1
|
Ghorai S, Show S, Das A. Hydrogen Bonding-Induced Inversion and Amplification of Circularly Polarized Luminescence (CPL) in Supramolecular Assemblies of Axially Chiral Luminogens. Angew Chem Int Ed Engl 2025; 64:e202500879. [PMID: 39943890 DOI: 10.1002/anie.202500879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Herein, we report the self-assembly and chiroptical properties of two axially chiral π-conjugated luminogens, R-NMI and S-NMI, each equipped with two pyridyl moieties for hydrogen (H)-bonding with chiral diacids. The two enantiomers display aggregation-induced emission enhancement (AIEE) and increased CD and CPL signals in the self-assembled state with a high glum value of 1.5 (±0.06)×10-2 in 1:9 dioxane:methylcyclohexane. Crystallographic analysis confirmed mirror-image helical structures for R-NMI and S-NMI involving both intra- and intermolecular π-π stacking, leading to elongated hexagonal platelets. Supramolecular co-assembly of R-NMI with D- and L-tartaric acids (D-TA and L-TA) could remarkably modulate and invert the chiroptical properties of R-NMI, which is unachievable with control chiral monoacids. The co-assembled structures were driven by pyridine-carboxylic acid H-bonding as revealed from the crystal structure analysis, which was also supported by computational studies. Strikingly, R-NMI+D-TA leads to an exceptionally high fourfold amplification in the glum value [5.4 (±0.04)×10-2] with an inverted sign, which additionally demonstrates intriguing temperature-dependent switching. In contrast, R-NMI+L-TA results in a threefold reduction in the glum value [0.54 (±0.015)×10-3], also with an inverted sign compared to R-NMI alone, establishing a clear strategy for chiral discrimination between the two enantiomers of TA.
Collapse
Affiliation(s)
- Sandipan Ghorai
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, INDIA
| | - Soumyadip Show
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, INDIA
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, INDIA
| |
Collapse
|
2
|
Datta S, Itabashi H, Saito T, Yagai S. Secondary nucleation as a strategy towards hierarchically organized mesoscale topologies in supramolecular polymerization. Nat Chem 2025; 17:477-492. [PMID: 40164783 DOI: 10.1038/s41557-025-01764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/30/2025] [Indexed: 04/02/2025]
Abstract
Developing new generic methodologies for organizing molecules into nano- to mesoscale structures of precise shapes and sizes is a research topic at the forefront of modern chemistry. Creating hierarchical molecular assembly, especially at the mesoscale, is important to realize functions reminiscent of those manifested by biomolecular assemblies in the mesoscopic regime. However, this is challenging due to the difficulty in maintaining stringent controllability over the organization of molecules at higher hierarchical levels, wherein weak non-directional intermolecular interactions rather than strong directional interactions typically play a predominant role. Recent studies have revealed that secondary nucleation, often experienced by one-dimensional assemblies such as supramolecular polymers that grow with spontaneous nucleation, is effective in the hierarchical construction of higher-order structures. Here we illustrate how secondary nucleation can be combined with the well-established precision synthesis of supramolecular polymers to realize precise control over hierarchical structures in the mesoscopic regime. We present a roadmap for creating hierarchical supramolecular polymers by exploiting secondary nucleation-elongation processes and discuss future prospects for the field.
Collapse
Affiliation(s)
- Sougata Datta
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan.
| | - Hiroki Itabashi
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Takuho Saito
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Shiki Yagai
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan.
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba, Japan.
| |
Collapse
|
3
|
Shi P, Chen G, Chen Q, Wu H, Li S, Cao X, Yang L, Tian Z. Heterogeneously catalyzed supramolecular polymerization: essential roles of nucleation and fragmentation-induced autocatalysis in chiral transfer. Chem Sci 2025; 16:5538-5546. [PMID: 40018663 PMCID: PMC11862829 DOI: 10.1039/d4sc07894b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/14/2025] [Indexed: 03/01/2025] Open
Abstract
The complexity of multi-component molecular assembly demands precise control strategies to enhance both efficiency and selectivity. Heterogeneous nucleation and the autocatalytic secondary pathway, as key regulatory strategies, have attracted widespread attention for their crucial roles in crystal growth and amyloid protein aggregation. Here, we apply a heterogeneous nucleation strategy to supramolecular polymer systems and report the first direct observation of surface-enrichment-induced primary nucleation and a spontaneous fragmentation-driven autocatalytic secondary process. A heterogeneous nucleating agent promotes primary nucleation, facilitating supramolecular chiral induction. The resulting chiral polymers undergo a catalytic cycle of fragmentation and re-growth at their termini, with the fragments also acting as seeds for nucleation and growth. These pathways play a crucial role in the polymerization process and are essential for chiral transfer and asymmetry amplification, enabling the achievement of maximum enantioselectivity with as little as 0.5% molar equivalent of the heterogeneous nucleating agent. Furthermore, we reveal the existence of an optimal equivalent in their catalytic kinetics, arising from a surface assembly mechanism. In this mechanism, monomers adsorbed on the surface of the heterogeneous nucleating agent assemble with those in solution, rather than through surface diffusion and assembly. This process resembles the surface-catalyzed Eley-Rideal mechanism. Our study highlights the potential of heterogeneous nucleation as an effective strategy for controlling supramolecular polymerization and offers new insights into its underlying mechanism.
