1
|
Wu SG, Cui W, Ruan ZY, Ni ZP, Tong ML. Switchable colossal anisotropic thermal expansion in a spin crossover framework. Chem Sci 2025; 16:8845-8852. [PMID: 40255963 PMCID: PMC12004079 DOI: 10.1039/d4sc08032g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/03/2025] [Indexed: 04/22/2025] Open
Abstract
Advanced materials with tunable thermal expansion properties have garnered significant attention due to their potential applications in thermomechanical sensing and resistance to thermal stress. Here, switchable colossal anisotropic thermal expansion (ATE) behaviors are realized in a Hofmann-type framework [Fe(bpy-NH2){Au(CN)2}2]·iPrOH (Fe·iPrOH, bpy-NH2 = [4,4'-bipyridin]-3-amine) through a three-in-one strategy: a vibrational mechanism, an electronic mechanism and molecular motion. Spin crossover (SCO) centers coordinate with dicyanoaurate linkers to form flexible wine-rack frameworks, which exhibit structural deformations driven by host-guest interactions with iPrOH molecules. By means of the vibrational mechanism, a scissor-like motion driven by the rotation of dicyanoaurate is observed within the rhombic grids, resulting in the emergence of colossal ATE in the high temperature region. When the spin transition comes into play, the electronic mechanism is predominant to form reverse ATE behavior, which is associated with host-guest cooperation involving significant molecular motion of the iPrOH guest and adaptive deformation of the host clathrate. A remarkably high negative thermal expansion coefficient up to -7.49 × 105 M K-1 accompanied by abrupt SCO behavior is observed. As a proof of concept, this study provides a novel perspective for designing dynamic crystal materials with tunable thermomechanical properties by integrating various ATE-related elements into a unified platform.
Collapse
Affiliation(s)
- Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Wen Cui
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
2
|
Desai AV, Canossa S, Chernova EA, Vornholt SM, Stracke K, Evans JD, Petersen EE, Wuttke S, Ettlinger R. Retrospective Review on Reticular Materials: Facts and Figures Over the Last 30 Years. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414736. [PMID: 40370210 DOI: 10.1002/adma.202414736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Indexed: 05/16/2025]
Abstract
The field of reticular materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), is expanding continuously - be it in terms of novel structures, advanced characterization techniques, or record-breaking physical properties for applications. This timeline review reflects on the progress over the past 30 years, complemented by input from the community of active researchers. Owing to a global, crowdsourced survey of 228 researchers that is conducted through an online questionnaire, recent insights into the demographics of the field are given. Besides revealing how it works, publish, and interact, the review highlights both academic and industrial milestones. The contemporary trends are described, both at the level of material development and their suitability for a range of applications. To pave the way for newcomers to the field, some remaining challenges and steps to overcome them are discussed. The findings from this contemplative review aim to shape the future course of research in this domain.
Collapse
Affiliation(s)
- Aamod V Desai
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Stefano Canossa
- Department of Chemistry and Applied Biosciences, ETH Zürich, HCI H 103, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Ekaterina A Chernova
- Basque Center for Materials, Applications and Nanostructures (BCMaterials), Bld. Martina Casiano, 3rd Floor UPV/EHU Science Park Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Konstantin Stracke
- School of Physics, Chemistry and Earth Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Jack D Evans
- School of Physics, Chemistry and Earth Sciences, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - E Eja Petersen
- TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Stefan Wuttke
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Krakow, 30-059, Poland
| | - Romy Ettlinger
- TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
3
|
Alam MS, Chowdhury MA, Islam MS, Islam MM, Khandaker T, Gafur MA, Islam D. Tailoring the thermal and thermomechanical characteristics of novel MAX phase boron composites in high-temperature applications. NANOSCALE ADVANCES 2025; 7:3077-3087. [PMID: 40201572 PMCID: PMC11974559 DOI: 10.1039/d5na00063g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
