1
|
Morrow MC, Machan CW. Molecular catalyst and co-catalyst systems based on transition metal complexes for the electrochemical oxidation of alcohols. Chem Commun (Camb) 2025. [PMID: 40341947 DOI: 10.1039/d5cc01497b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Molecular catalysts allow deeper study of underlying mechanisms relative to heterogeneous systems by offering a discrete active site to monitor. Mechanistic study with knowledge of key intermediates subsequently enables the development of design principles through an understanding of how improved reactivity or selectivity can be achieved through modification of the catalyst structure. The co-catalytic inclusion of redox mediators (RM), which are small molecules that can aid in the transfer of protons and electrons, has been shown to improve product conversion and selectivity in many molecular systems, through intercepting key intermediates to direct reaction pathways. The primary focus for the majority of molecular electrocatalysts has been on optimizing design for reductive reactions, such as the hydrogen evolution reaction (HER), the oxygen reduction reaction (ORR), and the carbon dioxide reduction reaction (CO2RR). By comparison, there has been much less focus on key oxidative reactions by molecular species, apart from the oxygen evolution reaction (OER). The focus of this review is to highlight molecular catalyst systems optimized for the electrochemical oxidation of alcohols. The electrochemical alcohol oxidation reaction (AOR) can serve a role in synthesizing value-added chemicals and can serve as the counterpart to the CO2RR by releasing electricity from energy-rich molecules. State-of-the-art molecular systems for the AOR are divided between single-site catalysts and co-catalytic systems with redox mediators. The AOR is contextualized as an energy relevant reaction, an overview of the area is provided, foundational improvements in catalyst systems are highlighted, and future development principles for incorporating redox mediators are suggested.
Collapse
Affiliation(s)
- Mollie C Morrow
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| | - Charles W Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| |
Collapse
|
2
|
Biswas S, Ghosh S, Das I. A TEMPO-N 3 Complex Enables the Electrochemical C-H Azidation of N-Heterocycles through the Cleavage of Alkoxyamines. CHEMSUSCHEM 2025; 18:e202402139. [PMID: 39576255 DOI: 10.1002/cssc.202402139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/19/2024] [Indexed: 12/18/2024]
Abstract
A TEMPO-N3 charge-transfer complex enables the electrochemical C-H azidation of various N-heterocycles. The TEMPO+ ion, generated from TEMPO, assists in producing N3 ⋅ by forming a TEMPO-N3 complex with N3 -. The formation of this complex is supported by UV-vis absorption spectra, cyclic voltammetry studies, and ESI-HRMS studies. The reaction likely proceeds by forming a highly labile azidooxygenation adduct, which undergoes oxidative alkoxyamine mesolytic cleavage. Subsequent deprotonation of the resulting carbocation exclusively produces the azidation product. It is important to note that substituted olefins generally yield azidooxygenation or diazidation as the final product. Our study demonstrates that N-heterocycles deliver a selective monoazidation product, possibly due to steric reasons. ESI-HRMS studies provide evidence for forming azidooxygenation and alkoxyamine radical cation adducts. The regio- and chemoselectivity of this azidation reaction using the TEMPO-N3 complex have been discussed.