Collapse
Affiliation(s)
- Peichen Shi
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Ganyu Chen
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Qiang Chen
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Huiting Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Suixu Li
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
4
|
Jin X, Wang W, Liu H, Zhao J, Li P, Li A, Song Z. Enhanced Bone Targeting of Poly(l-glutamic acid)s through Cationic or Aromatic Substitution. Biomacromolecules 2025; 26:1913-1922. [PMID: 39977118 DOI: 10.1021/acs.biomac.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Poly(l-glutamic acid)s (PLGs) are promising bone-targeting ligands due to their high molecular weight and facile preparation. Nevertheless, the bone-targeting efficiency of PLGs is still relatively low, validating the necessity to further enhance targeting through structural optimization. Herein, we report the use of a heteropolypeptide strategy to improve the bone targeting of PLGs through the incorporation of another side-chain functionality for enhanced affinity with bone tissues. Specifically, the introduction of cationic amino or aromatic phenolic side-chain residues resulted in a ∼2.3-fold or ∼1.6-fold increase in the in vivo bone targeting, respectively. Cationic modification not only improved the affinity with bone minerals but also exhibited prolonged retention in the bone tissues for more than 60 days. This work highlights the use of a heteropolypeptide library to screen and optimize the performance of polypeptide materials, offering promising bone-targeting polymeric materials for the design of bone-related nanomedicine.
Collapse
Affiliation(s)
- Xiaoxiong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Wanying Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Hui Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jing Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Pengfei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Aoting Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ziyuan Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Tarrío JJ, Hermida B, Rodríguez R, Crassous J, Quiñoá E, Freire F. Consecutive Complex Aggregation Pathway in Covalent Helical Polymer-Metal Complexes: Nanospheres with Controlled P/M Macroscopic Chirality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409379. [PMID: 39973346 PMCID: PMC11840455 DOI: 10.1002/smll.202409379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/12/2024] [Indexed: 02/21/2025]
Abstract
Kinetically trapped and thermodynamic nanospheres with opposite macroscopic P/M chirality and opposite circularly polarized luminescence (CPL) can be obtained from a single helical polymer-metal complex under the same environmental conditions. To prepare these nanospheres, a chiral poly(diphenylacetylene) (PDPA) [poly-(L)-1] with a large energy barrier between the P and M helical senses is chosen as source of chirality, while Ba2+ metal ions are selected as crosslinking agents. As a result, the poly-(L)-1/Ba2+ complex can generate both kinetically trapped (Agg1, M nanospheres) and thermodynamic (Agg2, P nanospheres) aggregates, which can be dispersed in the same solvent. Due to the high energy barrier of the helix inversion process for poly-(L)-1, the complete evolution from the kinetically trapped aggregate (Agg1, M nanospheres) to the thermodynamic one (Agg2, P nanospheres) takes more than 75 days at room temperature, which can be accelerated at higher temperatures. These nanospheres are stable and remain dispersed in solution for up to 8 months without further aggregation.
Collapse
Affiliation(s)
- Juan José Tarrío
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de CompostelaSantiago de CompostelaE‐15782Spain
| | - Borja Hermida
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de CompostelaSantiago de CompostelaE‐15782Spain
| | - Rafael Rodríguez
- CINBIODepartamento de Química OrgánicaUniversidade de VigoCampus Universitario Lagoas MarcosendeVigo36310Spain
| | - Jeanne Crassous
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes)CNRSUMR 6226RennesF‐35000France
| | - Emilio Quiñoá
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de CompostelaSantiago de CompostelaE‐15782Spain
| | - Félix Freire
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de CompostelaSantiago de CompostelaE‐15782Spain
- CINBIODepartamento de Química OrgánicaUniversidade de VigoCampus Universitario Lagoas MarcosendeVigo36310Spain
| |
Collapse
|
6
|
Li W, Zhou Y, Zhang X, He S, Yang L, Cao X, Tian ZQ. Insights into the Assembly of Peptides Catalyzed by Polysaccharides. J Phys Chem B 2025; 129:487-495. [PMID: 39729549 DOI: 10.1021/acs.jpcb.4c05751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Nucleation is a critical step that determines the assembly pathway and the structure and functions of the peptide assemblies. However, the dynamic evolution of interactions between nucleating agents and peptides, as well as between peptides themselves during the nucleation process, remains elusive. Herein, we show that the heterogeneous nucleating agent carboxymethylcellulose (CMC) can promote the nucleation of Aβ16-20 (KF) peptide. The Förster resonance energy transfer (FRET) technology was used to unveil the interaction dynamics between the CMC and KF peptide. Initially, CMC enriches KF monomers through weak nondirectional electrostatic interactions. The electrostatic screening reduces the electrostatic repulsion between KF molecules. Subsequently, KF-KF interactions become dominant, leading to the dissociation of KF from the CMC and nucleation. By adjustment of the adding time, dosage, size, and active sites of CMC, the assembly kinetics of KF can be effectively controlled. This study helps gain a deep understanding of the early heterogeneous nucleation process of peptide assembly and provides valuable guidance for the rational design of efficient nucleating agents for peptide assembly toward functional materials.
