1
|
Cao S, Gao L, Tao H, Gong L, Yu J, Lu Y, Lian C, Li XR, Huang H. Partially Amorphous Pearl-Chain-Shaped PtTe Nanowires for Robust Fuel Cell Catalysis. NANO LETTERS 2025; 25:8732-8739. [PMID: 40358594 DOI: 10.1021/acs.nanolett.5c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Finding active and stable Pt-based catalysts for the oxygen reduction reaction (ORR) is key for the widespread deployment of fuel cells. While amorphous catalysts are renowned for their superior catalytic activity, they often suffer from stability issues. Herein, a new catalytic structure is reported based on pearl-chain-shaped PtTe nanowires with partial amorphism to achieve both high activity and stability for ORR. This catalyst retains its initial mass activity of 90.9% after 150,000 cycles of accelerated durability test (ADT), in contrast to only 31.6% retention for the commercial Pt/C catalyst after 20,000 cycles. Also, it delivers superb fuel cell endurance with only 9.1 mV loss at 0.8 A cm-2 after 30,000 cycles of ADT, surpassing the United States Department of Energy 2025 targets. Mechanistic studies demonstrate that the amorphous structure strengthens the p(Te)-d(Pt) orbital interaction and optimizes the electron distribution, thereby simultaneously improving the ORR stability and activity.
Collapse
Affiliation(s)
- Siyu Cao
- School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Lei Gao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Haolan Tao
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Gong
- School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
- Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute Wenzhou, Zhejiang University, Wenzhou, Zhejiang 310027, P. R. China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Jingwei Yu
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yangfan Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Rui Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Hongwen Huang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
- Shenzhen Research Institute of Hunan University, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
2
|
Nandan R, Nam HN, Phung QM, Nara H, Henzie J, Yamauchi Y. Mesoporous Single-Crystal High-Entropy Alloy. J Am Chem Soc 2025. [PMID: 40421787 DOI: 10.1021/jacs.5c01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Mesoporous high-entropy alloys (HEAs) represent a promising advancement in mesoporous metals, showing great potential for various applications. Their unique multi-metallic uniformity, strong structural features, and high surface-active-site exposure contribute to their practical catalytic ability. The catalytic efficiency of metal nanostructures depends on both their elemental compositions and crystallinity, with single-crystalline structures generally outperforming polycrystalline ones. However, synthesizing single-crystalline HEA nanostructures with defined mesoporosity remains challenging due to the complex fabrication process. This study introduces a block copolymer micelle-assisted soft-chemical strategy to create single-crystalline mesoporous HEAs (SCPHEAs). These structures feature uniformly sized mesopores that permeate the entire structure, maximizing the exposure of HEA active sites, enhancing material utilization, and facilitating efficient mass and charge transport. The optimized SCPHEAs exhibit excellent electrocatalytic performance in methanol oxidation reactions, surpassing polycrystalline mesoporous HEAs, commercial Pt-C, and various recently reported precious metal-based HEAs and conventional alloy electrocatalysts. This superior performance is attributed to a synergistic effect that results from surface charge redistribution among different atomic entities, which enhances the adsorption of methanol and water molecules and mitigates intermediate CO poisoning. Our synthesis method enables the design of a wide range of mesoporous HEAs with controllable morphology and crystallinity tailored for various catalytic applications and beyond.
Collapse
Affiliation(s)
- Ravi Nandan
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ho Ngoc Nam
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hiroki Nara
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Joel Henzie
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Yamauchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Zhu Y, Dong G, Pan F, Wang T, Zhang L, Wang H, Ge L, Zhang P. Ir NCs Embedded Co-MOF Nanosheets for Boosting Electrochemical Nitrate Reduction to Ammonia Performance. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28084-28093. [PMID: 40314610 DOI: 10.1021/acsami.5c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
In this study, Ir nanoclusters adorned with abundant p-mercaptobenzoic acid (p-MBA) ligands were employed to fabricate an electrocatalytic material consisting of Ir nanoclusters embedded within two-dimensional Co-MOF nanosheets (Ir NCs@Co-MOF) for the electrocatalytic NO3- reduction reaction (NO3-RR). TEM analysis confirmed that Ir nanoclusters are uniformly distributed in 2D Co-MOF nanosheets, with an average diameter of about 1.8 nm. At a potential of -0.8 V vs RHE, the Ir NCs@Co-MOF catalyst achieved a nitrate conversion rate, ammonia selectivity, and yield of 92.5, 81.4%, and 230.1 μg·h-1·cm-2, respectively, over a reaction duration of 120 min. The strong interaction between Ir nanoclusters and Co-MOF serves to enhance electrocatalytic activity and accelerate the rate of nitrate reduction. Stability tests indicated that after 20 cycles, both the nitrate conversion and ammonia selectivity of the Ir NCs@Co-MOF catalyst demonstrated relative stability, thereby indicating a robust performance for this catalytic system. The results of EPR and TBA quenching experiments indicate that *H plays a key role in the NO3-RR process. In situ DEMS investigations revealed that during the NO3-RR process, the reaction pathway was as follows: *NO3 → *NO2 → *NO → *NOH → *NH2OH → *NH2 → *NH3 → NH3.
Collapse
Affiliation(s)
- Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, P.R. China
| | - Gaigai Dong
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, P.R. China
| | - Fan Pan
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, P.R. China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P.R. China
| | - Tian Wang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Linbo Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, P.R. China
| | - Hanlin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, P.R. China
| | - Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, P.R. China
| | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710021, P.R. China
| |
Collapse
|
4
|
Chu K, Weng B, Lu Z, Ding Y, Zhang W, Tan R, Zheng YM, Han N. Exploration of Multidimensional Structural Optimization and Regulation Mechanisms: Catalysts and Reaction Environments in Electrochemical Ammonia Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416053. [PMID: 39887545 PMCID: PMC11923998 DOI: 10.1002/advs.202416053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Ammonia (NH3) is esteemed for its attributes as a carbon-neutral fuel and hydrogen storage material, due to its high energy density, abundant hydrogen content, and notably higher liquefaction temperature in comparison to hydrogen gas. The primary method for the synthetic generation of NH3 is the Haber-Bosch process, involving rigorous conditions and resulting in significant global energy consumption and carbon dioxide emissions. To tackle energy and environmental challenges, the exploration of innovative green and sustainable technologies for NH3 synthesis is imperative. Rapid advances in electrochemical technology have created fresh prospects for researchers in the realm of environmentally friendly NH3 synthesis. Nevertheless, the intricate intermediate products and sluggish kinetics in the reactions impede the progress of green electrochemical NH3 synthesis (EAS) technologies. To improve the activity and selectivity of the EAS, which encompasses the electrocatalytic reduction of nitrogen gas, nitrate, and nitric oxide, numerous electrocatalysts and design strategies have been meticulously investigated. Here, this review primarily delves into recent progress and obstacles in EAS pathways, examining methods to boost the yield rate and current efficiency of NH3 synthesis via multidimensional structural optimization, while also exploring the challenges and outlook for EAS.
