1
|
Zhang M, Niu T, Liang M, Xu F, Du Y, Zhuang H, Song RJ, Yang H, Yin Q. Consecutive Asymmetric Transfer Hydrogenation of C2-Acylated Quinolines and Quinoxalines: A Diastereodivergent Synthesis of Enantioenriched Tetrahydroquinolines and Tetrahydroquinoxalines Bearing Endo- and Exocyclic Chirality. J Am Chem Soc 2025. [PMID: 40371465 DOI: 10.1021/jacs.5c04856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Consecutive asymmetric hydrogenation offers a direct and convenient approach to synthesizing complex C(sp3)-enriched products with multiple chirality. Herein, we report an asymmetric synthesis of chiral 1,2,3,4-tetrahydroquinolines (THQs) and tetrahydroquinoxalines bearing both endo- and exocyclic vicinal chirality through the consecutive transfer hydrogenation of easily accessible C2-acylated quinolines and quinoxalines. The method features mild conditions, easy operation, broad substrate scope (42 examples), and excellent asymmetric control (generally >90% ee and 20/1 dr). The key to success is the use of a water-soluble chiral aminobenzimidazole Ir catalyst. Mechanistic experiments support that the reaction involves the sequential reduction of the carbonyl group and then the quinoline core, with the asymmetric control of each step dominated by the catalyst. Remarkably, a diastereodivergent synthesis of all four stereoisomers of a chiral THQ has been successfully implemented.
Collapse
Affiliation(s)
- Mangang Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Tianyu Niu
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mingrong Liang
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Feng Xu
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Yongyi Du
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Haokun Zhuang
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qin Yin
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Xu M, Corio SA, Warnica JM, Kuker EL, Lu A, Hirschi JS, Dong VM. Dynamic Kinetic Asymmetric Hydroacylation: Racemization by Soft Enolization. J Am Chem Soc 2025; 147:16270-16281. [PMID: 40298317 DOI: 10.1021/jacs.5c01753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
We report a dynamic kinetic asymmetric transformation (DyKAT) of racemic aldehydes by Rh-catalyzed hydroacylation of acrylamides. This intermolecular hydroacylation generates 1,4-ketoamides with high enantio- and diastereoselectivity. DFT and experimental studies provide mechanistic insights and reveal an unexpected Rh-catalyzed pathway for aldehyde racemization. Our study represents a pioneering kinetic resolution by intermolecular hydroacylation and contributes to the growing field of stereoconvergent catalysis featuring C-C bond construction.
Collapse
Affiliation(s)
- Mengfei Xu
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Stephanie A Corio
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Josephine M Warnica
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Erin L Kuker
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Alexander Lu
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
3
|
Maurya S, Navaneetha N, Behera P, Nanubolu JB, Roy L, Chegondi R. Enantioselective Synthesis of α-Hydroxy Allyl Ketones via BINAP-CuH-Catalyzed Hydroacylation. Angew Chem Int Ed Engl 2025; 64:e202420106. [PMID: 39888295 DOI: 10.1002/anie.202420106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
Catalytic hydrocupration of unsaturated carbon-carbon bonds to generate organometallic nucleophiles has recently become an attractive alternative to conventional stoichiometric reagents in the stereoselective synthesis. Herein, we have developed an efficient and economical method to synthesize enantiopure α-hydroxy allyl ketones via a copper hydride (CuH)-catalyzed hydroacylation of alkoxyallenes, a significant advancement given the scarcity of reports on such scaffolds in the literature. DFT calculations reveal that this reaction proceeds through the nucleophilic attack of a kinetically favourable Z-selective allyl-copper intermediate on acid anhydrides via a six-membered chair-like transition state, stabilized by strongly attractive non-covalent interactions that ultimately leads to high level of enantioselectivities using the simple BINAP ligand. This method successfully overcomes the challenges of over-reduction of carbonyl functionality in the presence of CuH-complex, olefin isomerization and the presence of a highly enolizable α-stereocenter, which can lead to erosion in enantioselectivities, making our strategy highly desirable. The reaction exhibits a wide range of substrate scope including symmetrical as well as carbonic anhydrides with both aromatic, and aliphatic substitutions. In addition, α-substituted acid anhydrides provide exclusive syn-selective α,α'-disubstituted allyl ketones in excellent enantiomeric ratios, where the nucleophilic allylation occurs on one of the carbonyls containing the matched α-stereocenter, confirmed with mechanistic studies.