Collapse
Affiliation(s)
- Wang Li
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yang Zhou
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xinran Zhang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sheng He
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
7
|
Sutar P, Maisuls I, Fernández Z, Strassert CA, Fernández G. Pathway-dependent Metallosupramolecular Polymerization Regulated by Ligand Geometry. Chemistry 2024; 30:e202403287. [PMID: 39317651 DOI: 10.1002/chem.202403287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Understanding structure/property correlations in self-assembly is a key but challenging requirement for developing functional materials. Herein, we explore the importance of ligand geometry to fine-tune photophysical properties (MMLCT vs. MLCT excited states) and self-assembly pathways in metallosupramolecular polymerization. To this end, we have designed two hydrophobic Pt(II) complexes, 1 and 2, containing a π-extended bidentate bipyridine ligand with different substitution pattern, resulting in different molecular geometries (linear vs. V-shaped). Detailed comparative studies revealed significant differences for both complexes in terms of their photophysical properties and self-assembly pathways in non-polar media. The V-shaped topology of 1 enables facile face-to-face molecular stacking with a certain curvature leading to luminescent spherical assemblies exhibiting MMLCT states and short Pt⋅⋅⋅Pt contacts via a single-step cooperative pathway. On the other hand, the higher preorganized linear topology of complex 2 induces a two-step competitive self-assembly process leading to the formation of one-dimensional supramolecular polymers with slipped packing and MLCT-originated emission. Our findings broaden the monomer scope for supramolecular polymerization and provide design guidelines for the realization of luminescent supramolecular assemblies.
Collapse
Affiliation(s)
- Papri Sutar
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster, 48149, Germany
- Current address: Department of Chemistry, National Institute of Technology Silchar, Assam, 788010, India
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, CeNTech, SoN, CiMIC, Universität Münster, Heisenbergstraße 11, Münster, 48149, Germany
| | - Zulema Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster, 48149, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CeNTech, SoN, CiMIC, Universität Münster, Heisenbergstraße 11, Münster, 48149, Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster, 48149, Germany
| |
Collapse
|
8
|
Kim M, Choi H, Kim M, Kim S, Yun S, Lee E, Cho J, Jung SH, Jung JH. Pathway control in metallosupramolecular polymerization of a monoalkynylplatinum(ii) terpyridine complex through competitive complex formation. Chem Sci 2024; 15:19729-19738. [PMID: 39568936 PMCID: PMC11575569 DOI: 10.1039/d4sc06083k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Understanding the pathway complexity of supramolecular polymerization in biomimetic systems has been a challenging issue due to its importance in the development of rationally controlled materials and insight into self-assembly in nature. We herein report a kinetic trapping strategy as a new methodology on how to control the pathway of metallosupramolecular polymerization by employing secondary metal ions and/or ligands which form competitive complex species. For this, we proposed monoalkynylplatinum(ii) metalloligand (Pt-L1) derived from a bis(amideterpyridine) receptor with one unoccupied terpyridyl terminal as a coordination site for the secondary metal ion (Ag+ or Fe2+). The inherent pathway complexity intrinsic to the Pt-L1-anchored supramolecular polymerization has been modulated through the incorporation of Ag+ or Fe2+. During the supramolecular polymerization of Pt-L1 in the presence of Ag+ and Fe2+, the added secondary ligand bpy (4,4'-dimethyl-2,2'-bipyridine) or DA18C6 (1,14-diaza-18-crown-6) form complexes as kinetic species, thereby inhibiting spontaneous polymerizations. The supramolecular polymer (SP-I), with a spherical structure composed of Pt-L1 in the absence of metal ions as a kinetic product, did not transform into the thermodynamic product, namely supramolecular polymer (SP-III) with a left-handed fiber structure, due to a high energy barrier. However, the supramolecular polymer (SP-II) with a left-handed fiber structure, which was formed by Pt-L1 in the presence of AgNO3, converted to SP-III upon the addition of NaCl. Additionally, SP-II transformed into supramolecular polymer (SP-IV) upon the addition of Fe(BF4)2, through an on-pathway process. Both the morphological and emissive characteristics of the resulting supramolecular polymers can be fine-tuned via the Pt⋯Pt or Ag⋯Ag interactions as well as through the changes of the coordination geometry depending on the existing Ag+ or Fe2+ ions. The present results have important implications in expanding the scope of pathway complexity to produce a variety of products via kinetically controlled processes involving secondary metal ions and ligands.