Collapse
Affiliation(s)
- Kaibin Chu
- School of Materials Science and Engineering, Linyi University, Linyi, 276000, P. R. China
| | - Bo Weng
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Zhaorui Lu
- School of Materials Science and Engineering, Linyi University, Linyi, 276000, P. R. China
| | - Yang Ding
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Wei Zhang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Rui Tan
- Department of Chemical Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Yu-Ming Zheng
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Ning Han
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| |
Collapse
|
5
|
Chen J, Gu Y, Zhu Q, Gu Y, Liang X, Ma J. Automated Machine Learning of Interfacial Interaction Descriptors and Energies in Metal-Catalyzed N 2 and CO 2 Reduction Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3490-3502. [PMID: 39885810 DOI: 10.1021/acs.langmuir.4c04638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The applications of machine learning (ML) in complex interfacial interactions are hindered by the time-consuming process of manual feature selection and model construction. An automated ML program was implemented with four subsequent steps: data distribution analysis, dimensionality reduction and clustering, feature selection, and model optimization. Without the need of manual intervention, the descriptors of metal charge variance (ΔQCT) and electronegativity of substrate (χsub) and metal (δχM) were raised up with good performance in predicting electrochemical reaction energies for both nitrogen reduction reaction (NRR) and CO2 reduction reaction (CO2RR) on metal-zeolites and MoS2 surfaces. The important role of interfacial interactions in tuning the catalytic reactivity in NRR and CO2RR was highlighted from SHAP analysis. It was proposed that Fe-, Cr-, Zn-, Nb-, and Ta-zeolites are favorable catalysts for NRR, while Ni-zeolite showed a preference for CO2RR. An elongated bond of N2 or a bent configuration of CO2 was shown in V-, Co-, and Mo-zeolites, indicating that the molecule could be activated after the adsorption in both NRR and CO2RR pathways. The generalizability of the automatically built ML model is demonstrated from applications to other catalytic systems such as metal-organic frameworks and SiO2 surfaces. The automated ML program is a useful tool to accelerate the data-driven exploration of relationship between structures and material properties without the need of manual feature selection.
Collapse
Affiliation(s)
- Jiawei Chen
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yuming Gu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qin Zhu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yating Gu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xinyi Liang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing Ma
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Dai TY, Shi H, Wang TH, Lang XY, Jiang Q. Achieving a Thermodynamic Self-Regulation Dynamic Adsorption Mechanism for Ammonia Synthesis through Selective Orbital Coupling. Angew Chem Int Ed Engl 2025; 64:e202418035. [PMID: 39516181 DOI: 10.1002/anie.202418035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
With the continuous pursuing on the improvement of catalytic activity, a catalyst performed exceeding catalytic volcano plots is desired, while it is impeded by the adsorption-energy scaling relations of reaction intermediates. Numerous efforts have been focused on optimizing the initial and final intermediates to circumvent the scaling relations for an improved performance. For a step forward, simultaneously optimizing all intermediates is essential to explore the theoretical maximum of catalytic activity. Herein, we proposed a dynamic adsorption mechanism (DAM) to independently regulate the adsorption configurations of all intermediates of electrochemical nitrogen reduction reaction (NRR). To demonstrate the DAM, a multi-site NbNi3 intermetallic is developed, which enables suitable adsorption energies of different intermediates via modulating orbital coupling mechanisms. As a result, NbNi3 achieves an ultra-low limiting potential of NRR of -0.11 V vs. reversible hydrogen electrode (RHE). Strikingly, the theoretical result is confirmed by a proof-of-concept experiment, wherein the nanoporous NbNi3 electrode exhibits a remarkable NH3 yield rate of 25.89 μg h-1 cm-2 with the Faradaic efficiency of 33.15 % at -0.25 V vs. RHE. Overall, this work brings out a new strategy to avoid the scaling relations, and opens up a promising avenue toward high-efficiency NRR catalysts.
Collapse
Affiliation(s)
- Tian-Yi Dai
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Hang Shi
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Tong-Hui Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Xing-You Lang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
7
|
Xu J, Fan X, Xu K, Wu K, Liao H, Zhang C. Ultrasensitive Chemiresistive Gas Sensors Based on Dual-Mesoporous Zinc Stannate Composites for Room Temperature Rice Quality Monitoring. NANO-MICRO LETTERS 2025; 17:115. [PMID: 39853638 PMCID: PMC11759721 DOI: 10.1007/s40820-024-01645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025]
Abstract
The integration of dual-mesoporous structures, the construction of heterojunctions, and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors. Nonetheless, achieving an optimal design that simultaneously combines mesoporous structures, precise heterojunction modulation, and controlled oxygen vacancies through a one-step process remains challenging. This study proposes an innovative method for fabricating zinc stannate semiconductors featuring dual-mesoporous structures and tunable oxygen vacancies via a direct solution precursor plasma spray technique. As a proof of concept, the resulting zinc stannate-based coatings are applied to detect 2-undecanone, a key biomarker for rice aging. Remarkably, the zinc oxide/zinc stannate heterojunctions with a well-defined secondary pore structure exhibit exceptional gas-sensing performance for 2-undecanone at room temperature. Furthermore, practical experiments indicate that the developed sensor effectively identifies adulteration in various rice varieties. These results underscore the potential of this method for designing metal oxides with tailored properties for high-performance gas sensors. The enhanced adsorption capacity and dual-mesoporous features of this semiconductor make it a promising candidate for sensing applications in agricultural food safety inspections.
Collapse
Affiliation(s)
- Jinyong Xu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Xuxiong Fan
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Kaichun Xu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
- ICB UMR 6303, CNRS, Univ. Bourgogne Franche-Comté, UTBM, 90010, Belfort, France
| | - Kaidi Wu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Hanlin Liao
- ICB UMR 6303, CNRS, Univ. Bourgogne Franche-Comté, UTBM, 90010, Belfort, France
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China.
| |
Collapse
|
8
|
Feng Y, Jiao L, Zhuang X, Wang Y, Yao J. The Development, Essence and Perspective of Nitrogen Reduction to Ammonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410909. [PMID: 39533455 DOI: 10.1002/adma.202410909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Ammonia plays a pivotal role in agriculture and meanwhile holds promising potential as an energy vector for the hydrogen economy, where the nitrogen reduction to ammonia is a critical pathway for achieving sustainable development. Over the past hundred years, ammonia synthesis has undergone several breakthrough developments from Haber-Bosch process to photo/electro-catalysis and Li-mediated strategy, but still faces the challenges of low yield rate, selectivity and efficiency. Therefore, there is a pressing demand to develop efficient and green ammonia synthesis from nitrogen. This review summarizes the development of the nitrogen reduction to ammonia, highlighting six milestones during the whole journey. From the development direction, this work finds and extracts the essence of ammonia synthesis, that is the reaction pathways are affected by the energy barrier of reaction intermediates, which can be altered by proton sources, auxiliaries and catalysts. Then this work discusses the detailed overview of the significant development of proton source, auxiliaries and catalysts. Finally, based on the essence, the possible opportunities of ammonia synthesis from nitrogen reduction are presented, including the design of new ammonia synthesis pathways and efficient catalysts. The deep insight of nitrogen reduction to ammonia will provide a design guidance for efficient ammonia synthesis.
