1
|
Fan L, Wu Y, Xu CQ, Jiang H, Xie Z, Ke Y, Li J, Song Q. Heavy-Atom-Free Supramolecular Photosensitizers Derived from Conventional Fluorophores. Angew Chem Int Ed Engl 2025:e202508968. [PMID: 40355373 DOI: 10.1002/anie.202508968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/14/2025]
Abstract
Heavy-atom-free photosensitizers (PSs) offer advantages such as efficient generation of reactive oxygen species (ROS), low dark cytotoxicity, good photostability, and high biocompatibility. Although the development of new PSs through organic synthesis has been a focus of active research, supramolecular chemistry offers a complementary pathway. This study presents a versatile supramolecular strategy to convert conventional fluorophores into heavy-atom-free PSs using a cyclic peptide-based scaffold that densely assembles fluorophore moieties. Results demonstrate that supramolecular PSs constructed from four synthetic fluorophore types-cyanines, coumarins, rhodamines, and BODIPYs-exhibit a remarkable enhancement in ROS generation efficiency, attributed to the increased intersystem crossing efficiency induced by self-assembly. Moreover, these supramolecular PSs function as visible-light photocatalysts, efficiently regenerating NAD+ from NADH. The densely packed polymer shell further shields enzymes from ROS-induced deactivation, thereby facilitating the development of robust photoenzyme catalytic systems. This study not only enriches the design methodology of heavy-atom-free PSs, but also paves the way for eco-friendly photobiocatalytic systems.
Collapse
Affiliation(s)
- Lingfeng Fan
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yong Wu
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hanqiu Jiang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Zhenhua Xie
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Qiao Song
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Sun Z, Xu Z, Ding M, Wang L, Zhao L, Sui P, Li G, Jin H, Zhou Y, Lin S. Ultrathin Polymersomes with Controllable Light-Responsivity via Adjusting the Electronic Effect from Para-Substituents of Azobenzene. Angew Chem Int Ed Engl 2025; 64:e202503104. [PMID: 39976322 DOI: 10.1002/anie.202503104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/21/2025]
Abstract
Achieving ultrathin polymersomes (UTPSs) with controllable light-responsive kinetics poses a prospective strategy to address the growing demands of intelligent and miniature systems, but it remains challenging. Herein, we reported the self-assembly of numerous side-chain-type amphiphilic alternating azocopolymers (AAACs) into a series of UTPSs with diameters spanning 210-270 nm and ultrathin vesicular thickness spanning 1.91-2.14 nm. The light-triggered reversible size transitions for these UTPSs are rendered by the photo-isomerization of azobenzene moiety upon alternating irradiation with UV and visible light. The systematical isomerization kinetic study proved that the light-responsive rate of distinct UTPSs was highly dependent on the electronic effect of para-substituents of azobenzenes within AAACs. Notably, the rate constant of electron-withdrawing nitro-modified UTPSs was 6.7 times greater than that of electron-donating hydroxyl-modified UTPSs. The proof-of-concept cargo release activity for different UTPSs was evaluated using a hydrophilic model drug of methylene blue (MB), with a light-controllable releasing performance that highly depended on the para-substituent-induced light-responsive kinetics. Our work offers an innovative strategy to fabricate stimuli-responsive UTPSs with a controllable responsive performance for the targeted applications in bionanotechnology.
Collapse
Affiliation(s)
- Zichao Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials, Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zejiang Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials, Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mingyu Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials, Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials, Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lin Zhao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials, Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Pengliang Sui
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials, Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guodong Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials, Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haibao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials, Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials, Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Song S, Han H, Wang J, Pu Y, Shao J, Xie J, Che H, van Hest JCM, Cao S. Polymersome-based nanomotors: preparation, motion control, and biomedical applications. Chem Sci 2025; 16:7106-7129. [PMID: 40206551 PMCID: PMC11976864 DOI: 10.1039/d4sc08283d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Polymersome-based nanomotors represent a cutting-edge development in nanomedicine, merging the unique vesicular properties of polymersomes with the active propulsion capabilities of synthetic nanomotors. As a vesicular structure enclosed by a bilayer membrane, polymersomes can encapsulate both hydrophilic and hydrophobic cargoes. In addition, their physical-chemical properties such as size, morphology, and surface chemistry are highly tunable, which makes them ideal for various biomedical applications. The integration of motility into polymersomes enables them to actively navigate biological environments and overcome physiological barriers, offering significant advantages over passive delivery platforms. Recent breakthroughs in fabrication techniques and motion control strategies, including chemically, enzymatically, and externally driven propulsion, have expanded their potential for drug delivery, biosensing, and therapeutic interventions. Despite these advancements, key challenges remain in optimizing propulsion efficiency, biocompatibility, and in vivo stability to translate these systems into clinical applications. In this perspective, we discuss recent advancements in the preparation and motion control strategies of polymersome-based nanomotors, as well as their biomedical-related applications. The molecular design, fabrication approaches, and nanomedicine-related utilities of polymersome-based nanomotors are highlighted, to envisage the future research directions and further development of these systems into effective, precise, and smart nanomedicines capable of addressing critical biomedical challenges.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz Mainz 55128 Germany
| | - Hao Han
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| | - Jianhong Wang
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Yubin Pu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu 610041 China
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| |
Collapse
|
4
|
Liu Y, Rodríguez‐Jiménez S, Song H, Pannwitz A, Kim D, Coito AM, Manuel RR, Webb S, Su L, Bonke SA, Milton RD, Pereira IAC, Bonnet S, Hammarström L, Reisner E. Bio-Inspired Self-Assembly of Enzyme-Micelle Systems for Semi-Artificial Photosynthesis. Angew Chem Int Ed Engl 2025; 64:e202424222. [PMID: 39951445 PMCID: PMC12036810 DOI: 10.1002/anie.202424222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/16/2025]
Abstract
Supramolecular surfactants provide a versatile platform to construct systems for solar fuel synthesis, for example via the self-assembly of amphiphilic photosensitizers and catalysts into diverse supramolecular structures. However, the utilization of amphiphilic photosensitizers in solar fuel production has predominantly focused on yielding gaseous products, such as molecular hydrogen (H2), carbon monoxide (CO), and methane (CH4) with turnover numbers (TONs) of synthetic catalysts typically in the range of hundreds to thousands. Inspired by biological lipid-protein interactions, we present herein a bio-hybrid assembly strategy that utilizes photosensitizers as surfactants to form micellar scaffolds that interface with enzymes, namely hydrogenases and formate dehydrogenases, for semi-artificial photosynthesis. Specifically, surfactants with a tris(2,2'-bipyridine)ruthenium(II) head group provide high photocatalytic activity upon association with the enzymes as their positively charged [Ru(bpy)3]2+ complex electrostatically interacts with the enzymes favorably to enable direct electron transfer at the micelle-enzyme interface. Time-resolved absorption and emission spectroscopy support the beneficial charge carrier dynamics of the reductively quenched [Ru(bpy)3]+ species when the enzymes are introduced in the micellar solution. Thus, a biohybrid concept is introduced for solar fuel synthesis using a biomimetic enzyme-micellar system, providing also a platform for other photocatalytic transformations using enzymes in the future.
