1021/acs.inorgchem.3c03605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Advances in polyoxometalate (POM) self-assembly chemistry are always accompanied by new developments in molecular blocks. The exploration and discovery of uncommon building blocks offer great possibilities for generating unprecedented POM clusters. An intriguing SbIII-WVI-cotemplated antimonotungstate [H2N(CH3)2]11Na[SbW9O33]Er2(H2O)2Sb2[SbWVIW15O57]·22H2O (1) was synthesized, which comprises a classical trivacant Keggin [SbW9O33]9- ({SbW9}) fragment and an unclassical lacunary Dawson-like [SbWVIW15O57]15- ({SbWVIW15}) subunit. Notably, the Dawson-like {SbWVIW15} subunit is the first example of a [SbO3]3- and [WVIO6]6- mixed-heteroatom-directing POM segment. Hexacoordinated [WVIO6]6- can not only serve as the heteroatom function but its additional oxygen sites can also link to lanthanide, main-group metal, and transition-metal centers to form the innovative structure. {SbWVIW15} and {SbW9} subunits are joined by the heterometallic [Er2(H2O)2Sb2O17]22- cluster to give rise to an asymmetric sandwich-type architecture. To further realize its potential application in electrochemical sensing, a conductive 1@rGO composite was obtained by the electrochemical deposition of 1 with graphene oxide (GO). Using a 1@rGO-modified glassy carbon electrode as the working electrode, an electrochemical biosensor for detecting the antidepressant drug paroxetine (PRX) was successfully constructed. This work can provide a viable strategy for synthesizing mixed-heteroatom-directing POMs and demonstrates the application of POM-based materials for the electrochemical detection of drug molecules.
Collapse
Affiliation(s)
- Yancai Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saisai Xie
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
14
|
Li B, Lan Y, Su H, Xu J, Zhao Q, Ma Y, Zheng Q, Xuan W. {Mo 4}-directed structural evolution of highly reduced molybdenum red clusters for efficient proton conduction. Dalton Trans 2024; 53:6184-6189. [PMID: 38511430 DOI: 10.1039/d4dt00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A series of highly reduced Mo red clusters {Mo28} (1), {Mo30} (2), and {Mo40} (3) are synthesized from the rational assembly of planar {MoV4} building blocks and employed for proton conduction. 3 exhibits the best conductivity of 7.56 × 10-3 S cm-1 under optimal conditions due to the most efficient hydrogen-bonding network.
Collapse
Affiliation(s)
- Bingbing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China.
| | - Yuxin Lan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China.
| | - Heyang Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China.
| | - Jiaxin Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China.
| | - Qixin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China.
| | - Yubin Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China.
| | - Qi Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, P R China.
| | - Weimin Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China.
| |
Collapse
|
15
|
Song N, Lu M, Liu J, Lin M, Shangguan P, Wang J, Shi B, Zhao J. A Giant Heterometallic Polyoxometalate Nanocluster for Enhanced Brain-Targeted Glioma Therapy. Angew Chem Int Ed Engl 2024; 63:e202319700. [PMID: 38197646 DOI: 10.1002/anie.202319700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Giant heterometallic polyoxometalate (POM) clusters with precise atom structures, flexibly adjustable and abundant active sites are promising for constructing functional nanodrugs. However, current POM drugs are almost vacant in orthotopic brain tumor therapy due to the inability to effectively penetrate the blood-brain barrier (BBB) and low drug activity. Here, we designed the largest (3.0 nm × 6.0 nm) transition-metal-lanthanide co-encapsulated POM cluster {[Ce10 Ag6 (DMEA)(H2 O)27 W22 O70 ][B-α-TeW9 O33 ]9 }2 88- featuring 238 metal centers via synergistic coordination between two geometry-unrestricted Ce3+ and Ag+ linkers with tungsten-oxo cluster fragments. This POM was combined with brain-targeted peptide to prepare a brain-targeted nanodrug that could efficiently traverse BBB and target glioma cells. The Ag+ active centers in the nanodrug specifically activate reactive oxygen species to regulate the apoptosis pathway of glioma cells with a low half-maximal inhibitory concentration (5.66 μM). As the first brain-targeted POM drug, it efficiently prolongs the survival of orthotopic glioma-bearing mice.
