1
|
Liu X, Li X, Zhu Z, Yao F, Kang XF. Polyaniline-based hybrid membrane for single-molecule protein nanopore analysis under high voltage. Biosens Bioelectron 2025; 283:117520. [PMID: 40315542 DOI: 10.1016/j.bios.2025.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/13/2025] [Accepted: 04/26/2025] [Indexed: 05/04/2025]
Abstract
In vitro reconstituted lipid bilayers are the key to the birth of bio-nanopore technology, although they are fragile and inadequately stable for long-term monitoring applications. Amphiphilic copolymers with high robustness have been developed to circumvent this issue. However, it remains a major challenge to achieve the required fluidity for protein insertion. Here we engineered a polyaniline-based hybrid membrane (PANIM) that exhibits the stability needed for fabricating high-throughput biosensors. This enhanced durability enables prolonged operation without compromising the functional properties of embedded α-hemolysin (α-HL) nanopores. Based on this, we demonstrate high voltage analysis for G-triplex conformations through α-HL in PANIM, which facilitates in-depth study of molecular conformations and provides a novel platform that has great potential for nanopore sensing.
Collapse
Affiliation(s)
- Xingtong Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Xinyue Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Zhenxu Zhu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Fujun Yao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Xiao-Feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, PR China.
| |
Collapse
|
2
|
Akter M, Moghimianavval H, Luker GD, Liu AP. Light-Triggered Protease-Mediated Release of Actin-Bound Cargo from Synthetic Cells. Adv Biol (Weinh) 2025; 9:e2400539. [PMID: 39825686 PMCID: PMC12078867 DOI: 10.1002/adbi.202400539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/19/2024] [Indexed: 01/20/2025]
Abstract
Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion. Here, a protein-based platform termed TEV Protease-mediated Releasable Actin-binding Protein (TRAP) is designed and constructed for selective, rapid, and triggerable secretion in synthetic cells. TRAP is designed to bind tightly to reconstituted actin networks and is proteolytically released from bound actin, followed by secretion via cell-penetrating peptide membrane translocation. TRAP's efficacy in facilitating light-activated secretion of both fluorescent and luminescent proteins is demonstrated. By equipping synthetic cells with a controlled secretion mechanism, TRAP paves the way for the development of stimuli-responsive biomaterials, versatile synthetic cell-based biosensing systems, and therapeutic applications through the integration of synthetic cells with living cells for targeted delivery of protein therapeutics.
Collapse
Affiliation(s)
- Mousumi Akter
- Department of Mechanical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | | | - Gary D. Luker
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Department of RadiologyUniversity of MichiganAnn ArborMI48109USA
| | - Allen P. Liu
- Department of Mechanical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Cellular and Molecular Biology ProgramUniversity of MichiganAnn ArborMI48109USA
- Department of BiophysicsUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
3
|
Yandrapalli N. Bottom-up development of lipid-based synthetic cells for practical applications. Trends Biotechnol 2025:S0167-7799(25)00094-0. [PMID: 40263003 DOI: 10.1016/j.tibtech.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Synthetic cells (SCs) can be engineered from the bottom up to recapitulate the functional properties of natural cells while performing specialized tasks such as drug delivery, biosensors, bioproduction, vaccine development, and even environmental remediation. Recent advances in synthetic biology, biomaterials, and microfluidics have enabled the development of increasingly sophisticated SCs. Transitioning from proof-of-concept demonstrations to practical applications requires a deep understanding of the design principles, materials, and fabrication techniques involved. This review provides a comprehensive overview of the current state of bottom-up SC technology and highlights the most promising approaches and applications. Challenges in the implementation of SCs and their prospects for future applications are also discussed.