Collapse
Affiliation(s)
- Yongpeng Liu
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | | - Hongwei Song
- Department of Chemistry – Angstrom LaboratoryUppsala University751 20UppsalaSweden
| | - Andrea Pannwitz
- Leiden Institute of ChemistryLeiden University2333 CCLeiden, TheNetherlands
| | - Dongseok Kim
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Ana M. Coito
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA)Universidade NOVA de Lisboa2780-157OeirasPortugal
| | - Rita R. Manuel
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA)Universidade NOVA de Lisboa2780-157OeirasPortugal
| | - Sophie Webb
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
- National Centre of Competence in Research (NCCR) CatalysisUniversity of Geneva1211Geneva 4Switzerland
| | - Lin Su
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Shannon A. Bonke
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Ross D. Milton
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
- National Centre of Competence in Research (NCCR) CatalysisUniversity of Geneva1211Geneva 4Switzerland
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA)Universidade NOVA de Lisboa2780-157OeirasPortugal
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryLeiden University2333 CCLeiden, TheNetherlands
| | - Leif Hammarström
- Department of Chemistry – Angstrom LaboratoryUppsala University751 20UppsalaSweden
| | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
5
|
Pan C, Dong J, Yang B, Li Y. Adenosine Triphosphate Harnessed Transient Aggregations of Nanoparticles for Efficient Nanoreactors in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9574-9580. [PMID: 40177889 DOI: 10.1021/acs.langmuir.5c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Living cells utilize diverse biochemical reactions occurring in microcompartments to regulate important biological functions. Although transient nanoreactors mediated by diverse fuels are achieved in discrete nanoassemblies of synthetic building blocks, the slow diffusion of substrates in and out of these solvent-dispersed nanoassemblies greatly compromises the reaction efficiency. Herein, we report adenosine triphosphate (ATP)-driven transient aggregation of nanoreactors that enable the acceleration of nucleophilic aromatic substitution (SNAr) in an aqueous solution. This system is composed of nanoparticles self-assembled from an amphiphilic molecule containing an ATP receptor, ATP, and potato apyrase (PA). The sequential addition of ATP and PA results in a reversible aggregation and disaggregation of the nanoparticles, which serve as smart nanoreactors to accelerate the SNAr reaction on demand. Notably, this reaction is temporally regulated by the autonomous aggregation and disaggregation of the nanoparticles. Furthermore, the azobenzene moiety in amphiphilic molecules allows the further modulation of the SNAr reaction in the nanoreactors using ultraviolet light.
Collapse
Affiliation(s)
- Chunyu Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Junjie Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
6
|
Peng Y, Li JY, Qi F, Guo DX, Li YZ, Feng HJ, Jiang LH, Zhang MY, Liu YX, Zeng L, Huang L. Highly Effective Near-Infrared to Blue Triplet-Triplet Annihilation Upconversion Nanoparticles for Reversible Photobiocatalysis. NANO LETTERS 2025; 25:5291-5298. [PMID: 40117584 DOI: 10.1021/acs.nanolett.5c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Near-infrared (NIR) to blue triplet-triplet annihilation upconversion (TTA-UC) shows unique applications in optogenetics, photocaging, and stereoscopic three-dimensional printing, etc. Here, we disclose a unique strategy that narrowed the energy gap between the triplet states of the NIR photosensitizer and annihilator, with the aim of maximally suppressing the photoexcitation energy loss during TET. Hence, we produced a NIR-to-blue TTA-UC pair that exhibited an exceptionally large anti-Stokes shift (0.76 eV) and achieved a record upconversion quantum yield (15.5%, out of 50%). We further prepared for the first time small, water-dispersed, oxygen-resistant upconversion nanoparticles with an upconversion quantum yield of up to 1.8%. Such upconverted nanoparticles were successfully utilized as NIR-responsive photocatalysts for the reversible transformation of enzyme cofactor NAD+/NADH in a photobiocatalytic system in air-saturated aqueous solutions.