Collapse
Affiliation(s)
- Yangyang Feng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Lei Jiao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xu Zhuang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Jiannian Yao
- College of Chemistry, Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| |
Collapse
|
9
|
Jiang Y, Zhang F, Mei Y, Li T, Li Y, Zheng K, Guo H, Yang G, Zhou Y. Fe─S Bond-Mediated Efficient Electron Transfer in Quantum Dots/Metal-Organic Frameworks for Boosting Photoelectrocatalytic Nitrogen Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405512. [PMID: 39233536 DOI: 10.1002/smll.202405512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Effective electron supply to produce ammonia in photoelectrochemical nitrogen reduction reaction (PEC NRR) remains challenging due to the sluggish multiple proton-coupled electron transfer and unfavorable carrier recombination. Herein, InP quantum dots decorated with sulfur ligands (InP QDs-S2-) bound to MIL-100(Fe) as a benchmark catalyst for PEC NRR is reported. It is found that MIL-100(Fe) can combined with InP QDs-S2- via Fe─S bonds as bridge to facilitate the electron transfer by experimental results. The formation of Fe─S bonds can facilitate electron transfer from inorganic S2- ligands of InP QDs to the Fe metal sites of MIL-100(Fe) within 52 ps, ensuring a more efficient electron transfer and electron-hole separation confirmed by the time-resolved spectroscopy. More importantly, the process of photo-induced carrier transfer can be traced by in situ attenuated total reflection surface-enhanced infrared tests, certifying that the effective electron transfer can promote N≡N dissociation and N2 hydrogenation. As a result, InP QDs-S2-/MIL-100(Fe) exhibits prominent performance with an outstanding NH3 yield of 0.58 µmol cm-2 h-1 (3.09 times higher than that of MIL-100(Fe)). This work reveals an important ultrafast dynamic mechanism for PEC NRR in QDs modified metal-organic frameworks, providing a new guideline for the rational design of efficient MOFs photocathodes.
Collapse
Affiliation(s)
- Yuman Jiang
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Fengying Zhang
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Yanglin Mei
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Tingsong Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Yixuan Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Kaibo Zheng
- Department of Chemical Physics and NanoLund Chemical Center, Lund University, P.O. Box 124, Lund, 22100, Sweden
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens, Lyngby, Denmark
| | - Heng Guo
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Guidong Yang
- Oxford International Joint Research Laboratory of Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Zhou
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
10
|
Wu B, Yang B, Wu X, Kuo DH, Su Z, Chen L, Zhang P, Mosisa MT, Lu D, Yuan Z, Lin J, Chen X. Synergistic Tuning of Heterovalent States and Oxygen-Vacancy Defect Engineering in Hydrophilic W-Doped Sb 2OS 2 for Enhanced Nitrogen Photoreduction to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58764-58779. [PMID: 39412406 DOI: 10.1021/acsami.4c16630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Nitrogen fixation reaction via photocatalysis offers a green and promising strategy for renewable NH3 synthesis, and catalysts with high-efficiency photocatalytic properties are essential to the process. Herein, we demonstrate a W-doped Sb2OS2 bimetal oxysulfide catalyst (labeled as SbWOS) with abundant oxygen vacancies, heterovalent metal states, and hydrophilic surfaces for nitrogen photoreduction to ammonia. The SbWOS-3 with suitable W-doping exhibited excellent nitrogen fixation activity of 408.08 μmol·g-1·h-1 and an apparent quantum efficiency (AQE) of 1.88% at 420 nm and a solar-to-ammonia (STA) conversion efficiency of 0.082% in pure water under AM1.5G light irradiation. The W-doping not only transforms hydrophobic Sb2OS2 into a hydrophilic catalyst, making it easier for H2O molecules adsorbed on the SbWOS surface and catalyzed into protons, but also endows the SbWOS catalyst with rich oxygen vacancies, acting as the active sites for trapping and activating the N2 molecule, and for trapping and activating H2O to produce the protons for the N2 photocatalytic reduction reaction. The hydrazine drives the SbWOS catalyst with the heterovalent metal states, which acts as the photogenerate electrons quickly hopping between W5+ and W6+ to transfer for the N2 reduction reaction. This study provides a feasible scheme for applying oxygen vacancy defects, heterovalent metal states, and surface hydrophobic-to-hydrophilic wetting engineering in bimetal oxysulfide for N2 photoreduction to ammonia.
Collapse
Affiliation(s)
- Binghong Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baoqian Yang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinru Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Zhengjie Su
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Longyan Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengkun Zhang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengistu Tadesse Mosisa
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongfang Lu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanhui Yuan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinguo Lin
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyun Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Cheng W, Fan P, Jin W. Visualizing the Structure and Dynamics of Transition Metal-Based Electrocatalysts Using Synchrotron X-Ray Absorption Spectroscopy. CHEMSUSCHEM 2024:e202401306. [PMID: 39343747 DOI: 10.1002/cssc.202401306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
As the global energy structure evolves and clean energy technologies advance, electrocatalysis has become a focal point as a critical conversion pathway in the new energy sector. Transitional metal electrocatalysts (TMEs) with their distinctive electronic structures and redox properties show great potential in electrocatalytic reactions. However, complex reaction mechanisms and kinetic limitations hinder the improvement of energy conversion efficiency, highlighting the necessity for comprehensive studies on structure and performance of electrocatalysts. X-ray Absorption Fine Structure (XAFS) spectra stand out as a robust tool for examining the electrocatalyst's structures and performance due to its atomic selectivity and sensitivity to local environments. This review delves into the application of XAFS technology in characterizing TMEs, providing in-depth analyses of X-ray Absorption Near-Edge Structure (XANES) spectra, and Extended XAFS (EXAFS) spectra in both R-space and k-space. These analyses reveal intrinsic structural information, electronic interactions, catalyst stability, and aggregation morphology. Furthermore, the paper examines advancements in in-situ XAFS techniques for real-time monitoring of active site changes, capturing critical intermediate and transitional states, and elucidating the evolution of active species during electrocatalytic reactions. These insights deepen our understanding on structure-activity relationship of electrocatalysts and offer valuable guidance for designing and developing highly active and stable electrocatalysts.
Collapse
Affiliation(s)
- Wen Cheng
- Center for Instrumental Analysis, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Peng Fan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Wei Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
12
|
Chen J, Jiang M, Zhang F, Wang L, Yang J. Interstitial Boron Atoms in Pd Aerogel Selectively Switch the Pathway for Glycolic Acid Synthesis from Waste Plastics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401867. [PMID: 39073167 DOI: 10.1002/adma.202401867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Electro-reforming of poly(ethylene terephthalate) (PET) into valuable chemicals is garnering significant attention as it opens a mild avenue for waste resource utilization. However, achieving high activity and selectivity for valuable C2 products during ethylene glycol (EG) oxidation in PET hydrolysate on Pd electrocatalysts remains challenging. The strong interaction between Pd and carbonyl (*CO) intermediates leads to undesirable over-oxidation and poisoning of Pd sites, which hinders the highly efficient C2 products production. Herein, a nonmetallic alloying strategy is employed to fabricate a Pd-boron alloy aerogel (PdB), wherein B atoms are induced to regulate the electron structure and surface oxophilicity. This approach allows a remarkable mass activity of 6.71 A mgPd -1, glycolic acid (GA) Faradaic efficiency (FE) of 93.8%, and stable 100 h cyclic electrolysis. In situ experiments and density functional theory calculations reveal the contributions of B inserted in Pd lattice on highly effective EG-to-GA conversion. Interestingly, the heightened surface oxophilicity and regulated electronic structure by B incorporation weakened *CO intermediates adsorption and enhanced hydroxyl species affinity to accelerate oxidative *OH adspecies formation, thereby synergistically avoiding over-oxidation and boosting GA synthesis. This work provides valuable insights for the rational design of high-performance electrocatalysts for GA synthesis via an oxophilic B motifs incorporation strategy.