Collapse
Affiliation(s)
- Nizi Song
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Mengya Lu
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Jiancai Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ming Lin
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ping Shangguan
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Jiefei Wang
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, China
| |
Collapse
|
16
|
Wen WY, Ma W, Hu B, Xiao HP, Pan TY, Liu JT, Lin HW, Li XX, Huang XY. Mixed-valence compounds based on heterometallic-oxo-clusters containing Sb(III,V): crystal structures and proton conduction. Dalton Trans 2024; 53:1156-1162. [PMID: 38105701 DOI: 10.1039/d3dt03904h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Two isostructural Co(Cd)-antimony-oxo tartrate cluster-based compounds with a one-dimensional (1-D) belt-like structure, namely H9.2[Co(H2O)6]{M0.5(H2O)3.5{M'(H2O)4[SbVO6[Co4.2(H2O)5SbIII6(μ3-O)2(tta)6]]}}2·nH2O (M = Co, M' = Co, n = 9 (1); M = Cd0.39/Co0.61, M' = Cd0.24/Co0.76, n = 7 (2); H4tta = tartaric acid), have been synthesized by solvothermal methods. It is noteworthy that the relatively rare mixed-valence Sb(III,V) exists in the structures. The anionic clusters in both compounds appear to be in a sandwich configuration; the top and bottom layers are based on {Sb3(μ3-O)(tta)3} brackets, and the intermediate layer is occupied by {SbVO6[Co4.2(H2O)5]}. The title compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analyses, thermogravimetric analyses, and UV-Vis spectroscopy. We chose compound 2 as a representative to test its proton conductivity, and the results show that the conductivity can reach 1.42 × 10-3 S cm-1 at 85 °C under 98% relative humidity.
Collapse
Affiliation(s)
- Wei-Yang Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Wen Ma
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Bing Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Ping Xiao
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Tian-Yu Pan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Jia-Ting Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Hao-Wei Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Xin-Xiong Li
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Nyman M, Rahman T, Colliard I. Decaniobate: The Fruit Fly of Niobium Polyoxometalate Chemistry. Acc Chem Res 2023; 56:3616-3625. [PMID: 38015808 DOI: 10.1021/acs.accounts.3c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
ConspectusPolyoxometalates (POMs, metals = V4/5+, Nb5+, Ta5+, Mo5/6+, and W5/6+) can be described as molecular metal oxides. The V, Mo, and W-POMs (classic POMs) exhibit rich structural diversity with interesting redox properties, acid catalysis, inorganic ligands, and colorimetric properties and behavior. Nb and Ta POMs, while structurally similar, are generally stable only in base and redox behavior is rare, and they are synthetically far less accessible. The V, Mo, and W-POMs have been studied for well over a century, Nb-POM chemistry has emerged in the last 20 years, and Ta-POM chemistry is yet to see consistent and significant advances. Early and current success in Nb-POM chemistry is owed mainly to hydrothermal synthesis, which is wholly unsatisfying, given the black box nature of this technique.For the last 5 years and as summarized in this Account, we have exploited decaniobate, [Nb10O28]6- (Nb10), as a foundation to perform room-temperature, nearly pH-neutral manipulations of Nb-POM solutions. Nb10, with a rare neutral self-buffering pH, responds to any interactions with electrolytes (specifically oxoanions and metal cations) by undergoing transformations, leading to new topologies. The ease of Nb10 transformation yielding new generations of Nb-POMs, akin to an inorganic analogue of biological model organisms such as the fruit fly, inspired the title of this Account. The common building unit born from the disassembly of Nb10 is [Nb7O20(OH, H2O)2](5-7)-, and the hydroxyl/aqua ligands provide reactivity for linking via condensation reactions, ligand exchange, heterometals, or oxoanions. We can coax these newly