Collapse
Affiliation(s)
- Yi Peng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jia-Yao Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fang Qi
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dong-Xue Guo
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ze Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hong-Juan Feng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lin-Han Jiang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ming-Yu Zhang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yun-Xi Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Le Zeng
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Ling Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
7
|
Hernando-Muñoz C, Revilla-Cuesta A, Abajo-Cuadrado I, Andreini C, Torroba T, Busto N, Fernández D, Perdomo G, Acosta G, Royo M, Gutierrez Reguera J, Spinello A, Barone G, Black D, Pal R. Self-assembling Depsipeptides on Aggregation-Induced Emission Luminogens: A New Way to Create Programmable Nanovesicles and Soft Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10097-10107. [PMID: 39889237 DOI: 10.1021/acsami.4c19123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
We introduce the proof of concept of a new methodology to produce robust hollow nanovesicles stable in water or mixtures of water and organic solvents. The bottom-up produced nanovesicles are formed by the self-assembly of depsipeptide chains of natural origin combined with new aggregation-induced emission luminogens that function as constitutional vesicle-forming moieties and fluorescent indicators of the structure of the nanovesicle. The newly formed nanovesicles are robust enough to be used to carry large molecules such as physiological peptides without losing their structural characteristics, acting as programmable nanocarrier systems within living cells as Trojan horse systems, constituting a new approach to active transport and nanoencapsulation.
Collapse
Affiliation(s)
- Carla Hernando-Muñoz
- Department of Chemistry, Faculty of Science, University of Burgos, Burgos 09001, Spain
| | - Andrea Revilla-Cuesta
- Department of Chemistry, Faculty of Science, University of Burgos, Burgos 09001, Spain
| | - Irene Abajo-Cuadrado
- Department of Chemistry, Faculty of Science, University of Burgos, Burgos 09001, Spain
| | - Camilla Andreini
- Department of Chemistry, Faculty of Science, University of Burgos, Burgos 09001, Spain
| | - Tomás Torroba
- Department of Chemistry, Faculty of Science, University of Burgos, Burgos 09001, Spain
| | - Natalia Busto
- Department of Health Science, Faculty of Health Science, University of Burgos, Burgos 09001, Spain
| | - Darío Fernández
- Department of Health Science, Faculty of Health Science, University of Burgos, Burgos 09001, Spain
| | - German Perdomo
- Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC) y Universidad de Valladolid, Valladolid 47003, Spain
| | - Gerardo Acosta
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - Miriam Royo
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | | | - Angelo Spinello
- STEBICEF Department, Università degli Studi di Palermo, Palermo 90128, Sicilia Italy
| | - Giampaolo Barone
- STEBICEF Department, Università degli Studi di Palermo, Palermo 90128, Sicilia Italy
| | - Dominic Black
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| | - Robert Pal
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| |
Collapse
|
8
|
Li Z, Zhang Y, Wang S, Wu Y, Che H. Rational Design of Self-Reporting Polymersomes for the Controlled Release of Sulfur Dioxide. ACS Macro Lett 2024; 13:1691-1697. [PMID: 39601239 DOI: 10.1021/acsmacrolett.4c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
As a new member of the gaseous regulators, sulfur dioxide (SO2) plays a crucial role in many biological activities. Recent studies have shown that SO2 is capable of inducing cancer cell apoptosis by regulating intracellular reactive oxygen species (ROS), allowing SO2 to serve as an efficient therapeutic agent. Although various polymer-based platforms have presented great potential for the controlled release of SO2, most of the systems are incapable of monitoring the intracellular generation of SO2. In this work we present the rational design of SO2-releasing biodegradable polymersomes, accompanied by a self-reporting property. The polymersome consists of a hydrophilic block of poly(ethylene glycol) (PEG) and a hydrophobic segment of poly(trimethylene carbonate) (PTMC)-based SO2 donors. The polymersomes not only exhibit good SO2-releasing performance upon treatment with glutathione (GSH), but can also regulate the fluorescence change of the system, offering a good platform for real-time monitoring of the intracellular production of SO2. Significantly, the in vitro and in vivo studies indicate the potential for exploitation of these polymersomes as antitumor agents. We expect that incorporating both the SO2-releasing capacity and self-reporting feature within a polymersome system will provide a unique opportunity for the development of intelligent gas nanovehicles.
Collapse
Affiliation(s)
- Zhezhe Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yue Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Suzhen Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hailong Che
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Zhou K, Du L, Ding R, Xu L, Shi S, Wang S, Wang Z, Zhang G, He G, Zhao Z, Tang BZ. Photocatalytic therapy via photoinduced redox imbalance in biological system. Nat Commun 2024; 15:10551. [PMID: 39632877 PMCID: PMC11618361 DOI: 10.1038/s41467-024-55060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
Redox balance is essential for sustaining normal physiological metabolic activities of life. In this study, we present a photocatalytic system to perturb the balance of NADH/NAD+ in oxygen-free conditions, achieving photocatalytic therapy to cure anaerobic bacterial infected periodontitis. Under light irradiation, the catalyst TBSMSPy+ can bind bacterial DNA and initiate the generation of radical species through a multi-step electron transfer process. It catalyzes the conversion from NADH to NAD+ (the turnover frequency up to 60.7 min-1), inhibits ATP synthesis, disrupts the energy supply required for DNA replication, and successfully accomplishes photocatalytic sterilization in an oxygen-free environment. The catalyst participates in the redox reaction, interfering with the balance of NADH/NAD+ contents under irradiation, so we termed this action as photoinduced redox imbalance. Additionally, animal experiments in male rats also validate that the TBSMSPy+ could effectively catalyze the NADH oxidation, suppress metabolism and stimulate osteogenesis. Our research substantiates the concept of photoinduced redox imbalance and the application of photocatalytic therapy, further advocating the development of such catalyst based on photoinduced redox imbalance strategy for oxygen-free phototherapy.