Collapse
Affiliation(s)
- Sumit Biswas
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700032, India
| | - Subhadeep Ghosh
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Indrajit Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Nava M, Zarnitsa LM, Riu MLY. The Coupling of Synthesis and Electrochemistry to Enable the Reversible Storage of Hydrogen as Metal Hydrides. PRECISION CHEMISTRY 2024; 2:563-569. [PMID: 39611025 PMCID: PMC11600345 DOI: 10.1021/prechem.4c00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 08/16/2024] [Indexed: 11/30/2024]
Abstract
Given its high gravimetric energy density and status as a clean fuel when derived from renewables, hydrogen (H2) is considered a premier candidate for energy storage; however, its low volumetric density limits its broader application. Chemical storage through the reversible incorporation of H2 into chemical bonds offers a promising solution to its low volumetric density, circumventing subpar energy densities and substantial infrastructure investments associated with physical storage methods. Metal hydrides are promising candidates for chemical storage because of their high gravimetric capacity and tunability through nanostructuring and alloying. Moreover, metal hydride/H2 interconversion may be interfaced with electrochemistry, which offers potential solutions to some of the challenges associated with traditional thermochemical platforms. In this Perspective, we describe anticipated challenges associated with electrochemically mediated metal hydride/H2 interconversion, including thermodynamic efficiencies of metal hydride formation, sluggish kinetics, and electrode passivation. Additionally, we propose potential solutions to these problems through the design of molecular mediators that may control factors such as metal hydride solubility, particle morphology, and hydride affinity. Realization of an electrochemically mediated metal hydride/H2 interconversion platform introduces new tools to address challenges associated with hydrogen storage platforms and contributes toward the development of room-temperature hydrogen storage platforms.
Collapse
Affiliation(s)
- Matthew Nava
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Lina M. Zarnitsa
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Martin-Louis Y. Riu
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
4
|
Liu L, Johnson SI, Appel AM, Bullock RM. Oxidation of Ammonia Catalyzed by a Molecular Iron Complex: Translating Chemical Catalysis to Mediated Electrocatalysis. Angew Chem Int Ed Engl 2024; 63:e202402635. [PMID: 38981858 DOI: 10.1002/anie.202402635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Ammonia is a promising candidate in the quest for sustainable, clean energy. With its capacity to serve as an energy carrier, the oxidation of ammonia opens avenues for carbon-neutral approaches to address worldwide growing energy needs. We report the catalytic chemical oxidation of ammonia by an Earth-abundant transition metal complex, trans-[LFeII(MeCN)2][PF6]2, where L is a macrocyclic ligand bearing four N-heterocyclic carbene (NHC) donors. Using triarylaminium radical cations in MeCN, up to 182 turnovers of N2 per Fe were obtained from chemical catalysis with an extremely low loading of the Fe catalyst (0.043 mM, 0.004 mol % catalyst). This chemical catalysis was successfully transitioned to mediated electrocatalysis for the oxidation of ammonia. Molecular electrocatalysis by the Fe catalyst and the mediator (p-MeOC6H4)3N exhibited a catalytic half-wave potential (Ecat/2) of 0.18 V vs [Cp2Fe]+/0 in MeCN, and achieved 9.3 turnovers of N2 at an applied potential of 0.20 V vs [Cp2Fe]+/0 at -20 °C in controlled-potential electrolysis, with a Faradaic efficiency of 75 %. Based on computational results, the catalyst undergoes sequential oxidation and deprotonation steps to form [LFeIV(NH2)2]2+, and thereafter bimetallic coupling to form an N-N bond.
Collapse
Affiliation(s)
- Liang Liu
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
- Current address: College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Samantha I Johnson
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Aaron M Appel
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| |
Collapse
|
5
|
Moberg M, Machan CW. Design of Cr-Based Molecular Electrocatalyst Systems for the CO 2 Reduction Reaction. Acc Chem Res 2024; 57:2326-2335. [PMID: 39106035 PMCID: PMC11339921 DOI: 10.1021/acs.accounts.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