assembled Nb-POMs (detected by small-angle X-ray scattering, SAXS) to crystallize via the usual methods of vapor diffusion, salting out, and reduced temperature, and the single-crystal X-ray diffraction structures are valuable for understanding reaction mechanisms to fine-tune control and yield a landscape of topologies and compositions. Beyond providing an opportunity to comprehend and diversify POM chemistry, the reactivity of Nb10 yields highly soluble (i.e., >2 M Nb), nearly neutral aqueous solutions of niobium, ideal for the solution-phase deposition of thin films, demonstrated with LiNbO3, (Na,K)NbO3, Nb2O5, and heterometal-doped Nb2O5. The obtained films are cohesive and smooth, enabled by the tendency of these solutions to gel if simply evaporated quickly.Per our current endeavors, this gelation behavior provides an opportunity to develop new soft, flexible materials including inorganic networks, organic-inorganic networks, and porous solids and explore their material properties including base catalysis and sorption (i.e., CO2). Nb-POM (and Ta-POM) discovery and implementation of properties is far from complete. While heterometal (d and f element) substitution is easy with classic POMs, imparting a whole host of functions (tuned luminescence, catalysis, electroactivity, etc.), it remains a challenge with Nb-POMs due to pH incompatibility with most heterometals. This grand challenge that defies fundamental aqueous behavior of metal cations requires the creation of liquid mixtures that include polymer and/or ionic liquid components, and the creation of such reaction media can impact synthesis beyond POM chemistry. The goal of this Account is to describe the recent advances in Nb-POM chemistry, afforded by the Nb10 "fruit fly", and to also provide insight into the next large steps needed to advance Nb-POM chemistry.
Collapse
Affiliation(s)
- May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Tasnim Rahman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ian Colliard
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
18
|
Cao YD, Mu WX, Gong M, Fan LL, Han J, Liu H, Qi B, Gao GG. Enhanced catalysis of a vanadium-substituted Keggin-type polyoxomolybdate supported on the M 3O 4/C (M = Fe or Co) surface enables efficient and recyclable oxidation of HMF to DFF. Dalton Trans 2023; 52:16303-16314. [PMID: 37855372 DOI: 10.1039/d3dt02935b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In the reaction of oxidizing 5-hydroxymethylfurfural (HMF), attaining high efficiency and selectivity in the conversion of HMF into DFF presents a challenge due to the possibility of forming multiple products. Polyoxometalates are considered highly active catalysts for HMF oxidation. However, the over-oxidation of products poses a challenge, leading to decreased purity and yield. In this work, metal-organic framework-derived Fe3O4/C and Co3O4/C were designed as carriers for the vanadium-substituted Keggin-type polyoxomolybdate H5PMo10V2O40·35H2O (PMo10V2). In this complex system, spinel oxides can effectively adsorb HMF molecules and cooperate with PMo10V2 to catalyze the aerobic oxidation of HMF. As a result, the as-prepared PMo10V2@Fe3O4/C and PMo10V2@Co3O4/C catalysts can achieve efficient conversion of HMF into DFF with almost 100% selectivity. Among them, PMo10V2@Fe3O4/C exhibits a higher conversion rate (99.1%) under milder reaction conditions (oxygen pressure of 0.8 MPa). Both catalysts exhibited exceptional stability and retained their activity and selectivity even after undergoing multiple cycles. Studies on mechanisms by in situ diffuse reflectance infrared Fourier transform spectroscopy and X-ray photoelectron spectroscopy revealed that the V5+ and Mo6+ in PMo10V2, together with the metal ions in the spinel oxides, act as active centers for the catalytic conversion of HMF. Therefore, it is proposed that PMo10V2 and M3O4/C (M = Fe, Co) cooperatively catalyze the transformation of HMF into DFF via a proton-coupled electron transfer mechanism. This study offers an innovative approach for designing highly selective and recyclable biomass oxidation catalysts.