Collapse
Grants
- 52003228 National Natural Science Foundation of China (National Science Foundation of China)
- 52273197 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China (2023YFB3810001), Shenzhen Key Laboratory of Functional Aggregate Materials (ZDSYS 20211021111400001), Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ 2021324134613038, KQTD 20210811090142053, JCYJ20220818103007014, GJHZ 20210705141810031), the Innovation and Technology Commission (ITC-CNERC14SC01), the Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (2021-kllma-08), Guangzhou 510640, China (South China University of Technology). Guangzhou Science and Technology Planning Project (202201010439). Guangdong Basic and Applied Basic Research Foundation (2023A1515110346, 2021A1515110826). Guangzhou Science and Technology Planning Project (202201010439).
Collapse
Affiliation(s)
- Kun Zhou
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Rui Ding
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Letian Xu
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, China
| | - Shuai Shi
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Siyuan Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Zaiyu Wang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Guoqing Zhang
- University of Science and Technology of China, Hefei, Anhui, China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
- AIE Institute, Guangzhou Development District, Huangpu, Guangdong, China.
| |
Collapse
|
10
|
Gan G, Shen Z, Zheng S, Zhang G, Yin D, Liu S, Hu J. Biomimetic Activation of N-Nitrosamides with Red Light-Triggered Nitric Oxide Release via Mediated Electron Transfer. Angew Chem Int Ed Engl 2024; 63:e202409981. [PMID: 39037730 DOI: 10.1002/anie.202409981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Mediated electron transfer (MET) is fundamental to many biological functions, including cellular respiration, photosynthesis, and enzymatic catalysis. However, leveraging the MET process to enable the release of therapeutic gases has been largely unexplored. Herein, we report the bio-inspired activation of a series of UV-absorbing N-nitrosamide derivatives (NOA) under red light exposure, enabling the quantitative release of nitric oxide (NO) gasotransmitter via an MET process. The cornerstone of our design is the covalent linkage of a 2,4-dinitroaniline moiety, which acts as an electron mediator to the N-nitrosamide groups. This facilitates efficient electron transfer from the excited palladium(II) meso-tetraphenyltetrabenzoporphyrin (PdTPTBP) photocatalyst and the selective activation of NOA. Our approach has been validated with distinct photocatalysts and various N-nitrosamides, including those derived from carbamates, amides, and ureas. Notably, the modulation of the linker length between the electron mediator and N-nitrosamide groups serves as a regulatory mechanism for controlling NO release kinetics. Moreover, this biomimetic NO release platform demonstrates effective operation under both normoxic and hypoxic conditions, and it enables localized delivery of NO under physiological conditions, exhibiting significant anticancer efficacy within the phototherapeutic window and enhanced selectivity towards tumor cells.
Collapse
Affiliation(s)
- Guihai Gan
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery and Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| |
Collapse
|
11
|
Pan Y, Yang L, Wang G, Li H, Wang S, Zhang L, Wei W, Lu J. Self-Assembly of Nanovesicles for Enhanced Adsorption and Efficient Photodegradation of 2,4,6-Trichlorophenol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48836-48845. [PMID: 39250561 DOI: 10.1021/acsami.4c10154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The compound 2,4,6-trichlorophenol poses significant risks to both the aquatic environment and human health. Its inherent persistence and stability present challenges in achieving complete purification, thus warranting its inclusion as a priority pollutant. The present study reports the development of an amphiphilic small-molecule compound that self-assembles into nanovesicles exhibiting remarkable adsorption and photodegradation capabilities. Through the synergistic effects of hydrogen bonding, van der Waals forces, π-π interactions, and electrostatic interactions, these vesicles efficiently adsorb 2,4,6-trichlorophenol from aqueous solutions within 1 min while demonstrating exceptional environmental stability and broad applicability. Upon self-assembly into vesicles, not only are more adsorption sites exposed, but charge separation and migration within the vesicles are also facilitated. Through the synergistic effects of adsorption and photodegradation, complete removal of 2,4,6-trichlorophenol in aqueous solution can be achieved within 8 h while exhibiting excellent recycling capability. This approach offers a viable strategy for designing and synthesizing pure organic photodegradable materials.
Collapse
Affiliation(s)
- Yicheng Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Liujun Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy, Beijing 100025, People's Republic of China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Shaoshuo Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Long Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wanyu Wei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
12
|
Mustafa YL, Balestri A, Huang X, Palivan C. Redefining drug therapy: innovative approaches using catalytic compartments. Expert Opin Drug Deliv 2024; 21:1395-1413. [PMID: 39259136 DOI: 10.1080/17425247.2024.2403476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Rapid excretion of drug derivatives often results in short drug half-lives, necessitating frequent administrations. Catalytic compartments, also known as nano- and microreactors, offer a solution by providing confined environments for in situ production of therapeutic agents. Inspired by natural compartments, polymer-based catalytic compartments have been developed to improve reaction efficiency and enable site-specific therapeutic applications. AREAS COVERED Polymer-based compartments provide stability, permeability control, and responsiveness to stimuli, making them ideal for generating localized compounds/signals. These sophisticated systems, engineered to carry active compounds and enable selective molecular release, represent a significant advancement in pharmaceutical research. They mimic cellular functions, creating controlled catalytic environments for bio-relevant processes. This review explores the latest advancements in synthetic catalytic compartments, focusing on design approaches, building blocks, active molecules, and key bio-applications. EXPERT OPINION Catalytic compartments hold transformative potential in precision medicine by improving therapeutic outcomes through precise, on-site production of therapeutic agents. While promising, challenges like scalable manufacturing, biodegradability, and regulatory hurdles must be addressed to realize their full potential. Addressing these will be crucial for their successful application in healthcare.