MAX phase composites are gaining great attention for their excellent attributes in high-temperature applications like aerospace, energy, and nuclear industries. However, tailoring their thermal and thermomechanical properties for better performance at elevated temperatures remains a significant challenge. Therefore, the aim of this study is to synthesize novel MAX phase boron (B) composites for high-temperature applications. Titanium aluminum nitride (Ti4AlN3) and titanium aluminum carbide (Ti3AlC2) MAX phase reinforced B composites were prepared using the hot-pressing method at three different sintering temperatures: 1050 °C, 1250 °C, and 1325 °C. Thermal stability, thermal conductivity and thermomechanical properties of MAX phase composites were investigated through thermogravimetric analysis (TGA), hot disk method, and thermomechanical analyzer (TMA). The results reveal that thermal stability and thermal conductivity increased with rising sintering temperatures for both MAX composites. This is because higher sintering temperatures enhance atomic diffusion, densification, and particle bonding, leading to improved thermal stability and thermal conductivity of the composite. Moreover, the thermal stability of the Ti4AlN3 composite is higher than that of the Ti3AlC2 composites. At 1325 °C sintering, Ti3AlC2 composites remain stable up to 600 °C with 1.4% weight loss, while the Ti4AlN3 composite shows better stability up to 700 °C with only 0.6% weight loss. These MAX phase composites also show varying coefficients of thermal expansion (CTEs) at different temperature ranges, indicating that their thermal expansion properties are highly dependent on sintering temperatures. Both MAX composites exhibit lower overall CTEs at higher sintering temperatures, suggesting enhanced thermal stability. The negative CTEs at higher sintering temperatures in both materials suggest unusual thermal behavior, possibly due to phase transitions, secondary phase formation, or microstructural changes. These findings offer valuable insights into their thermal stability and decomposition characteristics, which are vital for high-temperature applications in electronics, optoelectronics, and semiconductor devices.
Collapse
Affiliation(s)
- Md Shahinoor Alam
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology, Gazipur Gazipur 1707 Bangladesh
| | | | - Md Saiful Islam
- Department of Chemistry, Bangladesh Army University of Engineering and Technology, Qadirabad Cantonment Natore-6431 Bangladesh
| | - Md Moynul Islam
- Department of Chemistry, Bangladesh Army University of Engineering and Technology, Qadirabad Cantonment Natore-6431 Bangladesh
| | - Tasmina Khandaker
- Department of Chemistry, Bangladesh Army University of Engineering and Technology, Qadirabad Cantonment Natore-6431 Bangladesh
| | - M A Gafur
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka-1205 Bangladesh
| | - Dipa Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhanmondi Dhaka-1205 Bangladesh
| |
Collapse
|
4
|
Chen Z, Vornholt SM, Bryant JT, Uribe-Romo F, Chapman KW. Metal-Organic Frameworks at the Edge of Stability: Mediating Node Distortion to Access Metastable Nanoparticle Polymorphs. Angew Chem Int Ed Engl 2025:e202501813. [PMID: 40240299 DOI: 10.1002/anie.202501813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
Metal-organic frameworks (MOFs) are emerging as unconventional precursors for nanoparticle synthesis, with potential to leverage their tunable structures and chemistry to achieve nanomaterials with structures and compositions inaccessible via traditional synthetic routes. Here, we use in situ synchrotron X-ray diffraction and pair distribution function (PDF) measurements to investigate how the dynamic structure of MOFs at the edge of stability influences their transformation into different metastable polymorphs. Our study reveals that the local structural features of metal-oxo MOF nodes at elevated temperatures are linked to the resulting nanoparticle structures formed under mild conditions. Focusing on the titanium-based MOF MIL-125, we demonstrate that manipulating the chemical environment to facilitate transformation of the Ti8 node geometry promotes formation of metastable, nanometer-scale TiO2 brookite rather than the more common anatase and rutile TiO2 polymorphs typically produced through MOF pyrolysis at high temperature. These findings highlight the potential to harness the MOF topology and chemical environment to design and control node distortions and enable access to exotic metastable nanoparticle states.