Collapse
Affiliation(s)
- Yun-Dong Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Wen-Xia Mu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Mengdi Gong
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Lin-Lin Fan
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Jie Han
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong, China
| | - Hong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Bin Qi
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Guang-Gang Gao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| |
Collapse
|
19
|
Said A, Zhang G, Wang D, Chen G, Liu Y, Gao F, Tung CH, Wang Y. Divalent Heterometal Doped Titanium-Oxide Cluster Polymers: Structures, Photoresponse, and Photocatalysis. Inorg Chem 2023; 62:13476-13484. [PMID: 37552624 DOI: 10.1021/acs.inorgchem.3c01842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Five cluster polymers based on heterometal-doped titanium-oxide cluster (TOC) monomers are reported. The monomers feature Ti10-oxide cluster cores and are connected to the divalent closed-shell heterometal anchors by salicylate ligands. The Sr2+, Ba2+, and Pb2+ dopants cause the monomers to bind head-to-head and generate linear chains, while the Ca2+ and Cd2+ lead to head-to-tail connections and zigzag chains. The cluster polymers are responsive to visible-light up to 565 nm and photo-catalytically active in both H2 evolution and CO2/epoxide cycloaddition reactions. The photo-absorption, photo-charge separation, and photocatalytic properties of the cluster polymers are dependent on the heterometal dopants in order Cd > Pb > Ba > Sr > Ca. Heterometals serve as the catalytic sites in the cluster polymers, which depending on the contribution of the pCB bottom, facilitate photo-charge separation and interfacial charge transfer, further enhancing catalytic activity. The tunable compositions and topologies of the cluster polymers shown herein may inspire the design and synthesis of more multidimensional functional metal-oxide cluster materials for a variety of applications in the future.
Collapse
Affiliation(s)
- Amir Said
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
20
|
Li XX, Li CH, Hou MJ, Zhu B, Chen WC, Sun CY, Yuan Y, Guan W, Qin C, Shao KZ, Wang XL, Su ZM. Ce-mediated molecular tailoring on gigantic polyoxometalate {Mo 132} into half-closed {Ce 11Mo 96} for high proton conduction. Nat Commun 2023; 14:5025. [PMID: 37596263 PMCID: PMC10439156 DOI: 10.1038/s41467-023-40685-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023] Open
Abstract
Precise synthesis of polyoxometalates (POMs) is important for the fundamental understanding of the relationship between the structure and function of each building motif. However, it is a great challenge to realize the atomic-level tailoring of specific sites in POMs without altering the major framework. Herein, we report the case of Ce-mediated molecular tailoring on gigantic {Mo132}, which has a closed structural motif involving a never seen {Mo110} decamer. Such capped wheel {Mo132} undergoes a quasi-isomerism with known {Mo132} ball displaying different optical behaviors. Experiencing an 'Inner-On-Outer' binding process with the substituent of {Mo2} reactive sites in {Mo132}, the site-specific Ce ions drive the dissociation of {Mo2*} clipping sites and finally give rise to a predictable half-closed product {Ce11Mo96}. By virtue of the tailor-made open cavity, the {Ce11Mo96} achieves high proton conduction, nearly two orders of magnitude than that of {Mo132}. This work offers a significant step toward the controllable assembly of POM clusters through a Ce-mediated molecular tailoring process for desirable properties.
Collapse
Affiliation(s)
- Xue-Xin Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Cai-Hong Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Ming-Jun Hou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Bo Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Wei-Chao Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China.
| | - Chun-Yi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Wei Guan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Chao Qin
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Kui-Zhan Shao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Xin-Long Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China.
| | - Zhong-Min Su
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130021, P.R. China
| |
Collapse
|
21
|
Yu Y, Lai RD, Sun C, Sun YQ, Zeng QX, Li XX, Zheng ST. Oxalate-assisted assembly of two polyoxotantalate supramolecular frameworks with proton conduction properties. Chem Commun (Camb) 2023; 59:3735-3738. [PMID: 36896743 DOI: 10.1039/d2cc07027h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An oxalate-assisted strategy was first developed for creating new polyoxotantalates (POTas). With this strategy, two brand-new POTa supramolecular frameworks based on uncommon dimeric POTa secondary building units (SBUs) were constructed and characterized. Interestingly, the oxalate ligand can not only serve as a coordination ligand to form unique POTa SBUs but also act as a key hydrogen bond acceptor to construct supramolecular architectures. Besides, the architectures show outstanding proton conductivity. The strategy opens up new opportunities for developing new POTa materials.