ConspectusHuman influence on the climate system was recently summarized by the sixth Intergovernmental Panel on Climate Change (IPCC) Assessment Report, which noted that global surface temperatures have increased more rapidly in the last 50 years than in any other 50-year period in the last 2000 years. Elevated global surface temperatures have had detrimental impacts, including more frequent and intense extreme weather patterns like flooding, wildfires, and droughts. In order to limit greenhouse gas emissions, various climate change policies, like emissions trading schemes and carbon taxes, have been implemented in many countries. The most prevalent anthropogenic greenhouse gas emitted is carbon dioxide (CO2), which accounted for 80% of all U.S. greenhouse gas emissions in 2022. The reduction of CO2 through the use of homogeneous electrocatalysts generally follows a two-electron/two-proton pathway to produce either carbon monoxide (CO) with water (H2O) as a coproduct or formic acid (HCOOH). These reduced carbon species are relevant to industrial applications: the Fischer-Tropsch process uses CO and H2 to produce fuels and commodity chemicals, while HCOOH is an energy dense carrier for fuel cells and useful synthetic reagent. Electrochemically reducing CO2 to value-added products is a potential way to address its steadily increasing atmospheric concentrations while supplanting the use of nonrenewable petrochemical reserves through the generation of new carbon-based resources. The selective electrochemical reduction of CO2 (CO2RR) by homogeneous catalyst systems was initially achieved with late (and sometimes costly) transition metal active sites, leading the field to conclude that transition metal complexes based on metals earlier in the periodic table, like chromium (Cr), were nonprivileged for the CO2RR. However, metals early in the table have sufficient reducing power to mediate the CO2RR and therefore could be selective in the correct coordination environment. This Account describes our efforts to develop and optimize novel Cr-based CO2RR catalyst systems through redox-active ligand modification strategies and the use of redox mediators (RMs). RMs are redox-active molecules which can participate cocatalytically during an electrochemical reaction, transferring electrons─often accompanied by protons─to a catalytic active site. Through mechanistic and computational work, we have found that ligand-based redox activity is key to controlling the intrinsic selectivity of these Cr compounds for CO2 activation. Ligand-based redox activity is also essential for developing cocatalytic systems, since it enables through-space interactions with reduced RMs containing redox-active planar aromatic groups, allowing charge transfer to occur within the catalyst assembly. Following a summary of our work, we offer a perspective on the possibilities for future development of catalytic and cocatalytic systems with early transition metals for small molecule activation.
Collapse
Affiliation(s)
- Megan
E. Moberg
- Department of Chemistry, University
of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United
States
| | - Charles W. Machan
- Department of Chemistry, University
of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United
States
| |
Collapse
|
6
|
Díaz-Ruiz M, Nieto-Rodríguez M, Maseras F. Revealing the Mechanistic Features of an Electrosynthetic Catalytic Reaction and the Role of Redox Mediators through DFT Calculations and Microkinetic Modeling. Chemphyschem 2024; 25:e202400402. [PMID: 38739104 DOI: 10.1002/cphc.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Organic electrosynthesis is an emerging field that provides original selectivity while adding features of atom economy, sustainability, and selectivity. Electrosynthesis is often enhanced by redox mediators or electroauxiliaries. The mechanistic understanding of organic electrosynthesis is however often limited by the low lifetime of intermediates and its difficult detection. In this work, we report a computational analysis of the mechanism of an appealing reaction previously reported by Mei and co-workers which is catalyzed by copper and employs iodide as redox mediator. Our scheme combines DFT calculations with microkinetic modeling and covers both the reaction in solution and the electrodic steps. A detailed mechanistic scheme is obtained which reproduces well experimental data and opens perspectives for the general treatment of these processes.
Collapse
Affiliation(s)
- Marina Díaz-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, Tarragona, 43007, Spain
| | - Marc Nieto-Rodríguez
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, Tarragona, 43007, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
7
|
Reid AG, Zelenke EA, Moberg ME, Dickie DA, Machan CW. Improving co-electrocatalytic carbon dioxide reduction by optimizing the relative potentials of the redox mediator and catalyst. Chem Commun (Camb) 2024; 60:8208-8211. [PMID: 39015067 DOI: 10.1039/d4cc01988a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The effects of fixing the redox mediator (RM) reduction potential relative to a series of Cr-centered complexes capable of the reduction of CO2 to CO are disclosed. The greatest co-electrocatalytic activity enhancement is observed when the reduction potentials of the catalyst and RM are identical, implying that controlling the speciation of the Cr complex relative to RM activation is essential for improving catalytic performance. In all cases, the potential where co-catalytic activity is observed matches the reduction potential of the RM, regardless of the relative reduction potential of the Cr complex.