Collapse
Affiliation(s)
- Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Miaomiao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fangzhou Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Li Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
13
|
Zhao Z, Sun J, Li X, Qin S, Li C, Zhang Z, Li Z, Meng X. Engineering active and robust alloy-based electrocatalyst by rapid Joule-heating toward ampere-level hydrogen evolution. Nat Commun 2024; 15:7475. [PMID: 39209881 PMCID: PMC11362148 DOI: 10.1038/s41467-024-51976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Rational design of bimetallic alloy is an effective way to improve the electrocatalytic activity and stability of Mo-based cathode for ampere-level hydrogen evolution. However, it is still critical to realise desirable syntheses due to the wide reduction potentials between different metal elements and uncontrollable nucleation processes. Herein, we propose a rapid Joule heating method to effectively load RuMo alloy onto MoOx matrix. As-prepared catalyst exhibits excellent stability (2000 h @ 1000 mA cm-2) and ultralow overpotential (9 mV, 18 mV and 15 mV in 1 M KOH, 1 M PBS, 0.5 M H2SO4 solution, respectively) at 10 mA cm-2. Based on first-principle simulations and operando measurements, the impressive electrocatalytic stability and activity are investigated. And the role of rapid Joule heating method is highlighted and discussed in details. This study showcases rapid Joule heating as a feasible strategy to construct highly efficient alloy-based electrocatalysts.
Collapse
Affiliation(s)
- Zhan Zhao
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Jianpeng Sun
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xiang Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Shiyu Qin
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Chunhu Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Zisheng Zhang
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Zizhen Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xiangchao Meng
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
14
|
Wang R, Lu J, Li X, Song C. Accelerating the electron-transfer of nitrogen electro-fixation through assembling Fe nanoparticles into Fe nanochains. NANOSCALE ADVANCES 2024; 6:4071-4074. [PMID: 39114144 PMCID: PMC11302030 DOI: 10.1039/d4na00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Electrochemically synthesizing NH3 via N2 is a facile and sustainable approach that involves multistep electron and proton transfer processes. Thus, consecutive electron and proton transfer is necessary. Here, a universal method with the assistance of magnetic stirring that can assemble Fe, Co, and Ni nanoparticles into nanochains is developed. Notably, the Fe nanochain, composed of amorphous Fe nanoparticles, facilitates electron and proton transfer, resulting in an enhanced NH3 yield (92.42 μg h-1 mg-1) and faradaic efficiency (20.02%) at -0.4 V vs. RHE during the electrochemical reduction of N2. This work offers new insight into designing tandem electrocatalysts.
Collapse
Affiliation(s)
- Rongkang Wang
- Chongqing Chemical Industry Vocational College Chongqing 401228 China
| | - Jingyu Lu
- School of Materials Science and Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Xu Li
- Southwest Technology and Engineering Research Institute Chongqing 401329 China
| | - Chunyu Song
- Chongqing Chemical Industry Vocational College Chongqing 401228 China
| |
Collapse
|
15
|
Kang Y, Li S, Cretu O, Kimoto K, Zhao Y, Zhu L, Wei X, Fu L, Jiang D, Wan C, Jiang B, Asahi T, Zhang D, Li H, Yamauchi Y. Mesoporous amorphous non-noble metals as versatile substrates for high loading and uniform dispersion of Pt-group single atoms. SCIENCE ADVANCES 2024; 10:eado2442. [PMID: 38905333 PMCID: PMC11192073 DOI: 10.1126/sciadv.ado2442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Atomically dispersed Pt-group metals are promising as nanocatalysts because of their unique geometric structures and ultrahigh atomic utilization. However, loading isolated Pt-group metals in single-atom alloys (SAAs) with distinctive bimetallic sites is challenging. In this study, we present amorphous mesoporous Ni boride (Ni-B) as an ideal substrate to uniformly disperse Pt atoms with tunable loadings (1.7 to 12.2 wt %). The effect of the morphology, composition, and crystal phase of the Ni-B host on the growth and dispersion of Pt atoms is discussed. The resulting amorphous Pt-Ni-B mesoporous nanospheres exhibit superior electrocatalytic H2 evolution performance in acidic media. This strategy holds the potential to synthesize a diverse library of mesoporous amorphous Pt-group SAAs, by leveraging functional amorphous nanostructured 3d transition-metal borides as substrates, thereby proposing a comprehensive strategy to control atomically dispersed Pt-group metals.
Collapse
Affiliation(s)
- Yunqing Kang
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou 451163, Henan, China
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Shuangjun Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ovidiu Cretu
- Electron Microscopy Group, Center for Basic Research on Materials, NIMS, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Koji Kimoto
- Electron Microscopy Group, Center for Basic Research on Materials, NIMS, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Yingji Zhao
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Liyang Zhu
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Xiaoqian Wei
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Lei Fu
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Dong Jiang
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Chao Wan
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Dieqing Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464–8603, Japan
| |
Collapse
|
16
|
Liu C, Sun L, Yang G, Cheng Q, Wang C, Tao Y, Sun X, Wang Z, Zhang Q. Chiral Au-Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310353. [PMID: 38150652 DOI: 10.1002/smll.202310353] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au-Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed-mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au-Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au-Pd nanorods are fine-tailored. More importantly, the chiral Au-Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization-dependent plasmon-enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon-induced chiral photochemistry.
Collapse
Affiliation(s)
- Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingqing Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zixu Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
17
|
Zheng Z, Dong K, Yang X, Yuan Q. Crystalline-Amorphous Heterophase PdMoCrW Tetrametallene: Highly Efficient Oxygen Reduction Electrocatalysts for a Long-Term Zn-Air Battery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11307-11316. [PMID: 38739878 DOI: 10.1021/acs.langmuir.4c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metallenes have received sustained attention owing to their unique microstructure characteristics and compelling catalytic applications, but the synthesis of multielement crystalline-amorphous metallenes remains a formidable challenge. Herein, we report a one-step wet chemical reduction method to synthesize composition-tunable crystalline-amorphous heterophase PdMoCrW tetrametallene. As-synthesized PdMoCrW tetrametallene is composed of approximately six to seven atomic layers and has flexible crimpiness, a crystalline-amorphous heterophase structure, and high-valence metal species. Time-dependent experiments show that PdMoCrW tetrametallene follows a three-step growth mechanism that includes nucleation, lateral growth, and atom diffusion, respectively. The novel ultrathin structure, optimized Pd electronic structure, and hydrophilic surface together greatly promote the activity and stability of PdMoCrW tetrametallene in the alkaline oxygen reduction reaction. Pd75.9Mo9.4Cr8.9W5.8/C exhibits excellent mass and specific activities of 2.81 A mgPd-1 and 4.05 mA cm-2, which are 20.07/14.46 and 23.42/16.20 times higher than those of commercial Pt/C and Pd/C, respectively. Furthermore, a Zn-air battery assembled using Pd75.9Mo9.4Cr8.9W5.8/C as a cathode catalyst achieves a peak power density of 156 mW cm-2 and an ultralong durability of 329 h. This study reports an effective strategy for constructing crystalline-amorphous quaternary metallenes to advance non-Pt electrocatalysts toward oxygen reduction reaction (ORR) performance and for a Zn-air battery.