Collapse
Affiliation(s)
- Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Jacob T Bryant
- Department of Chemistry and REACT: Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida, 32816, USA
| | - Fernando Uribe-Romo
- Department of Chemistry and REACT: Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida, 32816, USA
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, USA
| |
Collapse
|
5
|
Kramar BV, Bondarenko AS, Koehne SM, Diroll BT, Wang X, Yang H, Schanze KS, Chen LX, Tempelaar R, Hupp JT. Unexpected Photodriven Linker-to-Node Hole Transfer in a Zirconium-Based Metal-Organic Framework. J Phys Chem Lett 2024; 15:11496-11503. [PMID: 39514401 DOI: 10.1021/acs.jpclett.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Zr6(μ3-O)4(μ3-OH)4 node cores are indispensable building blocks for almost all zirconium-based metal-organic frameworks. Consistent with the insulating nature of zirconia, they are generally considered electronically inert. Contrasting this viewpoint, we present spectral measurements and calculations indicating that emission from photoexcited NU-601, a six-connected Zr-based MOF, comes from both linker-centric locally excited and linker-to-node charge-transfer (CT) states. The CT state originates from a hole transfer process enabled by favorable energy alignment of the HOMOs of the node and linker. This alignment can be manipulated by changing the pH of the medium, which alters the protonation state of multiple oxy groups on the Zr-node. Thus, the acid-base chemistry of the node has a direct effect on the photophysics of the MOF following linker-localized electronic excitation. These new findings open opportunities to understand and exploit, for energy conversion, unconventional mechanisms of exciton formation and transport in MOFs.
Collapse
Affiliation(s)
- Boris V Kramar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anna S Bondarenko
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sydney M Koehne
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Benjamin T Diroll
- Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Xiaodan Wang
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Haofan Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Ma N, Kosasang S, Theissen J, Gys N, Hauffman T, Otake KI, Horike S, Ameloot R. Systematic design and functionalisation of amorphous zirconium metal-organic frameworks. Chem Sci 2024; 15:d4sc05053c. [PMID: 39386911 PMCID: PMC11457265 DOI: 10.1039/d4sc05053c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Controlling the structure and functionality of crystalline metal-organic frameworks (MOFs) using molecular building units and post-synthetic functionalisation presents challenges when extending this approach to their amorphous counterparts (aMOFs). Here, we present a new bottom-up approach for synthesising a series of Zr-based aMOFs, which involves linking metal-organic clusters with specific ligands to regulate local connectivity. In addition, we overcome the limitations of post-synthetic modifications in amorphous systems, demonstrating that homogeneous functionalisation is achievable even without regular internal voids. By altering the acidity of the side group, length, and degree of connectivity of the linker, we could control the porosity, proton conductivity, and mechanical properties of the resulting aMOFs.
Collapse
Affiliation(s)
- Nattapol Ma
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- International Center for Young Scientists (ICYS), National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Soracha Kosasang
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| | - Jennifer Theissen
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Nick Gys
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
- Sustainable Materials Engineering (SUME) Research Group of Electrochemical and Surface Engineering (SURF), Depart-ment of Materials and Chemistry, Vrije Universiteit Brussel Pleinlaan 2 Brussels 1050 Belgium
| | - Tom Hauffman
- Sustainable Materials Engineering (SUME) Research Group of Electrochemical and Surface Engineering (SURF), Depart-ment of Materials and Chemistry, Vrije Universiteit Brussel Pleinlaan 2 Brussels 1050 Belgium
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
7
|
Auras F, Ascherl L, Bon V, Vornholt SM, Krause S, Döblinger M, Bessinger D, Reuter S, Chapman KW, Kaskel S, Friend RH, Bein T. Dynamic two-dimensional covalent organic frameworks. Nat Chem 2024; 16:1373-1380. [PMID: 38702406 DOI: 10.1038/s41557-024-01527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Porous covalent organic frameworks (COFs) enable the realization of functional materials with molecular precision. Past research has typically focused on generating rigid frameworks where structural and optoelectronic properties are static. Here we report dynamic two-dimensional (2D) COFs that can open and close their pores upon uptake or removal of guests while retaining their crystalline long-range order. Constructing dynamic, yet crystalline and robust frameworks requires a well-controlled degree of flexibility. We have achieved this through a 'wine rack' design where rigid π-stacked columns of perylene diimides are interconnected by non-stacked, flexible bridges. The resulting COFs show stepwise phase transformations between their respective contracted-pore and open-pore conformations with up to 40% increase in unit-cell volume. This variable geometry provides a handle for introducing stimuli-responsive optoelectronic properties. We illustrate this by demonstrating switchable optical absorption and emission characteristics, which approximate 'null-aggregates' with monomer-like behaviour in the contracted COFs. This work provides a design strategy for dynamic 2D COFs that are potentially useful for realizing stimuli-responsive materials.