Collapse
Affiliation(s)
- Amelia G Reid
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| | - Ethan A Zelenke
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| | - Megan E Moberg
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| | - Charles W Machan
- Department of Chemistry, University of Virginia, McCormick Rd, PO Box 400319, Charlottesville, Virginia 22904-4319, USA.
| |
Collapse
|
8
|
Li X, Zhou J, Deng W, Wang Z, Wen Y, Li Z, Qiu Y, Huang Y. Electroreductive deuteroarylation of alkenes enabled by an organo-mediator. Chem Sci 2024; 15:11418-11427. [PMID: 39054999 PMCID: PMC11268466 DOI: 10.1039/d4sc03049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Electroreduction mediated by organo-mediators has emerged as a concise and effective strategy, holding significant potential in the site-specific introduction of deuterium. In this study, we present an environmentally friendly electroreduction approach for anti-Markovnikov selective deuteroarylation of alkenes and aryl iodides with D2O as the deuterium source. The key to the protocol lies in the employment of a catalytic amount of 2,2'-bipyiridine as an efficient organo-mediator, which facilitates the generation of aryl radicals by assisting in the cleavage of the C-X (X = I or Br) bonds in aryl halides. Because its reduction potential matches that of aryl iodides, the organo-mediator can control the chemoselectivity of the reaction and avoid the side reactions of competitive substrate deuteration. These phenomena are theoretically supported by CV experiments and DFT calculations. Our protocol provides a series of mono-deuterated alkylarenes with excellent deuterium incorporation through two single-electron reductions (SER), without requiring metal catalysts, external reductants, and sacrificial anodes.
Collapse
Affiliation(s)
- Xinling Li
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Jianfeng Zhou
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Weijie Deng
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Ziliang Wang
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Yating Wen
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Zhenjie Li
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University 94 Weijin Road Tianjin 300071 People's Republic of China
| | - Yubing Huang
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| |
Collapse
|
9
|
Karagiannis A, Neugebauer H, Lalancette RA, Grimme S, Hansen A, Prokopchuk DE. Pushing the Limits of Organometallic Redox Chemistry with an Isolable Mn(-I) Dianion. J Am Chem Soc 2024; 146:19279-19285. [PMID: 38976843 DOI: 10.1021/jacs.4c04561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We report an incredibly reducing and redox-active Mn-I dianion, [Mn(CO)3(Ph2B(tBuNHC)2)]2- (NHC = N-heterocyclic carbene), furnished via 2e- reduction of the parent 16e- MnI complex with Na0 or K0. Cyclic voltammograms show a Mn0/-I redox couple at -3.13 V vs Fc+/0 in tetrahydrofuran (THF), -3.06 V in 1,2-dimethoxyethane, and -2.85 V in acetonitrile. The diamagnetic Mn-I dianion is stable in solution and solid-state at room temperature, tolerating a wide range of countercations ([M(2.2.2)crypt]+, [M(18-crown-6)]+, [nBu4N]+; M = Na, K). Countercation identity does not significantly alter 13C NMR spectral signatures with [nBu4N]+ and Na+, suggesting minimal ion pairing in solution. IR spectroscopy reveals a significant decrease in CO stretching frequencies from MnI to Mn-I (ca. 240 cm-1), consistent with a drastic increase in electron density at Mn. State-of-the-art DFT calculations are in excellent agreement with the observed IR spectral data. Moreover, the Mn-I dianion behaves as a chemical reductant, smoothly releasing 1e- or 2e- to regenerate the oxidized Mn0 or MnI species in solution. The reducing potential of [Mn(CO)3(Ph2B(tBuNHC)2)]2- surpasses the naphthalenide anion in THF (-3.09 V) and represents one of the strongest isolable chemical redox agents.