Collapse
Affiliation(s)
- Yong Yu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Rong-Da Lai
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Qing-Xin Zeng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Edution), Nankai University, Tianjin, 300071, China.
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
22
|
Wen WY, Hu B, Pan TY, Li ZW, Hu QQ, Huang XY. Structural Evolution and Properties of Praseodymium Antimony Oxochlorides Based on a Chain-like Tertiary Building Unit. Molecules 2023; 28:molecules28062725. [PMID: 36985695 PMCID: PMC10051633 DOI: 10.3390/molecules28062725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Unveiling the structural evolution of single-crystalline compounds based on certain building units may help greatly in guiding the design of complex structures. Herein, a series of praseodymium antimony oxohalide crystals have been isolated under solvothermal conditions via adjusting the solvents used, that is, [HN(CH2CH3)3][FeII(2,2′-bpy)3][Pr4Sb12O18Cl15]·EtOH (1) (2,2′-bpy = 2,2′-bipyridine), [HN(CH2CH3)3][FeII(2,2′-bpy)3]2[Pr4Sb12O18Cl14)2Cl]·N(CH2CH3)3·2H2O (2), and (H3O)[Pr4Sb12O18Cl12.5(TEOA)0.5]·2.5EtOH (3) (TEOA = mono-deprotonated triethanolamine anion). Single-crystal X-ray diffraction analysis revealed that all the three structures feature an anionic zig-zag chain of [Pr4Sb12O18Cl15−x]n as the tertiary building unit (TBU), which is formed by interconnections of praseodymium antimony oxochloride clusters (denoted as {Pr4Sb12}) as secondary building units. Interestingly, different arrangements or linkages of chain-like TBUs result in one-dimensional, two-dimensional layered, and three-dimensional structures of 1, 2, and 3, respectively, thus demonstrating clearly the structural evolution of metal oxohalide crystals. The title compounds have been characterized by elemental analysis, powder X-ray diffraction, thermogravimetric analysis, and UV-Vis spectroscopy, and the photodegradation for methyl blue in an aqueous solution of compound 1 has been preliminarily studied. This work offers a way to deeply understand the assembly process of intricate lanthanide-antimony(III) oxohalide structures at the atomic level.
Collapse
Affiliation(s)
- Wei-Yang Wen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Bing Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.H.); (X.-Y.H.); Tel.: +86-591-6317-3145 (X.-Y.H.)
| | - Tian-Yu Pan
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zi-Wei Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qian-Qian Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.H.); (X.-Y.H.); Tel.: +86-591-6317-3145 (X.-Y.H.)
| |
Collapse
|
23
|
Hu B, Wen WY, Sun HY, Wang YQ, Du KZ, Ma W, Zou GD, Wu ZF, Huang XY. Single-Crystal Superstructures via Hierarchical Assemblies of Giant Rubik's Cubes as Tertiary Building Units. Angew Chem Int Ed Engl 2023; 62:e202219025. [PMID: 36646648 DOI: 10.1002/anie.202219025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Intricate superstructures possess unusual structural features and promising applications. The preparation of superstructures with single-crystalline nature are conducive to understanding the structure-property relationship, however, remains an intriguing challenge. Herein we put forward a new hierarchical assembly strategy towards rational and precise construction of intricate single-crystal superstructures. Firstly, two unprecedented superclusters in Rubik's cube's form with a size of ≈2×2×2 nm3 are constructed by aggregation of eight {Pr4 Sb12 } oxohalide clusters as secondary building units (SBUs). Then, the Rubik's cubes further act as isolable tertiary building units (TBUs) to assemble diversified single-crystal superstructures. Importantly, intermediate assembly states are captured, which helps illustrate the evolution of TBU-based superstructures and thus provides a profound understanding of the assembly process of superstructures at the atomic level.
Collapse
Affiliation(s)
- Bing Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei-Yang Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350002, P. R. China
| | - Hai-Yan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan-Qi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou, Fujian, 350007, P. R. China
| | - Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Guo-Dong Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zhao-Feng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|