Collapse
Affiliation(s)
- Zhe Zheng
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Kaiyu Dong
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Xiaotong Yang
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| | - Qiang Yuan
- State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
18
|
Yang Y, Miao C, Wang R, Zhang R, Li X, Wang J, Wang X, Yao J. Advances in morphology-controlled alumina and its supported Pd catalysts: synthesis and applications. Chem Soc Rev 2024; 53:5014-5053. [PMID: 38600823 DOI: 10.1039/d3cs00776f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Alumina materials, as one of the cornerstones of the modern chemical industry, possess physical and chemical properties that include excellent mechanical strength and structure stability, which also make them highly suitable as catalyst supports. Alumina-supported Pd-based catalysts with the advantages of exceptional catalytic performance, flexible regulated surface metal/acid sites, and good regeneration ability have been widely used in many traditional chemical industry fields and have also shown great application prospects in emerging fields. This review aims to provide an overview of the recent advances in alumina and its supported Pd-based catalysts. Specifically, the synthesis strategies, morphology transformation mechanisms, and structural properties of alumina with various morphologies are comprehensively summarized and discussed in-depth. Then, the preparation approaches of Pd/Al2O3 catalysts (impregnation, precipitation, and other emerging methods), as well as the metal-support interactions (MSIs), are revisited. Moreover, Some promising applications have been chosen as representative reactions in fine chemicals, environmental purification, and sustainable development fields to highlight the universal functionality of the alumina-supported Pd-based catalysts. The role of the Pd species, alumina support, promoters, and metal-support interactions in the enhancement of catalytic performance are also discussed. Finally, some challenges and upcoming opportunities in the academic and industrial application of the alumina and its supported Pd-based are presented and put forward.
Collapse
Affiliation(s)
- Yanpeng Yang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Chenglin Miao
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Ruoyu Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Rongxin Zhang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Xiaoyu Li
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Jieguang Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, 100083, P. R. China.
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 51031, P. R. China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China.
| |
Collapse
|
19
|
Yang K, Han SH, Cheng C, Guo C, Li T, Yu Y. Unveiling the Reaction Mechanism of Nitrate Reduction to Ammonia Over Cobalt-Based Electrocatalysts. J Am Chem Soc 2024; 146:12976-12983. [PMID: 38567925 DOI: 10.1021/jacs.3c13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Electrocatalytic reduction of nitrate to ammonia (NRA) has emerged as an alternative strategy for sewage treatment and ammonia generation. Despite excellent performances having been achieved over cobalt-based electrocatalysts, the reaction mechanism as well as veritable active species across a wide potential range are still full of controversy. Here, we adopt CoP, Co, and Co3O4 as model materials to solve these issues. CoP evolves into a core@shell structured CoP@Co before NRA. For CoP@Co and Co catalysts, a three-step relay mechanism is carried out over superficial dynamical Coδ+ active species under low overpotential, while a continuous hydrogenation mechanism from nitrate to ammonia is unveiled over superficial Co species under high overpotential. In comparison, Co3O4 species are stable and steadily catalyze nitrate hydrogenation to ammonia across a wide potential range. As a result, CoP@Co and Co exhibit much higher NRA activity than Co3O4 especially under a low overpotential. Moreover, the NRA performance of CoP@Co is higher than Co although they experience the same reaction mechanism. A series of characterizations clarify the reason for performance enhancement highlighting that CoP core donates abundant electrons to superficial active species, leading to the generation of more active hydrogen for the reduction of nitrogen-containing intermediates.
Collapse
Affiliation(s)
- Kaiwen Yang
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Shu-He Han
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Chuanqi Cheng
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chengying Guo
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
- Asia Silicon Joint Research Center of Ammonia-Hydrogen New Energy, Tianjin University, Xining 810000, China
| | - Tieliang Li
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Yifu Yu
- Institute of Molecular Plus, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
- Asia Silicon Joint Research Center of Ammonia-Hydrogen New Energy, Tianjin University, Xining 810000, China
| |
Collapse
|
20
|
Chen J, Zhang F, Kuang M, Wang L, Wang H, Li W, Yang J. Unveiling synergy of strain and ligand effects in metallic aerogel for electrocatalytic polyethylene terephthalate upcycling. Proc Natl Acad Sci U S A 2024; 121:e2318853121. [PMID: 38630722 PMCID: PMC11047115 DOI: 10.1073/pnas.2318853121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Recently, there has been a notable surge in interest regarding reclaiming valuable chemicals from waste plastics. However, the energy-intensive conventional thermal catalysis does not align with the concept of sustainable development. Herein, we report a sustainable electrocatalytic approach allowing the selective synthesis of glycolic acid (GA) from waste polyethylene terephthalate (PET) over a Pd67Ag33 alloy catalyst under ambient conditions. Notably, Pd67Ag33 delivers a high mass activity of 9.7 A mgPd-1 for ethylene glycol oxidation reaction (EGOR) and GA Faradaic efficiency of 92.7 %, representing the most active catalyst for selective GA synthesis. In situ experiments and computational simulations uncover that ligand effect induced by Ag incorporation enhances the GA selectivity by facilitating carbonyl intermediates desorption, while the lattice mismatch-triggered tensile strain optimizes the adsorption of *OH species to boost reaction kinetics. This work unveils the synergistic of strain and ligand effect in alloy catalyst and provides guidance for the design of future catalysts for PET upcycling. We further investigate the versatility of Pd67Ag33 catalyst on CO2 reduction reaction (CO2RR) and assemble EGOR//CO2RR integrated electrolyzer, presenting a pioneering demonstration for reforming waste carbon resource (i.e., PET and CO2) into high-value chemicals.
Collapse
Affiliation(s)
- Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Fangzhou Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Min Kuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Li Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Wei Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai200433, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| |
Collapse
|
21
|
Sári D, Ferroudj A, Semsey D, El-Ramady H, Brevik EC, Prokisch J. Tellurium and Nano-Tellurium: Medicine or Poison? NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:670. [PMID: 38668165 PMCID: PMC11053935 DOI: 10.3390/nano14080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Tellurium (Te) is the heaviest stable chalcogen and is a rare element in Earth's crust (one to five ppb). It was discovered in gold ore from mines in Kleinschlatten near the present-day city of Zlatna, Romania. Industrial and other applications of Te focus on its inorganic forms. Tellurium can be toxic to animals and humans at low doses. Chronic tellurium poisoning endangers the kidney, liver, and nervous system. However, Te can be effective against bacteria and is able to destroy cancer cells. Tellurium can also be used to develop redox modulators and enzyme inhibitors. Soluble salts that contain Te had a role as therapeutic and antimicrobial agents before the advent of antibiotics. The pharmaceutical use of Te is not widespread due to the narrow margin between beneficial and toxic doses, but there are differences between the measure of toxicity based on the Te form. Nano-tellurium (Te-NPs) has several applications: it can act as an adsorptive agent to remove pollutants, and it can be used in antibacterial coating, photo-catalysis for the degradation of dyes, and conductive electronic materials. Nano-sized Te particles are the most promising and can be produced in both chemical and biological ways. Safety assessments are essential to determine the potential risks and benefits of using Te compounds in various applications. Future challenges and directions in developing nano-materials, nano-alloys, and nano-structures based on Te are still open to debate.