Collapse
Affiliation(s)
| | - Arianna Balestri
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Xinan Huang
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Centre of Competence in Research-Molecular Systems Engineering, Basel, Switzerland
| |
Collapse
|
13
|
Ghosh R, Singh B, Basu S, Mondal A, Maiti PK, De M. Reversing the Trend: Deciphering Self-Assembly of Unconventional Amphiphiles Having Both Alkyl-Chain and PEG. Chempluschem 2024; 89:e202400147. [PMID: 38623044 DOI: 10.1002/cplu.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
In the field of molecular self-assembly, the core of an assembly is always made up of hydrophobic moiety like a long alkyl chain, whereas the outer part has always been a hydrophilic moiety such as poly(ethylene glycol) (PEG), or charged species. Hence, reversing the trend to manifest self-assembled structures with a PEG core and a surface consisting of alkyl chains in aqueous system is incredibly challenging. Herein, we architected a unique class of cationic bolaamphiphiles containing low molecular weight PEG and alkyl chains of different lengths. The bolaamphiphiles spontaneously form vesicles without external stimuli. These vesicles are unprecedented because PEG makes up the vesicle core, while the alkyl chains appear on the vesicles' exterior. Hence, this particular design reverses the usual trend of self-assembly formation. The vesicle size increases with the increase in alkyl chain-length. To our great surprise, we obtained large micelles for longest alkyl-chain amphiphile, which in turn act as a gemini amphiphile. The shift from a particular bolaamphiphile to gemini amphiphile with the variation of alkyl chain is also unexplored. Therefore, this specific class of self-assembled structure would compound a new paradigm in molecular self-assembly and supramolecular chemistry.
Collapse
Affiliation(s)
- Rita Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Bharat Singh
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Subhadip Basu
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Avijit Mondal
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Prabal Kumar Maiti
- Department of Physics, Indian Institute of Science, Bengaluru, 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
14
|
Li L, Liao Y, Fu S, Chen Z, Zhao T, Fang L, Li X. Efficient hydroxyl radical generation of an activatable phthalocyanine photosensitizer: oligomer higher than monomer and nanoaggregate. Chem Sci 2024; 15:10980-10988. [PMID: 39027302 PMCID: PMC11253117 DOI: 10.1039/d4sc02179g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
It remains a challenge to develop a single-component organic photosensitizer that efficiently produces hydroxyl radicals (˙OH) without oxygen involvement, especially while maintaining tumor-targeting capability. Herein, we propose an intelligent molecular design strategy whereby a tumor-targeted phthalocyanine is initially ˙OH-free and can be activated by overexpressed β-nicotinamide adenine dinucleotide sodium salt hydrate (NAD(P)H) in hypoxic tumors to efficiently produce ˙OH under light irradiation. Furthermore, the oligomer models based on the phthalocyanine molecules were constructed by a supramolecular regulation strategy, which were in an intermediate state between monomer and nanoaggregate, to achieve enhanced ˙OH generation. The level of NAD(P)H in cancer cells can be exhausted through two pathways, including spontaneous redox and the photocatalytic redox of phthalocyanines. As a result, the in vivo and in vitro assays illustrated that the oligomeric phthalocyanine containing N-O units (OligPcNOB) can specifically target cancer cells and tumor tissue with overexpressing biotin receptors. OligPcNOB exhibited significant photocytotoxicity even in an extremely low oxygen environment and successfully inhibited tumor progression.
Collapse
Affiliation(s)
- Li Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Yalan Liao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Shuwen Fu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Zixuan Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Tinghe Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Luyue Fang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Xingshu Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
15
|
Li K, Zou H, Tong X, Yang H. Enhanced Photobiocatalytic Cascades at Pickering Droplet Interfaces. J Am Chem Soc 2024; 146:17054-17065. [PMID: 38870463 DOI: 10.1021/jacs.4c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Developing new methods to engineer photobiocatalytic reactions is of utmost significance for artificial photosynthesis, but it remains a grand challenge due to the intrinsic incompatibility of biocatalysts with photocatalysts. In this work, photocatalysts and enzymes were spatially colocalized at Pickering droplet interfaces, where the reaction microenvironment and the spatial distance between two distinct catalysts were exquisitely regulated to achieve unprecedented photobiocatalytic cascade reactions. As proof of the concept, ultrathin graphitic carbon nitride nanosheets loaded with Au nanoparticles were precisely positioned in the outer interfacial layer of Pickering oil droplets to produce H2O2 under light irradiation, while enzymes were exactly placed in the inner interfacial layer to catalyze the subsequent biocatalytic oxidation reactions using in situ formed H2O2 as an oxidant. In the alkene epoxidation and thioether oxidation, our interfacial photobiocatalytic cascades showed a 2.0-5.8-fold higher overall reaction efficiency than the photobiocatalytic cascades in the bulk water phase. It was demonstrated that spatial localization of the photocatalyst and the enzyme at Pickering oil droplet interfaces not only provided their respective preferable reaction environments and intimate proximity for rapid H2O2 transport but also protected the enzyme from oxidative inactivation caused by the photogenerated species. These remarkable interfacial effects contributed to the significantly enhanced photobiocatalytic cascading efficiency. Our work presents an innovative photobiocatalytic reaction system with manifold benefits, providing a cutting-edge platform for solar-driven chemical transformations via photobiocatalysis.