Collapse
Affiliation(s)
- Ageliki Karagiannis
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Hagen Neugebauer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Demyan E Prokopchuk
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
10
|
Marron DP, Galvin CM, Dressel JM, Waymouth RM. Cobaltocene-Mediated Catalytic Hydride Transfer: Strategies for Electrocatalytic Hydrogenation. J Am Chem Soc 2024; 146:17075-17083. [PMID: 38864712 DOI: 10.1021/jacs.4c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The selective electrocatalytic hydrogenation of organics with transition metal hydrides is a promising strategy for electrosynthesis and energy storage. We report the electrocatalytic hydrogenation of acetone with a cyclopentadienone-iridium complex in a tandem electrocatalytic cycle with a cobaltocene mediator. The reductive protonation of cobaltocenium with mild acids generates (C5H5)CoI(C5H6) (CpCoI(CpH)), which functions as an electrocatalytic hydride mediator to deliver a hydride to cationic Ir(III) without generating hydrogen. Electrocatalytic hydride transfer by CpCoI(CpH) to a cationic Ir species leads to the efficient (Faradaic efficiency > 90%) electrohydrogenation of acetone, a valuable hydrogenation target as a liquid organic hydrogen carrier (LOHC). Hydride-transfer mediation presents a powerful strategy to generate metal hydrides that are inaccessible by stepwise electron/proton transfer.
Collapse
Affiliation(s)
- Daniel P Marron
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Conor M Galvin
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Julia M Dressel
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94306, United States
| |
Collapse
|
11
|
Suryawanshi SM, Sahoo S, Shaligram PS, Manna N, Samanta RC. Electrochemically enabled (3+2) cycloaddition of unbiased alkenes and β-dicarbonyls. Chem Commun (Camb) 2024; 60:5836-5839. [PMID: 38747259 DOI: 10.1039/d4cc01263a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A (3+2) cycloaddition between unbiased alkenes and 1,3-dicarbonyls is accomplished by judicious choice of electrode material and electrocatalyst to access dihydrofuran derivatives. A fluorinated porous carbon electrode with appropriate thickness governs unprecedented reactivity. This methodology eliminates the necessity for any stabilizing group within the alkene substrate. This is a rare example of the annulation of unbiased internal and terminal alkenes with cyclic and acyclic β-dicarbonyls.
Collapse
Affiliation(s)
- Sharad M Suryawanshi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Sahoo
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Parth S Shaligram
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Narugopal Manna
- Log 9 Materials HQ and R&D Centre Survey 9, Jakkuru Layout, Bengaluru 560092, Karnataka, India
| | - Ramesh C Samanta
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Jiang N, Darù A, Kunstelj Š, Vitillo JG, Czaikowski ME, Filatov AS, Wuttig A, Gagliardi L, Anderson JS. Catalytic, Spectroscopic, and Theoretical Studies of Fe 4S 4-Based Coordination Polymers as Heterogenous Coupled Proton-Electron Transfer Mediators for Electrocatalysis. J Am Chem Soc 2024; 146:12243-12252. [PMID: 38651361 DOI: 10.1021/jacs.4c03726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Iron-sulfur clusters play essential roles in biological systems, and thus synthetic [Fe4S4] clusters have been an area of active research. Recent studies have demonstrated that soluble [Fe4S4] clusters can serve as net H atom transfer mediators, improving the activity and selectivity of a homogeneous Mn CO2 reduction catalyst. Here, we demonstrate that incorporating these [Fe4S4] clusters into a coordination polymer enables heterogeneous H atom transfer from an electrode surface to a Mn complex dissolved in solution. A previously reported solution-processable Fe4S4-based coordination polymer was successfully deposited on the surfaces of different electrodes. The coated electrodes serve as H atom transfer mediators to a soluble Mn CO2 reduction catalyst displaying good product selectivity for formic acid. Furthermore, these electrodes are recyclable with a minimal decrease in activity after multiple catalytic cycles. The heterogenization of the mediator also enables the characterization of solution-phase and electrode surface species separately. Surface enhanced infrared absorption spectroscopy (SEIRAS) reveals spectroscopic signatures for an in situ generated active Mn-H species, providing a more complete mechanistic picture for this system. The active species, reaction mechanism, and the protonation sites on the [Fe4S4] clusters were further confirmed by density functional theory calculations. The observed H atom transfer reactivity of these coordination polymer-coated electrodes motivates additional applications of this composite material in reductive H atom transfer electrocatalysis.