Collapse
Affiliation(s)
- Naresh Yandrapalli
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
4
|
Akter M, Moghimianavval H, Luker GD, Liu AP. Light-triggered protease-mediated release of actin-bound cargo from synthetic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.15.613133. [PMID: 39314483 PMCID: PMC11419145 DOI: 10.1101/2024.09.15.613133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion. Here, we designed and constructed a protein-based platform termed TEV Protease-mediated Releasable Actin-binding protein (TRAP) for selective, rapid, and triggerable secretion in synthetic cells. TRAP is designed to bind tightly to reconstituted actin networks and is proteolytically released from bound actin, followed by secretion via cell-penetrating peptide membrane translocation. We demonstrated TRAP's efficacy in facilitating light-activated secretion of both fluorescent and luminescent proteins. By equipping synthetic cells with a controlled secretion mechanism, TRAP paves the way for the development of stimuli-responsive biomaterials, versatile synthetic cell-based biosensing systems, and therapeutic applications through the integration of synthetic cells with living cells for targeted delivery of protein therapeutics.
Collapse
Affiliation(s)
- Mousumi Akter
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Gary D. Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Waeterschoot J, Gosselé W, Lemež Š, Casadevall I Solvas X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat Commun 2024; 15:2504. [PMID: 38509073 PMCID: PMC10954685 DOI: 10.1038/s41467-024-46732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Recent research in artificial cell production holds promise for the development of delivery agents with therapeutic effects akin to real cells. To succeed in these applications, these systems need to survive the circulatory conditions. In this review we present strategies that, inspired by the endurance of red blood cells, have enhanced the viability of large, cell-like vehicles for in vivo therapeutic use, particularly focusing on giant unilamellar vesicles. Insights from red blood cells can guide modifications that could transform these platforms into advanced drug delivery vehicles, showcasing biomimicry's potential in shaping the future of therapeutic applications.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.
| | - Willemien Gosselé
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Špela Lemež
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | | |
Collapse
|
6
|
Hanafy MS, Cui Z. Connexin-Containing Vesicles for Drug Delivery. AAPS J 2024; 26:20. [PMID: 38267725 DOI: 10.1208/s12248-024-00889-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Connexin is a transmembrane protein present on the cell membrane of most cell types. Connexins assemble into a hexameric hemichannel known as connexon that pairs with another hemichannel present on a neighboring cell to form gap junction that acts as a channel or pore for the transport of ions and small molecules between the cytoplasm of the two cells. Extracellular vesicles released from connexin-expressing cells could carry connexin hemichannels on their surface and couple with another connexin hemichannel on a distant recipient cell to allow the transfer of the intravesicular content directly into the cytoplasm. Connexin-containing vesicles can be potentially utilized for intracellular drug delivery. In this review, we introduced cell-derived, connexin-containing extracellular vesicles and cell-free connexin-containing liposomes, methods of preparing them, procedures to load cargos in them, factors regulating the connexin hemichannel activity, (potential) applications of connexin-containing vesicles in drug delivery, and finally the challenges and future directions in realizing the promises of this platform delivery system for (intracellular) drug delivery.
Collapse
Affiliation(s)
- Mahmoud S Hanafy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
7
|
Lin AJ, Sihorwala AZ, Belardi B. Engineering Tissue-Scale Properties with Synthetic Cells: Forging One from Many. ACS Synth Biol 2023; 12:1889-1907. [PMID: 37417657 PMCID: PMC11017731 DOI: 10.1021/acssynbio.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
In metazoans, living cells achieve capabilities beyond individual cell functionality by assembling into multicellular tissue structures. These higher-order structures represent dynamic, heterogeneous, and responsive systems that have evolved to regenerate and coordinate their actions over large distances. Recent advances in constructing micrometer-sized vesicles, or synthetic cells, now point to a future where construction of synthetic tissue can be pursued, a boon to pressing material needs in biomedical implants, drug delivery systems, adhesives, filters, and storage devices, among others. To fully realize the potential of synthetic tissue, inspiration has been and will continue to be drawn from new molecular findings on its natural counterpart. In this review, we describe advances in introducing tissue-scale features into synthetic cell assemblies. Beyond mere complexation, synthetic cells have been fashioned with a variety of natural and engineered molecular components that serve as initial steps toward morphological control and patterning, intercellular communication, replication, and responsiveness in synthetic tissue. Particular attention has been paid to the dynamics, spatial constraints, and mechanical strengths of interactions that drive the synthesis of this next-generation material, describing how multiple synthetic cells can act as one.
Collapse
Affiliation(s)
- Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|