Collapse
Affiliation(s)
- Ke Li
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Houbing Zou
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Shanxi Research Institute of Huairou Laboratory, Taiyuan 030032, China
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| | - Xili Tong
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Hengquan Yang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Shanxi Research Institute of Huairou Laboratory, Taiyuan 030032, China
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
16
|
Wang J, Zhao X, Tao Y, Wang X, Yan L, Yu K, Hsu Y, Chen Y, Zhao J, Huang Y, Wei W. Biocompatible aggregation-induced emission active polyphosphate-manganese nanosheets with glutamine synthetase-like activity in excitotoxic nerve cells. Nat Commun 2024; 15:3534. [PMID: 38670989 PMCID: PMC11053040 DOI: 10.1038/s41467-024-47947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Glutamine synthetase (GS) is vital in maintaining ammonia and glutamate (Glu) homeostasis in living organisms. However, the natural enzyme relies on adenosine triphosphate (ATP) to activate Glu, resulting in impaired GS function during ATP-deficient neurotoxic events. To date, no reports demonstrate using artificial nanostructures to mimic GS function. In this study, we synthesize aggregation-induced emission active polyP-Mn nanosheets (STPE-PMNSs) based on end-labeled polyphosphate (polyP), exhibiting remarkable GS-like activity independent of ATP presence. Further investigation reveals polyP in STPE-PMNSs serves as phosphate source to activate Glu at low ATP levels. This self-feeding mechanism offers a significant advantage in regulating Glu homeostasis at reduced ATP levels in nerve cells during excitotoxic conditions. STPE-PMNSs can effectively promote the conversion of Glu to glutamine (Gln) in excitatory neurotoxic human neuroblastoma cells (SH-SY5Y) and alleviate Glu-induced neurotoxicity. Additionally, the fluorescence signal of nanosheets enables precise monitoring of the subcellular distribution of STPE-PMNSs. More importantly, the intracellular fluorescence signal is enhanced in a conversion-responsive manner, allowing real-time tracking of reaction progression. This study presents a self-sustaining strategy to address GS functional impairment caused by ATP deficiency in nerve cells during neurotoxic events. Furthermore, it offers a fresh perspective on the potential biological applications of polyP-based nanostructures.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Yucheng Tao
- School of Life Sciences, Nanjing University, Nanjing, 210093, PR China
| | - Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Li Yan
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China
| | - Kuang Yu
- Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research (iMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, PR China
| | - Yi Hsu
- Taipei Wego Private Senior High School, Taipei, TWN, PR China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China.
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China.
- Shenzhen Research Institute, Nanjing University, Shenzhen, PR China.
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China.
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
- School of Life Sciences, Nanjing University, Nanjing, 210093, PR China.
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China.
- Shenzhen Research Institute, Nanjing University, Shenzhen, PR China.
| |
Collapse
|
17
|
Wu SH, Zhang SC, Kang YH, Wang YF, Duan ZM, Jing MJ, Zhao WW, Chen HY, Xu JJ. Aggregation-Enabled Electrochemistry in Confined Nanopore Capable of Complementary Faradaic and Non-Faradaic Detection. NANO LETTERS 2024; 24:4241-4247. [PMID: 38546270 DOI: 10.1021/acs.nanolett.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Electrochemistry that empowers innovative nanoscopic analysis has long been pursued. Here, the concept of aggregation-enabled electrochemistry (AEE) in a confined nanopore is proposed and devised by reactive oxygen species (ROS)-responsive aggregation of CdS quantum dots (QDs) within a functional nanopipette. Complementary Faradaic and non-Faradaic operations of the CdS QDs aggregate could be conducted to simultaneously induce the signal-on of the photocurrents and the signal-off of the ionic signals. Such a rationale permits the cross-checking of the mutually corroborated signals and thus delivers more reliable results for single-cell ROS analysis. Combined with the rich biomatter-light interplay, the concept of AEE can be extended to other stimuli-responsive aggregations for electrochemical innovations.
Collapse
Affiliation(s)
- Si-Hao Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuang-Chen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Han Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Feng Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zu-Ming Duan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming-Jian Jing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Gong L, Zhu J, Yang Y, Qiao S, Ma L, Wang H, Zhang Y. Effect of polyethylene glycol on polysaccharides: From molecular modification, composite matrixes, synergetic properties to embeddable application in food fields. Carbohydr Polym 2024; 327:121647. [PMID: 38171672 DOI: 10.1016/j.carbpol.2023.121647] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
Polyethylene glycol (PEG) is a flexible, water-soluble, non-immunogenic, as well as biocompatible polymer, and it could synergize with polysaccharides for food applications. The molecular modification strategies, including covalent bond interactions (amino groups, carboxyl groups, aldehyde groups, tosylate groups, etc.), and non-covalent bond interactions (hydrogen bonding, electrostatic interactions, etc.) on PEG molecular chains are discussed. Its versatile structure, group modifiability, and amphiphilic block buildability could improve the functions of polysaccharides (e.g., chitosan, cellulose, starch, alginate, etc.) and adjust the properties of combined PEG/polysaccharides with outstanding chain tunability and matrix processability owing to plasticizing effects, compatibilizing effects, steric stabilizing effects and excluded volume effects by PEG, for achieving the diverse performance targets. The synergetic properties of PEG/polysaccharides with remarkable architecture were summarized, including mechanical properties, antibacterial activity, antioxidant performance, self-healing properties, carrier and delivery characteristics. The PEG/polysaccharides with excellent combined properties and embeddable merits illustrate potential applications including food packaging, food intelligent indication/detection, food 3D printing and nutraceutical food absorption. Additionally, prospects (like food innovation and preferable nutrient utilization) and key challenges (like structure-effectiveness-applicability relationship) for PEG/polysaccharides are proposed and addressed for food fields.
Collapse
Affiliation(s)
- Linshan Gong
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China.