Collapse
Affiliation(s)
- Minhye Kim
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Heekyoung Choi
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Minjoo Kim
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Seonghan Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology Ulsan 44919 Korea
| | - Seohyeon Yun
- Department of Chemistry and Advanced Materials, Gangneung-Wonju National University Gangneung 25457 Korea
| | - Eunji Lee
- Department of Chemistry and Advanced Materials, Gangneung-Wonju National University Gangneung 25457 Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology Ulsan 44919 Korea
| | - Sung Ho Jung
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
- Research Institute of Advanced Materials Chemistry, Gyeongsang National University Jinju 52828 Korea
| | - Jong Hwa Jung
- Department of Chemistry, Gyeongsang National University Jinju 52828 Korea
- Research Institute of Advanced Materials Chemistry, Gyeongsang National University Jinju 52828 Korea
| |
Collapse
|
9
|
Tuo DH, Fa S, Tanaka S, Shimada T, Yamashita M, Togari Y, Ohtani S, Kato K, Urayama K, Zhang Q, Yasuhara K, Ogoshi T. Helical-Sense Matching Facilitates Supramolecular Copolymerization of Helical-Chiral Pillar[5]arenes. J Am Chem Soc 2024; 146:31816-31824. [PMID: 39527493 DOI: 10.1021/jacs.4c10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Supramolecular polymerization using two-dimensional π-conjugated chiral monomers has been mainly demonstrated because the supramolecular polymerization can be controlled by stereocommunication through π-π stacking between the two-dimensional chiral monomers. We herein report supramolecular copolymerization utilizing three-dimensional pentahedrons with twisted helical chirality through different combinations of helical-chiral acidic and basic pillar[5]arenes as comonomers. In this case, helical-sense matching is key to facilitating the supramolecular copolymerization. Based on the unique helical chirality of the three-dimensional pillared structure of the pillar[5]arenes and alternate ion-pairing interactions between acidic and basic groups on their bilateral rims, the homochiral helical-sense matching system forms kinetically stable nanowire-shaped supramolecular copolymers, generating the supramolecular gel in high concentrations. At elevated temperatures, the nanowire structure undergoes a transformation into thermodynamically stable nanoparticles, resulting in a gel-to-sol transition. This process can be hindered by introducing linear guest molecules, which prohibit the unit swing of pillar[5]arenes and stabilize the nanowires and supramolecular gel. By tailoring the enantiomeric ratio (e.r.) values of the chiral combinations, the helical-sense-dependent gel-to-sol transition was realized, specifically by decreasing the e.r. values. Because of helical-sense mismatching, the heterochiral system generates short, branched nanowires and presents as a turbid solution. These distinct differences reveal that the helical-sense matching between three-dimensional chiral pillar[5]arene comonomers is important for supramolecular copolymerization.
Collapse
Affiliation(s)
- De-Hui Tuo
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Seigo Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuma Shimada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masataka Yamashita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuki Togari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kenji Urayama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
10
|
Paul S, Gayen K, Cantavella PG, Escuder B, Singh N. Complex Pathways Drive Pluripotent Fmoc-Leucine Self-Assemblies. Angew Chem Int Ed Engl 2024; 63:e202406220. [PMID: 38825832 DOI: 10.1002/anie.202406220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Nature uses complex self-assembly pathways to access distinct functional non-equilibrium self-assemblies. This remarkable ability to steer same set of biomolecules into different self-assembly states is done by avoiding thermodynamic pit. In synthetic systems, on demand control over 'Pathway Complexity' to access self-assemblies different from equilibrium structures remains challenging. Here we show versatile non-equilibrium assemblies of the same monomer via alternate assembly pathways. The assemblies nucleate using non-classical or classical nucleation routes into distinct metastable (transient hydrogels), kinetic (stable hydrogels) and thermodynamic structures [(poly)-crystals and 2D sheets]. Initial chemical and thermal inputs force the monomers to follow different assembly pathways and form soft-materials with distinct molecular arrangements than at equilibrium. In many cases, equilibrium structures act as thermodynamic sink which consume monomers from metastable structures giving transiently formed materials. This dynamics can be tuned chemically or thermally to slow down the dissolution of transient hydrogel, or skip the intermediate hydrogel altogether to reach final equilibrium assemblies. If required this metastable state can be kinetically trapped to give strong hydrogel stable over days. This method to control different self-assembly states can find potential use in similar biomimetic systems to access new materials for various applications.