Collapse
Affiliation(s)
- Florian Auras
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Dresden, Germany.
| | - Laura Ascherl
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Volodymyr Bon
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Simon Krause
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
- Nanochemistry Department, Max-Planck-Institute for Solid State Research, Stuttgart, Germany
| | - Markus Döblinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Derya Bessinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Stephan Reuter
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Stefan Kaskel
- Department of Inorganic Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | | | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Munich, Germany.
| |
Collapse
|
8
|
Ma R, Chen L, Liu Z, Lin K, Li Q, Ji W, Xu H, Chen X, Deng J, Xing X. Regulating the thermal expansion of a [FePt(CN) 4] layer by axial coordination and dimensional reduction. Dalton Trans 2024; 53:11556-11562. [PMID: 38919143 DOI: 10.1039/d4dt01205d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Thermal expansion regulation by chemical decoration at a molecular level is of great technological value for materials science. Herein, we show that the spin crossover active compound Fe(pyz)Pt(CN)4 (pyz = pyrazine) shows a rare 2D negative thermal expansion (NTE) in the ab-plane. By introducing axial coordination iodine ions or reducing the framework dimension from 3D to 2D, the NTE behavior can be effectively switched to positive thermal expansion (PTE) or even zero thermal expansion (ZTE). Moreover, it is found that different spin states of Fe2+ also influence the magnitude of NTE. Compared with the low-spin (LS) sate, the high-spin (HS) state tends to enhance the magnitude of NTE. Combined in situ structural and Raman spectral analyses revealed that the NTE mainly originates from the transverse vibration of a bridging cyano group and the tailorable thermal expansion is closely related to the state of the Fe-CN-Pt linkage. The present study shows how the rational regulation of the building unit and framework dimensions can effectively control thermal expansion behaviors. This insight can serve as guidance for designing and synthesizing novel NTE materials.
Collapse
Affiliation(s)
- Rui Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Liang Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zhanning Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Weihua Ji
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hankun Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
9
|
Yue Y, Mohamed SA, Jiang J. Classifying and Predicting the Thermal Expansion Properties of Metal-Organic Frameworks: A Data-Driven Approach. J Chem Inf Model 2024; 64:4966-4979. [PMID: 38920337 DOI: 10.1021/acs.jcim.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Metal-organic frameworks (MOFs) are versatile materials for a wide variety of potential applications. Tunable thermal expansion properties promote the application of MOFs in thermally sensitive composite materials; however, they are currently available only in a handful of structures. Herein, we report the first data set for thermal expansion properties of 33,131 diverse MOFs generated from molecular simulations and subsequently develop machine learning (ML) models to (1) classify different thermal expansion behaviors and (2) predict volumetric thermal expansion coefficients (αV). The random forest model trained on hybrid descriptors combining geometric, chemical, and topological features exhibits the best performance among different ML models. Based on feature importance analysis, linker chemistry and topological arrangement are revealed to have a dominant impact on thermal expansion. Furthermore, we identify common building blocks in MOFs with exceptional thermal expansion properties. This data-driven study is the first of its kind, not only constructing a useful data set to facilitate future studies on this important topic but also providing design guidelines for advancing new MOFs with desired thermal expansion properties.