Collapse
Affiliation(s)
- Daniella Sári
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Aya Ferroudj
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Dávid Semsey
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Hassan El-Ramady
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Eric C. Brevik
- College of Agricultural, Life, and Physical Sciences, Southern Illinois University, Carbondale, IL 62901, USA;
| | - József Prokisch
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| |
Collapse
|
22
|
Ding H, Su C, Wu J, Lv H, Tan Y, Tai X, Wang W, Zhou T, Lin Y, Chu W, Wu X, Xie Y, Wu C. Highly Crystalline Iridium-Nickel Nanocages with Subnanopores for Acidic Bifunctional Water Splitting Electrolysis. J Am Chem Soc 2024; 146:7858-7867. [PMID: 38457662 DOI: 10.1021/jacs.4c01379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Developing efficient bifunctional materials is highly desirable for overall proton membrane water splitting. However, the design of iridium materials with high overall acidic water splitting activity and durability, as well as an in-depth understanding of the catalytic mechanism, is challenging. Herein, we successfully developed subnanoporous Ir3Ni ultrathin nanocages with high crystallinity as bifunctional materials for acidic water splitting. The subnanoporous shell enables Ir3Ni NCs optimized exposure of active sites. Importantly, the nickel incorporation contributes to the favorable thermodynamics of the electrocatalysis of the OER after surface reconstruction and optimized hydrogen adsorption free energy in HER electrocatalysis, which induce enhanced intrinsic activity of the acidic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Together, the Ir3Ni nanocages achieve 3.72 A/mgIr(η=350 mV) and 4.47 A/mgIr(η=40 mV) OER and HER mass activity, which are 18.8 times and 3.3 times higher than that of commercial IrO2 and Pt, respectively. In addition, their highly crystalline identity ensures a robust nanostructure, enabling good catalytic durability during the oxygen evolution reaction after surface oxidation. This work provides a new revenue toward the structural design and insightful understanding of metal alloy catalytic mechanisms for the bifunctional acidic water splitting electrocatalysis.
Collapse
Affiliation(s)
- Hui Ding
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Caijie Su
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Jiabao Wu
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Haifeng Lv
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Yi Tan
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Xiaolin Tai
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Wenjie Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui Province 230029, P. R. China
| | - Tianpei Zhou
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Yue Lin
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui Province 230029, P. R. China
| | - Xiaojun Wu
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province 230031, P. R. China
| | - Changzheng Wu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui Province 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui Province 230031, P. R. China
| |
Collapse
|
23
|
Ren Y, Li S, Yu C, Zheng Y, Wang C, Qian B, Wang L, Fang W, Sun Y, Qiu J. NH 3 Electrosynthesis from N 2 Molecules: Progresses, Challenges, and Future Perspectives. J Am Chem Soc 2024; 146:6409-6421. [PMID: 38412558 DOI: 10.1021/jacs.3c11676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Green ammonia (NH3), made by using renewable electricity to split nearly limitless nitrogen (N2) molecules, is a vital platform molecule and an ideal fuel to drive the sustainable development of human society without carbon dioxide emission. The NH3 electrosynthesis field currently faces the dilemma of low yield rate and efficiency; however, decoupling the overlapping issues of this area and providing guidelines for its development directions are not trivial because it involves complex reaction process and multidisciplinary entries (for example, electrochemistry, catalysis, interfaces, processes, etc.). In this Perspective, we introduce a classification scheme for NH3 electrosynthesis based on the reaction process, namely, direct (N2 reduction reaction) and indirect electrosynthesis (Li-mediated/plasma-enabled NH3 electrosynthesis). This categorization allows us to finely decouple the complicated reaction pathways and identify the specific rate-determining steps/bottleneck issues for each synthesis approach such as N2 activation, H2 evolution side reaction, solid-electrolyte interphase engineering, plasma process, etc. We then present a detailed overview of the latest progresses on solving these core issues in terms of the whole electrochemical system covering the electrocatalysts, electrodes, electrolytes, electrolyzers, etc. Finally, we discuss the research focuses and the promising strategies for the development of NH3 electrosynthesis in the future with a multiscale perspective of atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes/interfaces, and macroscale electrolyzers/processes. It is expected that this Perspective will provide the readers with an in-depth understanding of the bottleneck issues and insightful guidance on designing the efficient NH3 electrosynthesis systems.
Collapse
Affiliation(s)
- Yongwen Ren
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shaofeng Li
- Department of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Chang Yu
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yihan Zheng
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Cheng Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bingzhi Qian
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Linshan Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenhui Fang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
24
|
Liu L, Liu T, Xu C, Zhao W, Fan J, Liu J, Ma X, Fu W. FeCoCuMnRuB Nanobox with Dual Driving of High-Entropy and Electron-Trap Effects as the Efficient Electrocatalyst for Water Oxidation. NANO LETTERS 2024; 24:2831-2838. [PMID: 38385633 DOI: 10.1021/acs.nanolett.3c04962] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
High-entropy borides hold potential as electrocatalysts for water oxidation. However, the synthesis of the tailored nanostructures remains a challenge due to the thermodynamic immiscibility of polymetallic components. Herein, a FeCoCuMnRuB nanobox decorated with a nanosheet array was synthesized for the first time by a "coordination-etch-reduction" method. The FeCoCuMnRuB nanobox has various structural characteristics to express the catalytic performance; meanwhile, it combines the high-entropy effect of multiple components with the electron trap effect induced by electron-deficient B, synergistically regulating its electronic structure. As a result, FeCoCuMnRuB nanobox exhibits enhanced OER activity with a low overpotential (η10 = 233 mV), high TOF value (0.0539 s-1), small Tafel slope (61 mV/dec), and a satisfactory stability for 200 h, outperforming the high-entropy alloy and low-entropy borides. This work develops a high entropy and electron-deficient B-driven strategy for motivating the catalytic performance of water oxidation, which broadens the structural diversity and category of high-entropy materials.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Tinghui Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Can Xu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Wanyi Zhao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Junping Fan
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Jing Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Xinguo Ma
- School of Science, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| |
Collapse
|
25
|
Ariga K. Confined Space Nanoarchitectonics for Dynamic Functions and Molecular Machines. MICROMACHINES 2024; 15:282. [PMID: 38399010 PMCID: PMC10892885 DOI: 10.3390/mi15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Nanotechnology has advanced the techniques for elucidating phenomena at the atomic, molecular, and nano-level. As a post nanotechnology concept, nanoarchitectonics has emerged to create functional materials from unit structures. Consider the material function when nanoarchitectonics enables the design of materials whose internal structure is controlled at the nanometer level. Material function is determined by two elements. These are the functional unit that forms the core of the function and the environment (matrix) that surrounds it. This review paper discusses the nanoarchitectonics of confined space, which is a field for controlling functional materials and molecular machines. The first few sections introduce some of the various dynamic functions in confined spaces, considering molecular space, materials space, and biospace. In the latter two sections, examples of research on the behavior of molecular machines, such as molecular motors, in confined spaces are discussed. In particular, surface space and internal nanospace are taken up as typical examples of confined space. What these examples show is that not only the central functional unit, but also the surrounding spatial configuration is necessary for higher functional expression. Nanoarchitectonics will play important roles in the architecture of such a total system.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| |
Collapse
|
26
|
Zhang H, Yang G, Li X, Wang Y, Deng K, Yu H, Wang H, Wang Z, Wang L. Interstitial Boron-Modulated Porous Pd Nanotubes for Ammonia Electrosynthesis. Inorg Chem 2024; 63:3099-3106. [PMID: 38299496 DOI: 10.1021/acs.inorgchem.3c04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Electrochemical conversion of nitrogen into ammonia at ambient conditions as a sustainable approach has gained significant attention, but it is still extremely challenging to simultaneously obtain a high faradaic efficiency (FE) and NH3 yield. In this work, the interstitial boron-doped porous Pd nanotubes (B-Pd PNTs) are constructed by combining the self-template reduction method with boron doping. Benefiting from distinctive one-dimensional porous nanotube architectonics and the incorporation of the interstitial B atoms, the resulting B-Pd PNTs exhibit high NH3 yield (18.36 μg h-1 mgcat.-1) and FE (21.95%) in neutral conditions, outperforming the Pd/PdO PNTs (10.4 μg h-1 mgcat.-1 and 8.47%). The present study provides an attractive method to enhance the efficiency of the electroreduction of nitrogen into ammonia by incorporating interstitial boron into porous Pd-based catalysts.