Collapse
Affiliation(s)
- Sundaram Maurya
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - N Navaneetha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Prativa Behera
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar, 751013, India
| | - Jagadeesh Babu Nanubolu
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Lisa Roy
- Department of Education, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
4
|
Zhang MR, Wang HR, Shan HM, Xi LL, Lu CJ, Du XM, Sun C, Xu LP, Liu RR. Copper-catalysed dynamic kinetic asymmetric C-O cross-coupling to access chiral aryl oxime ethers and diaryl ethers. Nat Commun 2025; 16:2505. [PMID: 40082430 PMCID: PMC11906793 DOI: 10.1038/s41467-025-57804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
Dynamic kinetic resolution (DKR) has emerged as an elegant and powerful tool for enantioselective synthesis, enabling the transformation of racemic compounds into enantiomerically enriched products with theoretically quantitative yields. Despite its widespread success, the dynamic kinetic asymmetric C-O cross-coupling has presented significant challenges and remains unexplored. In this study, we report a dynamic kinetic asymmetric C-O cross-coupling of oximes and phenols via copper/BOX-catalysed enantioselective O-arylation with diaryliodonium salts. This method efficiently produces a wide range of inherently chiral oxime ethers, as well as axially chiral styrenes, with high yields and excellent regio- and enantioselectivities. Through controlled experiments and Density Functional Theory (DFT) studies, we have elucidated the dynamic kinetic resolution process and gained insights into the origins of regio- and enantioselectivity.
Collapse
Affiliation(s)
- Mei-Ru Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Hao-Ran Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Hui-Mei Shan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| | - Long-Long Xi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Xiao-Man Du
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Che Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China.
- College of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
5
|
Zhang SX, Long L, Li Z, He YM, Li S, Chen H, Hao W, Fan QH. Rhodium-Catalyzed Homogeneous Asymmetric Hydrogenation of Naphthol Derivatives. J Am Chem Soc 2025; 147:5197-5211. [PMID: 39879104 DOI: 10.1021/jacs.4c15673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Due to their strong aromaticity and difficulties in chemo-, regio-, and enantioselectivity control, asymmetric hydrogenation of naphthol derivatives to 1,2,3,4-tetrahydronaphthols has remained a long-standing challenge. Herein, we report the first example of homogeneous asymmetric hydrogenation of naphthol derivatives catalyzed by tethered rhodium-diamine catalysts, affording a wide array of optically pure 1,2,3,4-tetrahydronaphthols in high yields with excellent regio-, chemo-, and enantioselectivities (up to 98% yield and >99% ee). Mechanistic studies with experimental and computational approaches reveal that fluorinated solvent 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) plays vital roles in the control of reactivity and selectivity, and 1-naphthol is reduced via a cascade reaction pathway, including dearomative tautomerization, 1,4-hydride addition, and 1,2-hydride addition in sequence. A novel synergistic activation mode was proposed in which HFIP assists a synergistic activation of both the hydrogen molecule and naphthol in the presence of a base, and the in situ-generated fleeting keto tautomer is immediately trapped and reduced by the Rh(III)-H species before it escapes from the solvent cage. This protocol provides a straightforward and practical pathway for the synthesis of key intermediates for several chiral drugs. Particularly, optically pure Nadolol, a drug for the treatment of hypertension, angina pectoris, congestive heart failure, and certain arrhythmias, is enantioselectively synthesized for the first time.
Collapse
Affiliation(s)
- Shu-Xin Zhang
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Linhong Long
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zeyu Li
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan-Mei He
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Shan Li
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Chen
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Wei Hao
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Qing-Hua Fan
- National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Liang MR, Du X, Lin J, Rong N, Zhan X, Mao X, Zhuang H, Niu T, Yin Q. Dynamic Kinetic Resolution-Based Asymmetric Transfer Hydrogenation of Racemic 2-Substituted Quinolines. J Am Chem Soc 2025; 147:4239-4248. [PMID: 39841113 DOI: 10.1021/jacs.4c14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The synthesis of chiral tetrahydroquinolines (THQs) has garnered significant interest from medicinal chemists due to their frequent presence as pharmacophores in bioactive compounds. While existing synthetic methods have primarily focused on THQs with single or multiple endocyclic chiral centers, the selective construction of THQs with both endo- and exo-cyclic chiral centers remains a significant challenge that requires further development. This study introduces a dynamic kinetic resolution (DKR)-based transfer hydrogenation of racemic 2-substituted quinolines, which yields structurally novel chiral THQs with consecutive endo- and exo-cyclic chiral centers in excellent yields and stereoselectivities (59 examples, with generally >20:1 dr and >90% ee, up to three consecutive stereocenters). Our approach offers a mechanistically novel method for the asymmetric transformation of electron-deficient aromatic N-heterocycles and presents an innovative way to expand the chiral N-heterocycle chemical space for medicinal chemistry.