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China.
| |
Collapse
|
19
|
Singh PP, Sinha S, Nainwal P, Singh PK, Srivastava V. Novel applications of photobiocatalysts in chemical transformations. RSC Adv 2024; 14:2590-2601. [PMID: 38226143 PMCID: PMC10788709 DOI: 10.1039/d3ra07371h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
Photocatalysis has proven to be an effective approach for the production of reactive intermediates under moderate reaction conditions. The possibility for the green synthesis of high-value compounds using the synergy of photocatalysis and biocatalysis, benefiting from the selectivity of enzymes and the reactivity of photocatalysts, has drawn growing interest. Mechanistic investigations, substrate analyses, and photobiocatalytic chemical transformations will all be incorporated in this review. We seek to shed light on upcoming synthetic opportunities in the field by precisely describing mechanistically unique techniques in photobiocatalytic chemistry.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Prayagraj U. P.-211010 India
| | - Surabhi Sinha
- Department of Chemistry, United College of Engineering & Research Prayagraj U. P.-211010 India
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University Dehradun Uttarakhand India
| | - Pravin K Singh
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U. P.-211002 India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U. P.-211002 India
| |
Collapse
|
20
|
Chadha A, Padhi SK, Stella S, Venkataraman S, Saravanan T. Microbial alcohol dehydrogenases: recent developments and applications in asymmetric synthesis. Org Biomol Chem 2024; 22:228-251. [PMID: 38050738 DOI: 10.1039/d3ob01447a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Alcohol dehydrogenases are a well-known group of enzymes in the class of oxidoreductases that use electron transfer cofactors such as NAD(P)+/NAD(P)H for oxidation or reduction reactions of alcohols or carbonyl compounds respectively. These enzymes are utilized mainly as purified enzymes and offer some advantages in terms of green chemistry. They are environmentally friendly and a sustainable alternative to traditional chemical synthesis of bulk and fine chemicals. Industry has implemented several whole-cell biocatalytic processes to synthesize pharmaceutically active ingredients by exploring the high selectivity of enzymes. Unlike the whole cell system where cofactor regeneration is well conserved within the cellular environment, purified enzymes require additional cofactors or a cofactor recycling system in the reaction, even though cleaner reactions can be carried out with fewer downstream work-up problems. The challenge of producing purified enzymes in large quantities has been solved in large part by the use of recombinant enzymes. Most importantly, recombinant enzymes find applications in many cascade biotransformations to produce several important chiral precursors. Inevitably, several dehydrogenases were engineered as mere recombinant enzymes could not meet the industrial requirements for substrate and stereoselectivity. In recent years, a significant number of engineered alcohol dehydrogenases have been employed in asymmetric synthesis in industry. In a parallel development, several enzymatic and non-enzymatic methods have been established for regenerating expensive cofactors (NAD+/NADP+) to make the overall enzymatic process more efficient and economically viable. In this review article, recent developments and applications of microbial alcohol dehydrogenases are summarized by emphasizing notable examples.
Collapse
Affiliation(s)
- Anju Chadha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| | - Selvaraj Stella
- Department of Chemistry, Sarah Tucker College (Affiliated to Manonmaniam Sundaranar University), Tirunelveli-627007, Tamil Nadu, India.
| | - Sowmyalakshmi Venkataraman
- Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education & Research, Chennai, 600116, Tamil Nadu, India.
| | - Thangavelu Saravanan
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
21
|
Gao Y, Gao C, Fan Y, Sun H, Du J. Physically and Chemically Compartmentalized Polymersomes for Programmed Delivery and Biological Applications. Biomacromolecules 2023; 24:5511-5538. [PMID: 37933444 DOI: 10.1021/acs.biomac.3c00826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Multicompartment polymersomes (MCPs) refer to polymersomes that not only contain one single compartment, either in the membrane or in the internal cavity, but also mimic the compartmentalized structure of living cells, attracting much attention in programmed delivery and biological applications. The investigation of MCPs may promote the application of soft nanomaterials in biomedicine. This Review seeks to highlight the recent advances of the design principles, synthetic strategies, and biomedical applications of MCPs. The compartmentalization types including chemical, physical, and hybrid compartmentalization are discussed. Subsequently, the design and controlled synthesis of MCPs by the self-assembly of amphiphilic polymers, double emulsification, coprecipitation, microfluidics and particle assembly, etc. are summarized. Furthermore, the diverse applications of MCPs in programmed delivery of various cargoes and biological applications including cancer therapy, antimicrobials, and regulation of blood glucose levels are highlighted. Finally, future perspectives of MCPs from the aspects of controlled synthesis and applications are proposed.
Collapse
Affiliation(s)
- Yaning Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Chenchen Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yirong Fan
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200072, China
| |
Collapse
|
22
|
Velasco-Garcia L, Casadevall C. Bioinspired photocatalytic systems towards compartmentalized artificial photosynthesis. Commun Chem 2023; 6:263. [PMID: 38049562 PMCID: PMC10695942 DOI: 10.1038/s42004-023-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Artificial photosynthesis aims to produce fuels and chemicals from simple building blocks (i.e. water and carbon dioxide) using sunlight as energy source. Achieving effective photocatalytic systems necessitates a comprehensive understanding of the underlying mechanisms and factors that control the reactivity. This review underscores the growing interest in utilizing bioinspired artificial vesicles to develop compartmentalized photocatalytic systems. Herein, we summarize different scaffolds employed to develop artificial vesicles, and discuss recent examples where such systems are used to study pivotal processes of artificial photosynthesis, including light harvesting, charge transfer, and fuel production. These systems offer valuable lessons regarding the appropriate choice of membrane scaffolds, reaction partners and spatial arrangement to enhance photocatalytic activity, selectivity and efficiency. These studies highlight the pivotal role of the membrane to increase the stability of the immobilized reaction partners, generate a suitable local environment, and force proximity between electron donor and acceptor molecules (or catalysts and photosensitizers) to increase electron transfer rates. Overall, these findings pave the way for further development of bioinspired photocatalytic systems for compartmentalized artificial photosynthesis.
Collapse
Affiliation(s)
- Laura Velasco-Garcia
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda dels Països Catalans, 16, 43007, Tarragona, Spain
- Department of Physical and Inorganic Chemistry, University Rovira i Virgili (URV), C/ Marcel.lí Domingo, 1, 43007, Tarragona, Spain
| | - Carla Casadevall
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda dels Països Catalans, 16, 43007, Tarragona, Spain.