Collapse
Affiliation(s)
- Ningxin Jiang
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Andrea Darù
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Špela Kunstelj
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Jenny G Vitillo
- Department of Science and High Technology and INSTM, Università degli Studi dell'Insubria, Como 22100, Italy
| | - Maia E Czaikowski
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
- Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago,Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| |
Collapse
|
13
|
Galvin CM, Marron DP, Dressel JM, Waymouth RM. Coordination-Induced Bond Weakening and Electrocatalytic Proton-Coupled Electron Transfer of a Ruthenium Verdazyl Complex. Inorg Chem 2024; 63:954-960. [PMID: 38153690 DOI: 10.1021/acs.inorgchem.3c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Coordination of the leucoverdazyl ligand 2,4-diisopropyl-6-(pyridin-2-yl)-1,4-dihydro-1,2,4,5-tetrazin-3(2H)-one VdH to Ru significantly weakens the ligand's N-H bond. Electrochemical measurements show that the metalated leucoverdazyl Ru(VdH)(acetylacetonate)2 RuVdH has a lower pKa (-5 units), BDFE (-7 kcal/mol), and hydricity (-22 kcal/mol) than the free ligand. DFT calculations suggest that the increased acidity is in part attributable to stabilization of the conjugate base Vd-. When free, Vd- distorts to avoid an 8πe- antiaromatic state, but it remains planar when bound to Ru. Proton-coupled electron transfer (PCET) behavior is observed for both the free and metalated leucoverdazyls. PCET equilibrium between the Vd radical and TEMPOH affords a VdH BDFE that is in good agreement with that obtained from electrochemical methods. RuVd exhibits electrocatalytic PCET donor behavior. Under acidic conditions, it reduces the persistent trityl radical ·CAr3 (Ar = p-tert-butylphenyl) to the corresponding triarylmethane HCAr3 via net 1e-/1H+ transfer from RuVdH.
Collapse
Affiliation(s)
- Conor M Galvin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Daniel P Marron
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Julia M Dressel
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
Potter M, Smith DE, Armstrong CG, Toghill KE. Electrochemically decoupled reduction of CO 2 to formate over a dispersed heterogeneous bismuth catalyst enabled via redox mediators. EES CATALYSIS 2024; 2:379-388. [PMID: 38222063 PMCID: PMC10782805 DOI: 10.1039/d3ey00271c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2024]
Abstract
Electrochemical CO2 reduction is a topic of major interest in contemporary research as an approach to use renewably-derived electricity to synthesise useful hydrocarbons from waste CO2. Various strategies have been developed to optimise this challenging reaction at electrode interfaces, but to-date, decoupled electrolysis has not been demonstrated for the reduction of CO2. Decoupled electrolysis aims to use electrochemically-derived charged redox mediators - electrical charge and potential vectors - to separate catalytic product formation from the electrode surface. Utilising an electrochemically generated highly reducing redox mediator; chromium propanediamine tetraacetate, we report the first successful application of decoupled electrolysis to electrochemical CO2 reduction. A study of metals and metal composites found formate to be the most accessible product, with bismuth metal giving the highest selectivity. Copper, tin, gold, nickel and molybdenum carbide heterogeneous catalysts were also investigated, in which cases H2 was found to be the major product, with minor yields of two-electron CO2 reduction products. Subsequent optimisation of the bismuth catalyst achieved a high formate selectivity of 85%. This method represents a radical new approach to CO2 electrolysis, which may be coupled directly with renewable energy storage technology and green electricity.