Collapse
Affiliation(s)
- Ming-Rong Liang
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Xian Du
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Jian Lin
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Nianxin Rong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaohang Zhan
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Xinyue Mao
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Haokun Zhuang
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Tianyu Niu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qin Yin
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
7
|
Zhao Z, Dong W, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Catalytic Asymmetric Transfer Hydrogenation of β,γ-Unsaturated α-Diketones. J Am Chem Soc 2024; 146:33543-33560. [PMID: 39604061 DOI: 10.1021/jacs.4c11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Asymmetric transfer hydrogenation (ATH) has been recognized as a highly valuable strategy that allows access to enantioenriched substances and has been widely applied in the industrial production of drug molecules. However, despite the great success in ATH of ketones, highly efficient, regio- and stereoselective ATH on enones remains underdeveloped. Moreover, optically pure acyloins and 1,2-diols are both extremely useful building blocks in organic synthesis, medicinal chemistry, and materials science, but concise asymmetric approaches allowing access to different types of acyloins and 1,2-diols have scarcely been discovered. We report in this paper the first highly efficient ATH of readily accessible β,γ-unsaturated α-diketones. The protocol affords four types of enantioenriched acyloins and four types of optically pure 1,2-diols in highly regio- and stereoselective fashion. The synthetic value of this work has been showcased by the divergent synthesis of four related natural products. Moreover, systematic mechanistic studies and density functional theory (DFT) calculations have illustrated the origin of the reactivity divergence, revealed the different roles of aromatic and aliphatic substituents in the substrates, and provided a range of unique mechanistic rationales that have not been disclosed in ATH-related studies.
Collapse
Affiliation(s)
- Zhifei Zhao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
8
|
Hu R, Wang F, Pan F, Ratovelomanana-Vidal V, Chen GQ, Li X, Zhang X. Dynamic Kinetic Resolution of β-Cyano α-Ketoesters via Asymmetric Transfer Hydrogenation. Org Lett 2024; 26:7457-7462. [PMID: 39186632 DOI: 10.1021/acs.orglett.4c02844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
An efficient rhodium-catalyzed asymmetric transfer hydrogenation of β-cyano α-ketoesters via dynamic kinetic resolution has been developed. Despite the challenge posed by multiple functional groups, the reaction proceeded smoothly under mild conditions, generating versatile synthons with two adjacent stereocenters in high yields with excellent enantio- and diastereoselectivities. Furthermore, the power of this strategy is highlighted by the scale-up reaction and the follow-up synthesis of cytoxazone and paclitaxel intermediates.
Collapse
Affiliation(s)
- Ruiyu Hu
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Fangyuan Wang
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Fan Pan
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Virginie Ratovelomanana-Vidal
- PSL University, Chimie ParisTech, CNRS, Institute1 of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Gen-Qiang Chen
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xiuxiu Li
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xumu Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| |
Collapse
|
9
|
Meng X, Lan S, Chen T, Luo H, Zhu L, Chen N, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Catalytic Asymmetric Transfer Hydrogenation of Acylboronates: BMIDA as the Privileged Directing Group. J Am Chem Soc 2024; 146:20357-20369. [PMID: 38869937 DOI: 10.1021/jacs.4c05924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Developing a general, highly efficient, and enantioselective catalytic method for the synthesis of chiral alcohols is still a formidable challenge. We report in this article the asymmetric transfer hydrogenation (ATH) of N-methyliminodiacetyl (MIDA) acylboronates as a general substrate-independent entry to enantioenriched secondary alcohols. ATH of acyl-MIDA-boronates with (het)aryl, alkyl, alkynyl, alkenyl, and carbonyl substituents delivers a variety of enantioenriched α-boryl alcohols. The latter are used in a range of stereospecific transformations based on the boron moiety, enabling the synthesis of carbinols with two closely related α-substituents, which cannot be obtained with high enantioselectivities using direct asymmetric hydrogenation methods, such as the (R)-cloperastine intermediate. Computational studies illustrate that the BMIDA group is a privileged enantioselectivity-directing group in Noyori-Ikariya ATH compared to the conventionally used aryl and alkynyl groups due to the favorable CH-O attractive electrostatic interaction between the η6-arene-CH of the catalyst and the σ-bonded oxygen atoms in BMIDA. The work expands the domain of conventional ATH and shows its huge potential in addressing challenges in symmetric synthesis.