- Department of Physical and Inorganic Chemistry, University Rovira i Virgili (URV), C/ Marcel.lí Domingo, 1, 43007, Tarragona, Spain.
| |
Collapse
|
23
|
Liu M, Yu H, Zhao T, Li X. Emerging enzyme-based nanocomposites for catalytic biomedicine. Dalton Trans 2023; 52:15203-15215. [PMID: 37490002 DOI: 10.1039/d3dt01381b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
With the promising advances in nanomedicine, numerous strategies have emerged for the diagnosis and treatment of diseases. Among them, enzyme-based multifunctional nanocomposites have attracted a great deal of attention in the field of catalytic biomedicine. These nanocomposites with high catalytic activity are capable of converting low/non-toxic substances into therapeutic ones, thus realizing highly efficient, site-specific therapy with minimal side effects. Enzyme-based nanocomposites for catalytic biomedicine are mainly divided into three types: (i) natural-enzyme based nanocomposites; (ii) artificial-nanozyme based nanocomposites; and (iii) nanocomposites of natural-enzymes and nanozymes. In this review, we discuss key aspects of enzyme-based catalytic biomedicine, including the construction of enzyme-based nanocomposites, their unique properties and applications in catalytic biomedicine. We also highlight the main challenges faced in this field, and provide relevant guidelines for the rational design and extensive application of enzyme-based nanocomposites from our point of view.
Collapse
Affiliation(s)
- Minchao Liu
- Department of Chemistry, Shanghai Stomatological Hospital and School of Stomatology, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Hongyue Yu
- Department of Chemistry, Shanghai Stomatological Hospital and School of Stomatology, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Tiancong Zhao
- Department of Chemistry, Shanghai Stomatological Hospital and School of Stomatology, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
| | - Xiaomin Li
- Department of Chemistry, Shanghai Stomatological Hospital and School of Stomatology, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
24
|
Wu X, Yang Y. Research progress on drug delivery systems for curcumin in the treatment of gastrointestinal tumors. World J Gastrointest Oncol 2023; 15:1342-1348. [PMID: 37663948 PMCID: PMC10473931 DOI: 10.4251/wjgo.v15.i8.1342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/11/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
Curcumin is a natural compound with a diketone structure, which can control the growth, metastasis, recurrence, neovascularization, invasion, and drug resistance of gastrointestinal tumors by inhibiting nuclear factor κB, overexpression of tumor cells, vascular endothelial growth factor, etc. However, due to the low bioavailability of curcumin formulation, it did not fully exert its pharmacological effects, and its application and development in the treatment of various malignant tumors are still limited. This review summarizes the research on drug delivery systems of curcumin combating digestive tract tumors in order to further reduce the toxic side effects of curcumin-containing drugs and fully exert their pharmacological activities, and improve their bioavailability and clinical value.
Collapse
Affiliation(s)
- Xin Wu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Yang Yang
- Department of Respiratory Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
25
|
Wu Y, He Y, Luo H, Jin T, He F. AIEE-Active Flavones as a Promising Tool for the Real-Time Tracking of Uptake and Distribution in Live Zebrafish. Int J Mol Sci 2023; 24:10183. [PMID: 37373329 DOI: 10.3390/ijms241210183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, aggregation-induced emission enhancement (AIEE) molecules have shown great potential for applications in the fields of bio-detection, imaging, optoelectronic devices, and chemical sensing. Based on our previous studies, we investigated the fluorescence properties of six flavonoids and confirmed that compounds 1-3 have good aggregation-induced emission enhancement (AIEE) properties through a series of spectroscopic experiments. Compounds with AIEE properties have addressed the limitation imposed by the aggregation-caused quenching (ACQ) of classic organic dyes owing to their strong fluorescence emission and high quantum yield. Based on their excellent fluorescence properties, we evaluated their performance in the cell and we found that they could label mitochondria specifically by comparing their Pearson correlation coefficients (R) with Mito Tracker Red and Lyso-Tracker Red. This suggests their future application in mitochondrial imaging. Furthermore, studies of uptake and distribution characterization in 48 hpf zebrafish larvae revealed their potential for monitoring real-time drug behavior. The uptake of compounds by larvae varies significantly across different time cycles (between uptake and utilization in the tissue). This observation has important implications for the development of visualization techniques for pharmacokinetic processes and can enable real-time feedback. More interestingly, according to the data presented, tested compounds aggregated in the liver and intestine of 168 hpf larvae. This finding suggests that they could potentially be used for monitoring and diagnosing liver and intestinal diseases.
Collapse
Affiliation(s)
- Yi Wu
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ying He
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huiqing Luo
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Tingting Jin
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Feng He
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
26
|
Wang R, Liu X, Lv B, Sun W, Li C. Designing Intracellular Compartments for Efficient Engineered Microbial Cell Factories. ACS Synth Biol 2023; 12:1378-1395. [PMID: 37083286 DOI: 10.1021/acssynbio.2c00671] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
With the rapid development of synthetic biology, various kinds of microbial cell factories (MCFs) have been successfully constructed to produce high-value-added compounds. However, the complexity of metabolic regulation and pathway crosstalk always cause issues such as intermediate metabolite accumulation, byproduct generation, and metabolic burden in MCFs, resulting in low efficiencies and low yields of industrial biomanufacturing. Such issues could be solved by spatially rearranging the pathways using intracellular compartments. In this review, design strategies are summarized and discussed based on the types and characteristics of natural and artificial subcellular compartments. This review systematically presents information for the construction of efficient MCFs with intracellular compartments in terms of four aspects of design strategy goals: (1) improving local reactant concentration; (2) intercepting and isolating competing pathways; (3) providing specific reaction substances and environments; and (4) storing and accumulating products.
Collapse
Affiliation(s)
- Ruwen Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xin Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Wentao Sun
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Center for Synthetic and System Biology, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|