Collapse
Affiliation(s)
- Hugang Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guanghui Yang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinmiao Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yile Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
27
|
Wang Z, Peng L, Zhu P, Wang W, Yang C, Hu HY, Wu Q. Electron Redistribution in Iridium-Iron Dual-Metal-Atom Active Sites Enables Synergistic Enhancement for H 2O 2 Decomposition. ACS NANO 2024; 18:2885-2897. [PMID: 38236146 DOI: 10.1021/acsnano.3c07223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Developing efficient heterogeneous H2O2 decomposition catalysts under neutral conditions is of great importance in many fields such as clinical therapy, sewage treatment, and semiconductor manufacturing but still suffers from low intrinsic activity and ambiguous mechanism understanding. Herein, we constructed activated carbon supported with an Ir-Fe dual-metal-atom active sites catalyst (IrFe-AC) by using a facile method based on a pulsed laser. The electron redistribution in Ir-Fe dual-metal-atom active sites leads to the formation of double reductive metal active sites, which can strengthen the metal-H2O2 interaction and boost the H2O2 decomposition performance of Ir-Fe dual-metal-atom active sites. Ir-Fe dual-metal-atom active sites show a high second-order reaction rate constant of 3.53 × 106 M-1·min-1, which is ∼106 times higher than that of Fe3O4. IrFe-AC is effective in removing excess intracellular reactive oxygen species, protecting DNA, and reducing inflammation under oxidative stress, indicating its therapeutic potential against oxidative stress-related diseases. This study could advance the mechanism understanding of H2O2 decomposition by heterogeneous catalysts and provide guidance for the rational design of high-performance catalysts for H2O2 decomposition.
Collapse
Affiliation(s)
- Zhiwei Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Lu Peng
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Ping Zhu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Wenlong Wang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Cheng Yang
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Hong-Ying Hu
- Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Environmental Simulation and Pollution Control State Key Joint Laboratory, Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qianyuan Wu
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
28
|
Yang X, Ouyang B, Zhao L, Shen Q, Chen G, Sun Y, Li C, Xu K. Ultrathin Rh Nanosheets with Rich Grain Boundaries for Efficient Hydrogen Oxidation Electrocatalysis. J Am Chem Soc 2023. [PMID: 37949810 DOI: 10.1021/jacs.3c10465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Two-dimensional (2D) Pt-group ultrathin nanosheets (NSs) are promising advanced electrocatalysts for energy-related catalytic reactions. However, improving the electrocatalytic activity of 2D Pt-group NSs through the addition of abundant grain boundaries (GBs) and understanding the underlying formation mechanism remain significant challenges. Herein, we report the controllable synthesis of a series of Rh-based nanocrystals (e.g., Rh nanoparticles, Rh NSs, and Rh NSs with GBs) through a CO-mediated kinetic control synthesis route. In light of the 2D NSs' structural advantages and GB modification, the Rh NSs with rich GBs exhibit an enhanced electrocatalytic activity compared to pure Rh NSs and commercial Pt/C toward the hydrogen oxidation reaction (HOR) in alkaline media. Both experimental results and theoretical computations corroborate that the GBs in the Rh NSs have the capacity to ameliorate the adsorption free energy of reaction intermediates during the HOR, thus resulting in outstanding HOR catalytic performance. Our work offers novel perspectives in the realm of developing sophisticated 2D Pt-group metal electrocatalysts with rich GBs for the energy conversion field.
Collapse
Affiliation(s)
- Xiaodong Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Bo Ouyang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Lei Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, People's Republic of China
| | - Qi Shen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Guozhu Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Cuncheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Kun Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, People's Republic of China
| |
Collapse
|
29
|
Ulu I, Ulgut B, Dag Ö. Nanoarchitectonics of Mesoporous M 2P 2O 7 (M = Mn(II), Co(II), and Ni(II)) and M 2-xCo xP 2O 7 and Transformation to Their Metal Hydroxides with Decent Charge Capacity in Alkali Media. Inorg Chem 2023; 62:16994-17011. [PMID: 37782822 DOI: 10.1021/acs.inorgchem.3c02808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A general synthetic method has been developed to synthesize spherical mesoporous metal pyrophosphate (m-M2P2O7) particles and to fabricate graphite rod-coated (GR-M2P2O7) electrodes, which are important as energy storage materials. The clear aqueous solution of the ingredients (namely, [M(H2O)6](NO3)2, H4P2O7, water, and P123) assembles, upon excess water evaporation, into a mesostructured M2HxP2O7(NO3)x·nH2O-P123 semisolid that is calcined to produce the spherical m-M2P2O7 (where M is Ni, Co, Mn, Ni/Co, or Mn/Co) particles, coated over GR, and calcined to fabricate the GR-M2P2O7 electrodes. The mesostructured and mesoporous materials are characterized using diffraction (XRD), spectroscopy (ATR-FTIR, XPS, and EDX), N2 adsorption-desorption, and imaging (SEM and TEM) techniques. The electrochemical/chemical investigations showed that the GR-M2P2O7 electrodes transform to β-M(OH)2 in alkali media. The spherical m-Ni2P2O7 particles transform into spherical ultrathin nanoflakes of β-Ni(OH)2. However, the m-Mn2P2O7 and m-Co2P2O7 particles transform to much thicker β-Mn(OH)2 and β-Co(OH)2 plate-like nanoparticles, respectively. The size and morphology of the β-M(OH)2 particle depend on the Ksp of the M2P2O7 and determine the charge capacity (CC) and specific capacitance (SC) of the electrodes. The β-Ni(OH)2 and β-Ni0.67Co0.33(OH)2 electrodes display high CC (129 and 170 mC/cm2, respectively) and SC (234.5 and 309 mF/cm2, respectively) values. However, these values are almost 10× smaller in β-Mn(OH)2, β-Co(OH)2, β-Mn1-xCox(OH)2, and cobalt-rich β-Ni1-xCox(OH)2 electrodes.