Collapse
Affiliation(s)
- Subir Paul
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| | - Kousik Gayen
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| | - Pau Gil Cantavella
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| | - Beatriu Escuder
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| | - Nishant Singh
- Institute of Advanced Materials, Universitat Jaume I, Avinguda de Vicent Sos Baynat, s/n, 12006, Castelló de la Plana, Castelló, Spain
| |
Collapse
|
11
|
Zhao C, Wang Y, Jiang Y, Wu N, Wang H, Li T, Ouyang G, Liu M. Handedness-Inverted and Stimuli-Responsive Circularly Polarized Luminescent Nano/Micromaterials Through Pathway-Dependent Chiral Supramolecular Polymorphism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403329. [PMID: 38625749 DOI: 10.1002/adma.202403329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 04/18/2024]
Abstract
The precise manipulation of supramolecular polymorphs has been widely applied to control the morphologies and functions of self-assemblies, but is rarely utilized for the fabrication of circularly polarized luminescence (CPL) materials with tailored properties. Here, this work reports that an amphiphilic naphthalene-histidine compound (NIHis) readily self-assembled into distinct chiral nanostructures through pathway-dependent supramolecular polymorphism, which shows opposite and multistimuli responsive CPL signals. Specifically, NIHis display assembly-induced CPL from the polymorphic keto tautomer, which become predominant during enol-keto tautomerization shifting controlled by a bulk solvent effect. Interestingly, chiral polymorphs of nanofiber and microbelt with inverted CPL signals can be prepared from the same NIHis monomer in exactly the same solvent compositions and concentrations by only changing the temperature. The tunable CPL performance of the solid microbelts is realized under multi external physical or chemical stimuli including grinding, acid fuming, and heating. In particular, an emission color and CPL on-off switch based on the microbelt polymorph by reversible heating-cooling protocol is developed. This work brings a new approach for developing smart CPL materials via supramolecular polymorphism engineering.
Collapse
Affiliation(s)
- Chenyang Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuan Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ningning Wu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Hanxiao Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Tiejun Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Minghua Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| |
Collapse
|
12
|
Veedu RM, Fernández Z, Bäumer N, Albers A, Fernández G. Pathway-dependent supramolecular polymerization by planarity breaking. Chem Sci 2024; 15:10745-10752. [PMID: 39027305 PMCID: PMC11253169 DOI: 10.1039/d4sc02499k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
In controlled supramolecular polymerization, planar π-conjugated scaffolds are commonly used to predictably regulate stacking interactions, with various assembly pathways arising from competing interactions involving side groups. However, the extent to which the nature of the chromophore itself (planar vs. non-planar) affects pathway complexity requires clarification. To address this question, we herein designed a new BOPHY dye 2, where two oppositely oriented BF2 groups induce a disruption of planarity, and compared its supramolecular polymerization in non-polar media with that of a previously reported planar BODIPY 1 bearing identical substituents. The slightly non-planar structure of the BOPHY dye 2, as evident in previously reported X-ray structures, together with the additional out-of-plane BF2 group, allow for more diverse stacking possibilities leading to two fiber-like assemblies (kinetic 2A and thermodynamic 2B), in contrast to the single assembly previously observed for BODIPY 1. The impact of the less rigid, preorganized BOPHY core compared to the planar BODIPY counterpart is also reflected in the stronger tendency of the former to form anisotropic assemblies as a result of more favorable hydrogen bonding arrays. The structural versatility of the BOPHY core ultimately enables two stable packing arrangements: a kinetically controlled antiparallel face-to-face stacking (2A), and a thermodynamically controlled parallel slipped packing (2B) stabilized by (BF2) F⋯H (meso) interactions. Our findings underscore the significance of planarity breaking and out-of-plane substituents on chromophores as design elements in controlled supramolecular polymerization.
Collapse
Affiliation(s)
- Rasitha Manha Veedu
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| | - Zulema Fernández
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| | - Nils Bäumer
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| | - Antonia Albers
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| |
Collapse
|
13
|
Chakraborty C, Rajak A, Das A. Shape-tunable two-dimensional assemblies from chromophore-conjugated crystallizable poly(L-lactides) with chain-length-dependent photophysical properties. NANOSCALE 2024; 16:13019-13028. [PMID: 38894626 DOI: 10.1039/d4nr01683a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
This work reports temperature-dependent shape-changeable two-dimensional (2D) nanostructures by crystallization-driven self-assembly (CDSA) from a chromophore-conjugated poly(L-lactide) (PLLA) homopolymer (PTZ-P1) that contained a polar dye, phenothiazine (PTZ), at the chain-end of the crystallizable PLLA. The CDSA of PTZ-P1 in a polar solvent, isopropanol (iPrOH), by an uncontrolled heating-cooling process, majorly generates lozenge-shaped 2D platelets via chain-folding-mediated crystallization of the PLLA core, leading to the display of the phenothiazines on the 2D surface that confers colloidal stability and orange-emitting luminescent properties to the crystal lamellae. Isothermal crystallization at 60 °C causes a morphological change in PTZ-P1 platelets from lozenge to truncated-lozenge to perfect hexagon under different annealing times, while no shape change was noticed in the structurally similar PTZ-P2 polymer with a longer PLLA chain under similar conditions. This study unveils the complex link between the 2D platelet morphologies and degree of polymerization (DP) of PLLA and the corona-forming dye character. Further, the co-assembly potential of PTZ-P1 with hydrophobic pyrene-terminated PLLAs of varying chain lengths (PY-P1, PY-P2, and PY-P3) was examined, as these two dyes could form a Förster Resonance Energy Transfer (FRET) pair on the 2D surface. The impact of the length of the crystallizable PLLA on the photophysical properties of the surface-occupied chromophores revealed crucial insights into interchromophoric interactions on the platelet surface. A reduction in the propensity for π-stacking with increasing chain-folding in longer PLLAs is manifested in the chain-length-dependent FRET efficiencies and excimer emission lifetimes within the resultant monolayered 2D assemblies. The unconventional "butterfly-shaped" molecular architecture of the tested phenothiazine, combined with its varied functional features and polar character, adds a distinctive dimension to the underdeveloped field of CDSA of chromophore-conjugated poly(L-lactides), opening future avenues for the development of advanced nanostructured biodegradable 2D materials with programmable morphology and optical functions.