Collapse
Affiliation(s)
- Yifei Yue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, 119077 Singapore
| | - Saad Aldin Mohamed
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, 119077 Singapore
| |
Collapse
|
10
|
Vornholt SM, Chen Z, Hofmann J, Chapman KW. Node Distortions in UiO-66 Inform Negative Thermal Expansion Mechanisms: Kinetic Effects, Frustration, and Lattice Hysteresis. J Am Chem Soc 2024; 146:16977-16981. [PMID: 38874381 DOI: 10.1021/jacs.4c05313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
In metal-organic frameworks (MOFs) the interplay between the dynamics of individual components and how these are constrained by the extended lattice can yield unusual emergent phenomena. For the archetypal Zr-MOF, UiO-66, we explore the cooperative dynamics of a Zr-node transformation that gives rise to negative thermal expansion (NTE). Using in situ synchrotron X-ray scattering, with powder diffraction and pair distribution function (PDF) analyses, we identify lattice hysteresis and a thermal ramp-rate-dependence of the thermal expansion. Specifically, kinetic trapping of distorted node states formed at high temperature, leads to broad variability in the apparent thermal expansion which ranges from large positive to large negative thermal expansion with coefficients of thermal expansion (CTE) from +45 to -80 × 10-6K-1. Time-resolved relaxation studies at selected temperatures suggest that when equilibrated UiO-66 is intrinsically NTE, with a CTE of -35 × 10-6K-1. Kinetic trapping of the node-distorted state following high temperature activation has broad implications for characterization and applications of these Zr-MOFs; the nonequilibrium node state depends on the thermal history of the sample with quench vs slow cooling likely to impact gas binding, pore volume, and accessible catalytic sites.
Collapse
Affiliation(s)
- Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jan Hofmann
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
11
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
12
|
Chen Z, Gulam Rabbani SM, Liu Q, Bi W, Duan J, Lu Z, Schweitzer NM, Getman RB, Hupp JT, Chapman KW. Atomically Precise Single-Site Catalysts via Exsolution in a Polyoxometalate-Metal-Organic-Framework Architecture. J Am Chem Soc 2024; 146:7950-7955. [PMID: 38483267 DOI: 10.1021/jacs.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Single-site catalysts (SSCs) achieve a high catalytic performance through atomically dispersed active sites. A challenge facing the development of SSCs is aggregation of active catalytic species. Reducing the loading of these sites to very low levels is a common strategy to mitigate aggregation and sintering; however, this limits the tools that can be used to characterize the SSCs. Here we report a sintering-resistant SSC with high loading that is achieved by incorporating Anderson-Evans polyoxometalate clusters (POMs, MMo6O24, M = Rh/Pt) within NU-1000, a Zr-based metal-organic framework (MOF). The dual confinement provided by isolating the active site within the POM, then isolating the POMs within the MOF, facilitates the formation of isolated noble metal sites with low coordination numbers via exsolution from the POM during activation. The high loading (up to 3.2 wt %) that can be achieved without sintering allowed the local structure transformation in the POM cluster and the surrounding MOF to be evaluated using in situ X-ray scattering with pair distribution function (PDF) analysis. Notably, the Rh/Pt···Mo distance in the active catalyst is shorter than the M···M bond lengths in the respective bulk metals. Models of the active cluster structure were identified based on the PDF data with complementary computation and X-ray absorption spectroscopy analysis.
Collapse
Affiliation(s)
- Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - S M Gulam Rabbani
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Qin Liu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Wentuan Bi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Jiaxin Duan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Lu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil M Schweitzer
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel B Getman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
13
|
Liu J, Prelesnik JL, Patel R, Kramar BV, Wang R, Malliakas CD, Chen LX, Siepmann JI, Hupp JT. A Nanocavitation Approach to Understanding Water Capture, Water Release, and Framework Physical Stability in Hierarchically Porous MOFs. J Am Chem Soc 2023; 145:27975-27983. [PMID: 38085867 DOI: 10.1021/jacs.3c07624] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Chemically stable metal-organic frameworks (MOFs) featuring interconnected hierarchical pores have proven to be promising for a remarkable variety of applications. Nevertheless, the framework's susceptibility to capillary-force-induced pore collapse, especially during water evacuation, has often limited practical applications. Methodologies capable of predicting the relative magnitudes of these forces as functions of the pore size, chemical composition of the pore walls, and fluid loading would be valuable for resolution of the pore collapse problem. Here, we report that a molecular simulation approach centered on evacuation-induced nanocavitation within fluids occupying MOF pores can yield the desired physical-force information. The computations can spatially pinpoint evacuation elements responsible for collapse and the chemical basis for mitigation of the collapse of modified pores. Experimental isotherms and difference-electron density measurements of the MOF NU-1000 and four chemical variants validate the computational approach and corroborate predictions regarding relative stability, anomalous sequence of pore-filling, and chemical basis for mitigation of destructive forces.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry and Materials Science, and Department of Chemical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Jesse L Prelesnik