Collapse
Affiliation(s)
- Xiangjian Meng
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350007, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Ting Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Lixuan Zhu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Nanchu Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
10
|
Liu W, Ren C, Zhou L, Luo H, Meng X, Luo P, Luo Y, Dong W, Lan S, Liu J, Yang S, Zhang Q, Fang X. Regio- and Stereoselective Transfer Hydrogenation of Aryloxy Group-Substituted Unsymmetrical 1,2-Diketones: Synthetic Applications and Mechanistic Studies. J Am Chem Soc 2024; 146:20092-20106. [PMID: 39007870 DOI: 10.1021/jacs.4c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Developing a general method that leads to the formation of different classes of chiral bioactive compounds and their stereoisomers is an attractive but challenging research topic in organic synthesis. Furthermore, despite the great value of asymmetric transfer hydrogenation (ATH) in both organic synthesis and the pharmaceutical industry, the monohydrogenation of unsymmetrical 1,2-diketones remains underdeveloped. Here, we report the aryloxy group-assisted highly regio-, diastereo-, and enantioselective ATH of racemic 1,2-diketones. The work produces a myriad of enantioenriched dihydroxy ketones, and further transformations furnish all eight stereoisomers of diaryl triols, polyphenol, emblirol, and glycerol-type natural products. Mechanistic studies and calculations reveal two working modes of the aryloxy group in switching the regioselectivity from a more reactive carbonyl to a less reactive one, and the potential of ATH on 1,2-diketones in solving challenging synthetic issues has been clearly demonstrated.
Collapse
Affiliation(s)
- Wenjun Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Caiyi Ren
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Liyuan Zhou
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiangjian Meng
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Peng Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Yingkun Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
11
|
Zhu L, Luo H, Liu J, Luo B, Yang S, Fang X. Rapid Construction of Polycyclic Skeletons via Brønsted-Base-Catalyzed Annulations of Ethylidene 1,3-Indenediones and Vinyl 1,2-Diketones. Org Lett 2024; 26:5893-5898. [PMID: 38980187 DOI: 10.1021/acs.orglett.4c01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Brønsted-base-catalyzed diversified annulations between ethylidene 1,3-indenediones and vinyl 1,2-diketones have been achieved, delivering three types of products containing oxabicyclo[3.2.1]octane, spiro[4.5]decane, and branched triquinane skeletons, respectively, which widely exist in natural products and bioactive substances. Two unprecedented reaction modes have been disclosed, and the reactions could be readily scaled up. The protocol shows the potential of 1,2-diketone-mediated reactions in the rapid construction of complicated polycyclic scaffolds.
Collapse
Affiliation(s)
- Lixuan Zhu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350108, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Benlong Luo
- Pingxiang University, Pingxiang 337055, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
12
|
Xu L, Yang T, Sun H, Zeng J, Mu S, Zhang X, Chen GQ. Rhodium-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation of 1,3-Dipolar Nitrones. Angew Chem Int Ed Engl 2024; 63:e202319662. [PMID: 38366812 DOI: 10.1002/anie.202319662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Owing to their distinctive 1,3-dipolar structure, the catalytic asymmetric hydrogenation of nitrones to hydroxylamines has been a formidable and longstanding challenge, characterized by intricate enantiocontrol and susceptibility to N-O bond cleavage. In this study, the asymmetric hydrogenation and transfer hydrogenation of nitrones were accomplished with a tethered TsDPEN-derived cyclopentadienyl rhodium(III) catalyst (TsDPEN: p-toluenesulfonyl-1,2-diphenylethylene-1,2-diamine), the reaction proceeds via a novel 7-membered cyclic transition state, producing chiral hydroxylamines with up to 99 % yield and >99 % ee. The practical viability of this methodology was underscored by gram-scale catalytic reactions and subsequent transformations. Furthermore, mechanistic investigations and DFT calculations were also conducted to elucidate the origin of enantioselectivity.