Collapse
Affiliation(s)
- Chhandita Chakraborty
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S.C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Aritra Rajak
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S.C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S.C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
14
|
Atienza CM, Sánchez L. Increasing Dimensionality in Self-Assembly: Toward Two-Dimensional Supramolecular Polymers. Chemistry 2024; 30:e202400379. [PMID: 38525912 DOI: 10.1002/chem.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
Different approaches to achieve 2D supramolecular polymers, as an alternative to the covalent bottom-up approaches reported for the preparation of 2D materials, are reviewed. The significance of the operation of weak non-covalent forces to induce a lateral growth of a number of self-assembling units is collected. The examples of both thermodynamically and kinetically controlled formation of 2D supramolecular polymers showed in this review demonstrate the utility of this strategy to achieve new 2D materials with biased morphologies (nanosheets, scrolls, porous surfaces) and showing elegant applications like chiral recognition, enantioselective uptake or asymmetric organic transformations. Furthermore, elaborated techniques like seeded or living supramolecular polymerizations have been demonstrated to give rise to complex 2D nanostructures.
Collapse
Affiliation(s)
- Carmen M Atienza
- Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, -Madrid, Spain
| | - Luis Sánchez
- Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, -Madrid, Spain
| |
Collapse
|
15
|
Sun L, Gong Y, Che Y, Ji H, Liu B, Che Y, Zhao J. Light-Regulated Nucleation for Growing Highly Uniform Single-Crystalline Microrods. Angew Chem Int Ed Engl 2024; 63:e202402253. [PMID: 38497168 DOI: 10.1002/anie.202402253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
We report a light-irradiation method to control the synchronous nucleation of a donor-acceptor (D-A) fluorophore for growing highly uniform single-crystalline microrods, which is in sharp contrast to the prevailing methods of restricting spontaneous nucleation and additionally adding seeds. The D-A fluorophore was observed to undergo photoinduced electron transfer to CrCl3, leading to the generation of HCl and the subsequent protonation of the D-A fluorophore. By intensifying photoirradiation or prolonging its duration, the concentration of protonated D-A fluorophores can be rapidly increased to a high supersaturation level. This results in the formation of a controlled number of nuclei in a synchronous manner, which in turn kickstart the epitaxial growth of protonated D-A fluorophores towards uniform single-crystalline microrods of controlled sizes. The light-regulated synchronous nucleation and uniform growth of microrods are a unique phenomenon that can only be achieved by specific Lewis acids, making it a novel probing method for sensitively detecting strong Lewis acids such as chromium chloride.
Collapse
Affiliation(s)
- Lishan Sun
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjun Gong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxue Che
- HT-NOVA Co., Ltd., Zhuyuan Road, Shunyi District, Beijing, 101312, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Chen Y, Liu C. Strategies for Synthesizing Supramolecular Block Copolymers. Chempluschem 2024; 89:e202300623. [PMID: 38095487 DOI: 10.1002/cplu.202300623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Indexed: 05/16/2024]
Abstract
Over the past decade, controlled supramolecular polymerization has been extensively studied and gradually shifted to supramolecular block copolymerization. Supramolecular block copolymers (BCPs) are considered the holy grail for developing supramolecular materials with new functionalities due to their fascinating structures and ability to introduce diverse functions. From a thermodynamic view to kinetic aspects, great progress has been made in the synthetic strategies of BCPs in the past few years. This Concept summarizes various strategies to realize supramolecular block copolymerization. The focus is on providing researchers with a methodological basis for achieving heterogeneous nucleation-elongation.