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Roshan Patel
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 412 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Boris V Kramar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Rui Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christos D Malliakas
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - J Ilja Siepmann
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 412 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Huang Y, Wan J, Pan T, Ge K, Guo Y, Duan J, Bai J, Jin W, Kitagawa S. Delicate Softness in a Temperature-Responsive Porous Crystal for Accelerated Sieving of Propylene/Propane. J Am Chem Soc 2023; 145:24425-24432. [PMID: 37880205 DOI: 10.1021/jacs.3c10277] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Soft nanoporous crystals with structural dynamics are among the most exciting recently discovered materials. However, designing or controlling a porous system with delicate softness that can recognize similar gas pairs, particularly for the promoted ability at increased temperature, remains a challenge. Here, we report a soft crystal (NTU-68) with a one-dimensional (1D) channel that expands and contracts delicately around 4 Å at elevated temperature. The completely different adsorption processes of propane (C3H8: kinetic dominance) and propylene (C3H6: thermodynamic preference) allow the crystal to show a sieving separation of this mixtures (9.9 min·g-1) at 273 K, and the performance increases more than 2-fold (20.4 min·g-1) at 298 K. This phenomenon is contrary to the general observation for adsorption separation: the higher the temperature, the lower the efficiency. Gas-loaded in situ powder X-ray analysis and modeling calculations reveal that slight pore expansion caused by the increased temperature provides plausible nanochannel for adsorption of the relatively smaller C3H6 while maintaining constriction on the larger C3H8. In addition, the separation process remains unaffected by the general impurities, demonstrating its true potential as an alternative sorbent for practical applications. Moving forward, the delicate crystal dynamics and promoted capability for molecular recognition provide a new route for the design of next-generation sieve materials.
Collapse
Affiliation(s)
- Yuhang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jingmeng Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ting Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Ge
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junfeng Bai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Rayder TM, Formalik F, Vornholt SM, Frank H, Lee S, Alzayer M, Chen Z, Sengupta D, Islamoglu T, Paesani F, Chapman KW, Snurr RQ, Farha OK. Unveiling Unexpected Modulator-CO 2 Dynamics within a Zirconium Metal-Organic Framework. J Am Chem Soc 2023; 145:11195-11205. [PMID: 37186787 DOI: 10.1021/jacs.3c01146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Carbon capture, storage, and utilization (CCSU) represents an opportunity to mitigate carbon emissions that drive global anthropogenic climate change. Promising materials for CCSU through gas adsorption have been developed by leveraging the porosity, stability, and tunability of extended crystalline coordination polymers called metal-organic frameworks (MOFs). While the development of these frameworks has yielded highly effective CO2 sorbents, an in-depth understanding of the properties of MOF pores that lead to the most efficient uptake during sorption would benefit the rational design of more efficient CCSU materials. Though previous investigations of gas-pore interactions often assumed that the internal pore environment was static, discovery of more dynamic behavior represents an opportunity for precise sorbent engineering. Herein, we report a multifaceted in situ analysis following the adsorption of CO2 in MOF-808 variants with different capping agents (formate, acetate, and trifluoroacetate: FA, AA, and TFA, respectively). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis paired with multivariate analysis tools and in situ powder X-ray diffraction revealed unexpected CO2 interactions at the node associated with dynamic behavior of node-capping modulators in the pores of MOF-808, which had previously been assumed to be static. MOF-808-TFA displays two binding modes, resulting in higher binding affinity for CO2. Computational analyses further support these dynamic observations. The beneficial role of these structural dynamics could play an essential role in building a deeper understanding of CO2 binding in MOFs.
Collapse
Affiliation(s)
- Thomas M Rayder
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Filip Formalik
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Hilliary Frank
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92037, United States
| | - Seryeong Lee
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Maytham Alzayer
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Debabrata Sengupta
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92037, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|