Collapse
Affiliation(s)
- Liren Xu
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Tilong Yang
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Hao Sun
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Jingwen Zeng
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Shuo Mu
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Xumu Zhang
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
Rong N, Zhou A, Liang M, Wang SG, Yin Q. Asymmetric Hydrogenation of Racemic 2-Substituted Indoles via Dynamic Kinetic Resolution: An Easy Access to Chiral Indolines Bearing Vicinal Stereogenic Centers. J Am Chem Soc 2024; 146:5081-5087. [PMID: 38358355 DOI: 10.1021/jacs.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The asymmetric hydrogenation (AH) of N-unprotected indoles is a straightforward, yet challenging method to access biologically interesting NH chiral indolines. This method has for years been limited to 2/3-monosubstituted or 2,3-disubstituted indoles, which produce chiral indolines bearing endocyclic chiral centers. Herein, we have reported an innovative Pd-catalyzed AH of racemic α-alkyl or aryl-substituted indole-2-acetates using an acid-assisted dynamic kinetic resolution (DKR) process, affording a range of structurally fascinating chiral indolines that contain exocyclic stereocenters with excellent yields, diastereoselectivities, and enantioselectivities. Mechanistic studies support that the DKR process relies on a rapid interconversion of each enantiomer of racemic substrates, leveraged by an acid-promoted isomerization between the aromatic indole and nonaromatic exocyclic enamine intermediate. The reaction can be performed on a gram scale, and the products can be derivatized into non-natural β-amino acids via facile debenzylation and amino alcohol upon reduction.
Collapse
Affiliation(s)
- Nianxin Rong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ao Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingrong Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
14
|
Lan S, Huang H, Liu W, Xu C, Lei X, Dong W, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Asymmetric Transfer Hydrogenation of Cyclobutenediones. J Am Chem Soc 2024; 146:4942-4957. [PMID: 38326715 DOI: 10.1021/jacs.3c14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Four-membered carbocycles are fundamental substructures in bioactive molecules and approved drugs and serve as irreplaceable building blocks in organic synthesis. However, developing efficient protocols furnishing diversified four-membered ring compounds in a highly regio-, diastereo-, and enantioselective fashion remains challenging but very desirable. Here, we report the unprecedented asymmetric transfer hydrogenation of cyclobutenediones. The reaction can selectively afford three types of four-membered products in high yields with high stereoselectivities, and the highly functionalized products enable a series of further transformations to form more diversified four-membered compounds. Asymmetric synthesis of di-, tri-, and tetrasubstituted bioactive molecules has also been achieved. Systematic mechanistic studies and theoretical calculations have revealed the origin of the regioselectivity, the key hydrogenation transition state models, and the sequence of the double and triple hydrogenation processes. The work provides a new choice for the catalytic asymmetric synthesis of cyclobutanes and related structures and demonstrates the robustness of asymmetric transfer hydrogenation in the accurate selectivity control of highly functionalized substrates.
Collapse
Affiliation(s)
- Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Huangjiang Huang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Wenjun Liu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Chao Xu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiang Lei
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wennan Dong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
15
|
Sterle M, Huš M, Lozinšek M, Zega A, Cotman AE. Hydrogen-Bonding Ability of Noyori-Ikariya Catalysts Enables Stereoselective Access to CF 3-Substituted syn-1,2-Diols via Dynamic Kinetic Resolution. ACS Catal 2023; 13:6242-6248. [PMID: 37180962 PMCID: PMC10167654 DOI: 10.1021/acscatal.3c00980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Stereopure CF3-substituted syn-1,2-diols were prepared via the reductive dynamic kinetic resolution of the corresponding racemic α-hydroxyketones in HCO2H/Et3N. (Het)aryl, benzyl, vinyl, and alkyl ketones are tolerated, delivering products with ≥95% ee and ≥87:13 syn/anti. This methodology offers rapid access to stereopure bioactive molecules. Furthermore, DFT calculations for three types of Noyori-Ikariya ruthenium catalysts were performed to show their general ability of directing stereoselectivity via the hydrogen bond acceptor SO2 region and CH/π interactions.
Collapse
Affiliation(s)
- Maša Sterle
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matej Huš
- National
Institute of Chemistry, Department of Catalysis
and Chemical Reaction Engineering, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia
- Association
for Technical Culture of Slovenia, Zaloška cesta 65, SI-1000 Ljubljana, Slovenia
- Institute
for the Protection of Cultural Heritage of Slovenia, Poljanska 40, SI-1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Andrej Emanuel Cotman
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|