Collapse
Affiliation(s)
- Yan Chen
- School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Chun Liu
- School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
17
|
Li S, Chen Q, Xu Q, Wei Z, Shen Y, Wang H, Cai H, Gu M, Xiao Y. Hierarchical Self-Assembly Molecular Building Blocks as Intelligent Nanoplatforms for Ovarian Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309547. [PMID: 38408141 PMCID: PMC11077652 DOI: 10.1002/advs.202309547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Hierarchical self-assembly from simple building blocks to complex polymers is a feasible approach to constructing multi-functional smart materials. However, the polymerization process of polymers often involves challenges such as the design of building blocks and the drive of external energy. Here, a hierarchical self-assembly with self-driven and energy conversion capabilities based on p-aminophenol and diethylenetriamine building blocks is reported. Through β-galactosidase (β-Gal) specific activation to the self-assembly, the intelligent assemblies (oligomer and superpolymer) with excellent photothermal and fluorescent properties are dynamically formed in situ, and thus the sensitive multi-mode detection of β-Gal activity is realized. Based on the overexpression of β-Gal in ovarian cancer cells, the self-assembly superpolymer is specifically generated in SKOV-3 cells to achieve fluorescence imaging. The photothermal therapeutic ability of the self-assembly oligomer (synthesized in vitro) is evaluated by a subcutaneous ovarian cancer model, showing satisfactory anti-tumor effects. This work expands the construction of intelligent assemblies through the self-driven cascade assembly of small molecules and provides new methods for the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Shuo Li
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Jiangsu Institute of HematologyNational Clinical Research Center for Hematologic DiseasesNHC Key Laboratory of Thrombosis and HemostasisThe First Affiliated Hospital and Collaborative Innovation Center of HematologySoochow UniversitySuzhou215006China
| | - Qingrong Chen
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Qi Xu
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Zhongyu Wei
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Yongjin Shen
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Hua Wang
- Department of Gynecological OncologyZhongnan Hospital of Wuhan UniversityHubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhan430071China
| | - Hongbing Cai
- Department of Gynecological OncologyZhongnan Hospital of Wuhan UniversityHubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhan430071China
| | - Meijia Gu
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Yuxiu Xiao
- Department of Thyroid and Breast SurgeryZhongnan Hospital of Wuhan UniversityKey Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)School of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| |
Collapse
|
18
|
Kotha S, Sahu R, Yadav AC, Sharma P, Kumar BVVSP, Reddy SK, Rao KV. Noncovalent synthesis of homo and hetero-architectures of supramolecular polymers via secondary nucleation. Nat Commun 2024; 15:3672. [PMID: 38693145 PMCID: PMC11063220 DOI: 10.1038/s41467-024-47874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
The synthesis of supramolecular polymers with controlled architecture is a grand challenge in supramolecular chemistry. Although living supramolecular polymerization via primary nucleation has been extensively studied for controlling the supramolecular polymerization of small molecules, the resulting supramolecular polymers have typically exhibited one-dimensional morphology. In this report, we present the synthesis of intriguing supramolecular polymer architectures through a secondary nucleation event, a mechanism well-established in protein aggregation and the crystallization of small molecules. To achieve this, we choose perylene diimide with 2-ethylhexyl chains at the imide position as they are capable of forming dormant monomers in solution. Activating these dormant monomers via mechanical stimuli and hetero-seeding using propoxyethyl perylene diimide seeds, secondary nucleation event takes over, leading to the formation of three-dimensional spherical spherulites and scarf-like supramolecular polymer heterostructures, respectively. Therefore, the results presented in this study propose a simple molecular design for synthesizing well-defined supramolecular polymer architectures via secondary nucleation.
Collapse
Affiliation(s)
- Srinu Kotha
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Rahul Sahu
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Aditya Chandrakant Yadav
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India
| | - Preeti Sharma
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - B V V S Pavan Kumar
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Sandeep K Reddy
- Centre for Computational and Data Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Kotagiri Venkata Rao
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
19
|
Khanra P, Rajdev P, Das A. Seed-Induced Living Two-Dimensional (2D) Supramolecular Polymerization in Water: Implications on Protein Adsorption and Enzyme Inhibition. Angew Chem Int Ed Engl 2024; 63:e202400486. [PMID: 38265331 DOI: 10.1002/anie.202400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 01/25/2024]
Abstract
In biological systems, programmable supramolecular frameworks characterized by coordinated directional non-covalent interactions are widespread. However, only a small number of reports involve pure water-based dynamic supramolecular assembly of artificial π-amphiphiles, primarily due to the formidable challenge of counteracting the strong hydrophobic dominance of the π-surface in water, leading to undesired kinetic traps. This study reveals the pathway complexity in hydrogen-bonding-mediated supramolecular polymerization of an amide-functionalized naphthalene monoimide (NMI) building block with a hydrophilic oligo-oxyethylene (OE) wedge. O-NMI-2 initially produced entropically driven, collapsed spherical particles in water (Agg-1); however, over a span of 72 h, these metastable Agg-1 gradually transformed into two-dimensional (2D) nanosheets (Agg-2), favoured by both entropy and enthalpy contributions. The intricate self-assembly pathways in O-NMI-2 enable us to explore seed-induced living supramolecular polymerization (LSP) in water for controlled synthesis of monolayered 2D assemblies. Furthermore, we demonstrated the nonspecific surface adsorption of a model enzyme, serine protease α-Chymotrypsin (α-ChT), and consequently the enzyme activity, which could be regulated by controlling the morphological transformation of O-NMI-2 from Agg-1 to Agg-2. We delve into the thermodynamic aspects of such shape-dependent protein-surface interactions and unravel the impact of seed-induced LSP on temporally controlling the catalytic activity of α-ChT.