Collapse
Affiliation(s)
- Mark Potter
- Department of Chemistry, Lancaster University Lancaster LA1 4YB UK
| | - Daniel E Smith
- Department of Chemistry, Lancaster University Lancaster LA1 4YB UK
| | | | | |
Collapse
|
15
|
Noh S, Cho YJ, Zhang G, Schreier M. Insight into the Role of Entropy in Promoting Electrochemical CO 2 Reduction by Imidazolium Cations. J Am Chem Soc 2023; 145:27657-27663. [PMID: 38019965 DOI: 10.1021/jacs.3c09687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The electroreduction of CO2 plays an important role in achieving a net-zero carbon economy. Imidazolium cations can be used to enhance the rate of CO2 reduction reactions, but the origin of this promotion remains poorly understood. In this work, we show that in the presence of 1-ethyl-3-methylimidazolium (EMIM+), CO2 reduction on Ag electrodes occurs with an apparent activation energy near zero, while the applied potential influences the rate through the pre-exponential factor. Our findings suggest that the CO2 reduction rate is controlled by the initial state entropy, which depends on the applied potential through the organization of cations at the electrochemical interface. Further characterization shows that the C2-proton of EMIM+ is consumed during the reaction, leading to the collapse of the cation organization and a decrease in the catalytic performance. Our results have important implications for understanding the effect of potential on reaction rates, as they indicate that the common picture based on vibrational activation of electron transfer reactions is insufficient for describing the impact of potential in complex systems, such as CO2 reduction in the presence of imidazolium cations.
Collapse
Affiliation(s)
- Seonmyeong Noh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yoon Jin Cho
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gong Zhang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Marcel Schreier
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Yang K, Feng T, Qiu Y. Organo-Mediator Enabled Electrochemical Deuteration of Styrenes. Angew Chem Int Ed Engl 2023; 62:e202312803. [PMID: 37698174 DOI: 10.1002/anie.202312803] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Despite widespread use of the deuterium isotope effect, selective deuterium labeling of chemical molecules remains a major challenge. Herein, a facile and general electrochemically driven, organic mediator enabled deuteration of styrenes with deuterium oxide (D2 O) as the economical deuterium source was reported. Importantly, this transformation could be suitable for various electron rich styrenes mediated by triphenylphosphine (TPP). The reaction proceeded under mild conditions without transition-metal catalysts, affording the desired products in good yields with excellent D-incorporation (D-inc, up to >99 %). Mechanistic investigations by means of isotope labeling experiments and cyclic voltammetry tests provided sufficient support for this transformation. Notably, this method proved to be a powerful tool for late-stage deuteration of biorelevant compounds.
Collapse
Affiliation(s)
- Keming Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
17
|
Behera S, Aziz ST, Singla N, Mondal B. The synergy between electrochemical substrate oxidation and the oxygen reduction reaction to enable aerobic oxidation. Chem Commun (Camb) 2023; 59:11528-11531. [PMID: 37672289 DOI: 10.1039/d3cc02428h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Aerobic substrate oxidation reactions catalyzed by a heterogeneous catalyst can be looked upon as two independent half-cell reactions, viz. anodic substrate oxidation and the cathodic oxygen reduction reaction (ORR). In this context, Fe PANI/C, a well-known catalyst for the ORR, is chosen to validate this hypothesis, wherein the anodic reaction is hydrazine oxidation. Fe PANI/C shows excellent activity in terms of the electrochemical ORR and hydrazine oxidation in both alkaline aqueous and non-aqueous media and taken together the aerobic oxidation efficacy of hydrazine-like small organic molecules is correlated with the electrochemical outcomes.
Collapse
Affiliation(s)
- Snehanjali Behera
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar-382355, Gujarat, India.
| | - Sk Tarik Aziz
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Nisha Singla
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar-382355, Gujarat, India.
| | - Biswajit Mondal
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar-382355, Gujarat, India.
| |
Collapse
|
18
|
Reid AG, Moberg ME, Koellner CA, Moreno JJ, Hooe SL, Baugh KR, Dickie DA, Machan CW. Comparisons of bpy and phen Ligand Backbones in Cr-Mediated (Co-)Electrocatalytic CO 2 Reduction. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Amelia G. Reid
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Megan E. Moberg
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Connor A. Koellner
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Juan J. Moreno
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Shelby L. Hooe
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Kira R. Baugh
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Charles W. Machan
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904-4319, United States
| |
Collapse
|