Collapse
Affiliation(s)
- Işıl Ulu
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Burak Ulgut
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Ömer Dag
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
- UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
30
|
Yang T, Shen Y. Coupling Glycerol Conversion with Hydrogen Production Using Alloyed Electrocatalysts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12855-12864. [PMID: 37646259 DOI: 10.1021/acs.langmuir.3c01751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Herein, uniform precious alloys including PtAg, PdAg, and PtPdAg nanoparticles were synthesized as electrocatalysts for glycerol oxidation reaction (GOR). The structures of the samples were characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectrometry. The catalytic performance of the samples was evaluated in both alkaline and acidic electrolytes. Among the samples, PtPdAg exhibited superior activity with the largest current density of 3.77 mA cm-2 in alkaline solutions, which is 4.1 and 7.7 times those of Pd/C and Pt/C, respectively. In acidic solutions, the PtPdAg catalyst shows the highest current density of 0.58 mA cm-2, which is 1.8 times that of the Pt/C catalyst. The products of GOR were analyzed by high-performance liquid chromatography. Eight products including oxalic acid, tartronic acid, glyoxylic acid, glyceric acid, glyceraldehyde (GLAD), glycolic acid, lactic acid, and dihydroxyacetone were detected. Notably, in acidic solutions, PtAg and PtPdAg yielded the largest GLAD selectivity of 92.2% at 0.6 and 0.8 V, respectively. Using the alloyed catalysts, electrolysis processes coupling the GOR with the hydrogen evolution reaction were conducted. The conversion of glycerol and production of hydrogen were determined. To highlight the energy efficiency, a solar-panel-powered electrolysis process was conducted for the simultaneous production of hydrogen and high-valued products.
Collapse
Affiliation(s)
- Tianpei Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, China
| | - Yi Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, China
| |
Collapse
|
31
|
Chen K, Xie W, Deng Y, Han J, Zhu Y, Sun J, Yuan K, Wu L, Deng Y. Alkaloid Precipitant Reaction Inspired Controllable Synthesis of Mesoporous Tungsten Oxide Spheres for Biomarker Sensing. ACS NANO 2023; 17:15763-15775. [PMID: 37556610 DOI: 10.1021/acsnano.3c03549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Highly porous sensitive materials with well-defined structures and morphologies are extremely desirable for developing high-performance chemiresistive gas sensors. Herein, inspired by the classical alkaloid precipitant reaction, a robust and reliable active mesoporous nitrogen polymer sphere-directed synthesis method was demonstrated for the controllable construction of heteroatom-doped mesoporous tungsten oxide spheres. In the typical synthesis, P-doped mesoporous WO3 monodisperse spheres with radially oriented channels (P-mWO3-R) were obtained with a diameter of ∼180 nm, high specific surface area, and crystalline skeleton. The in situ-introduced P atoms could effectively adjust the coordination environment of W atoms (Wδ+-Ov), giving rise to dramatically enhanced active surface-adsorbed oxygen species and unusual metastable ε-WO3 crystallites. The P-mWO3-R spheres were applied for the sensing of 3-hydroxy-2-butanone (3H2B), a biomarker of foodborne pathogenic bacteria Listeria monocytogenes (LM). The sensor exhibited high sensitivity (Ra/Rg = 29 to 3 ppm), fast response dynamics (26/7 s), outstanding selectivity, and good long-term stability. Furthermore, the device was integrated into a wireless sensing module to realize remote real-time and precise detection of LM in practical applications, making it possible to evaluate food quality using gas sensors conveniently.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, State Key Lab of Transducer Technology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Wenhe Xie
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, State Key Lab of Transducer Technology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yu Deng
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, State Key Lab of Transducer Technology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Jingting Han
- Ministry of Agriculture and Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Yongheng Zhu
- Ministry of Agriculture and Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Jianguo Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia (Fudan University), Shanghai 200031, China
| | - Kaiping Yuan
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 200433, China
| | - Limin Wu
- Institute of Energy and Materials Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Yonghui Deng
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, State Key Lab of Transducer Technology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
32
|
Wang Z, Xu S, Mao Q, Deng K, Xu Y, Wang H, Yu H, Wang L. Polyethylenimine-Ethylenediamine-Induced Pd Metallene toward Alkaline Oxygen Reduction. Inorg Chem 2023; 62:13537-13543. [PMID: 37540794 DOI: 10.1021/acs.inorgchem.3c01975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Designing two-dimensional (2D) materials functionalized with organic molecules is an effective tactic to enhance catalytic performances for the oxygen reduction reaction (ORR). Herein, we synthesize Pd metallene with in situ modification of polyethylenimine-ethylenediamine (Pd@PEI-EDA metallene), in which PEI-EDA serves as both the structure-directing agent and modifier. Pd@PEI-EDA metallene has ample active sites and tuneable electronic structures due to ultrathin nanosheets with abundant wrinkles and interfacial structure. In contrast with commercial Pd/C and Pt/C, Pd@PEI-EDA metallene displays preferable catalytic ORR performance under alkaline conditions. This work offers an in situ interface engineering tactic for the preparation of 2D polymer-metal electrocatalysts to boost the ORR performance.
Collapse
Affiliation(s)
- Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shan Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
33
|
Yao Q, Yu Z, Li L, Huang X. Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. Chem Rev 2023; 123:9676-9717. [PMID: 37428987 DOI: 10.1021/acs.chemrev.3c00252] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Multicomponent metallic nanomaterials with unconventional phases show great prospects in electrochemical energy storage and conversion, owing to unique crystal structures and abundant structural effects. In this review, we emphasize the progress in the strain and surface engineering of these novel nanomaterials. We start with a brief introduction of the structural configurations of these materials, based on the interaction types between the components. Next, the fundamentals of strain, strain effect in relevant metallic nanomaterials with unconventional phases, and their formation mechanisms are discussed. Then the progress in surface engineering of these multicomponent metallic nanomaterials is demonstrated from the aspects of morphology control, crystallinity control, surface modification, and surface reconstruction. Moreover, the applications of the strain- and surface-engineered unconventional nanomaterials mainly in electrocatalysis are also introduced, where in addition to the catalytic performance, the structure-performance correlations are highlighted. Finally, the challenges and opportunities in this promising field are prospected.
Collapse
Affiliation(s)
- Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhiyong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
34
|
Jiang B, Guo Y, Sun F, Wang S, Kang Y, Xu X, Zhao J, You J, Eguchi M, Yamauchi Y, Li H. Nanoarchitectonics of Metallene Materials for Electrocatalysis. ACS NANO 2023. [PMID: 37367960 DOI: 10.1021/acsnano.3c01380] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Controlling the synthesis of metal nanostructures is one approach for catalyst engineering and performance optimization in electrocatalysis. As an emerging class of unconventional electrocatalysts, two-dimensional (2D) metallene electrocatalysts with ultrathin sheet-like morphology have gained ever-growing attention and exhibited superior performance in electrocatalysis owing to their distinctive properties originating from structural anisotropy, rich surface chemistry, and efficient mass diffusion capability. Many significant advances in synthetic methods and electrocatalytic applications for 2D metallenes have been obtained in recent years. Therefore, an in-depth review summarizing the progress in developing 2D metallenes for electrochemical applications is highly needed. Unlike most reported reviews on the 2D metallenes, this review starts by introducing the preparation of 2D metallenes based on the classification of the metals (e.g., noble metals, and non-noble metals) instead of synthetic methods. Some typical strategies for preparing each kind of metal are enumerated in detail. Then, the utilization of 2D metallenes in electrocatalytic applications, especially in the electrocatalytic conversion reactions, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, fuel oxidation reaction, CO2 reduction reaction, and N2 reduction reaction, are comprehensively discussed. Finally, current challenges and opportunities for future research on metallenes in electrochemical energy conversion are proposed.
Collapse
Affiliation(s)
- Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Yanna Guo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Fengyu Sun
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunqing Kang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jingjing Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Jungmok You
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Miharu Eguchi
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yusuke Yamauchi
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| |
Collapse
|