Collapse
Affiliation(s)
- Payel Khanra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
20
|
Li Y, Castillo HD, Dobscha JR, Morgan AR, Tait SL, Flood AH. Breaking Radial Dipole Symmetry in Planar Macrocycles Modulates Edge-to-Edge Packing and Disrupts Cofacial Stacking. Chemistry 2024; 30:e202302946. [PMID: 37950681 DOI: 10.1002/chem.202302946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Dipolar interactions are ever-present in supramolecular architectures, though their impact is typically revealed by making dipoles stronger. While it is also possible to assess the role of dipoles by altering their orientations by using synthetic design, doing so without altering the molecular shape is not straightforward. We have now done this by flipping one triazole unit in a rigid macrocycle, tricarb. The macrocycle is composed of three carbazoles (2 Debye) and three triazoles (5 Debye) defining an array of dipoles aligned radially but organized alternately in and out. These dipoles are believed to dictate edge-to-edge tiling and face-to-face stacking. We modified our synthesis to prepare isosteric macrocycles with the orientation of one triazole dipole rotated 40°. The new dipole orientation guides edge-to-edge contacts to reorder the stability of two surface-bound 2D polymorphs. The impact on dipole-enhanced π stacking, however, was unexpected. Our stacking model identified an unchanged set of short-range (3.4 Å) anti-parallel dipole contacts. Despite this situation, the reduction in self-association was attributed to long-range (~6.4 Å) dipolar repulsions between π-stacked macrocycles. This work highlights our ability to control the build-up and symmetry of macrocyclic skeletons by synthetic design, and the work needed to further our understanding of how dipoles control self-assembly.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Henry D Castillo
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - James R Dobscha
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Amanda R Morgan
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Steven L Tait
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| |
Collapse
|
21
|
Du S, Jiang Y, Jiang H, Zhang L, Liu M. Pathway-Dependent Self-Assembly for Control over Helical Nanostructures and Topochemical Photopolymerization. Angew Chem Int Ed Engl 2024; 63:e202316863. [PMID: 38116831 DOI: 10.1002/anie.202316863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Pathway-dependent self-assembly, in which a single building block forms two or more types of self-assembled nanostructures, is an important topic due to its mimic to the complexity in biology and manipulation of diverse supramolecular materials. Here, we report a pathway-dependent self-assembly using chiral glutamide derivatives (L or D-PAG), which form chiral nanotwist and nanotube through a cooperative slow cooling and an isodesmic fast cooling process, respectively. Furthermore, pathway-dependent self-assembly can be harnessed to control over the supramolecular co-assembly of PAG with a luminophore β-DCS or a photopolymerizable PCDA. Fast cooling leads to the co-assembled PAG/β-DCS nanotube exhibiting green circularly polarized luminescence (CPL), while slow cooling to nanofiber with blue CPL. Additionally, fast cooling process promotes the photopolymerization of PCDA into a red chiral polymer, whereas slow cooling inhibits the polymerization. This work not only demonstrates the pathway-dependent control over structural characteristics but also highlights the diverse functions emerged from the different assemblies.
Collapse
Affiliation(s)
- Sifan Du
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuqian Jiang
- Key laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Hejin Jiang
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Li Zhang
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Minghua Liu
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Liao C, Gong Y, Che Y, Cui L, Liu Y, Ji H, Zhang Y, Zang L, Zhao J, Che Y. Living Self-Assembly of Metastable and Stable Two-Dimensional Platelets from a Single Small Molecule. Chemistry 2023; 29:e202301747. [PMID: 37815852 DOI: 10.1002/chem.202301747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
This study reports the design of a donor-acceptor (D-A) molecule with two fluorene units on each side of a benzothiadiazole moiety, which allows multiple intermolecular interactions to compete with one another so as to induce the evolution of the metastable 2D platelets to the stable 2D platelets during the self-assembly of the D-A molecule. Importantly, the living seeded self-assembly of metastable and stable 2D structures with precisely controlled sizes can be conveniently achieved using an appropriate supersaturated level of a solution of the D-A molecule as the seeded growth medium that can temporarily hold the almost-proceeding spontaneous nucleation from competing with the seeded growth. The stable 2D platelets with smaller area sizes exhibit higher sensitivity to gaseous dimethyl sulfide, illustrating that the novel living self-assembly method provides more available functional structures with controlled sizes for practical applications. The key finding of this study is that the new living methodology is separated into two independent processes: the elaborate molecular design for various crystalline structures as seeds and the application of a supersaturated solution with appropriate levels as the growth medium to grow the uniform structures with controlled sizes; this would make convenient and possible the living seeded self-assembly of rich 1D, 2D, and 3D architectures.
Collapse
Affiliation(s)
- Chenglong Liao
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjun Gong
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxue Che
- HT-NOVA Co., Ltd., Zhuyuan Road, Shunyi District, Beijing, 101312, China
| | - Linfeng Cui
- Hebei Key Laboratory of Organic Functional Molecules College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050023, P. R. China
| | - Yangxin Liu
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifan Zhang
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Zang
- Nano Institute of Utah, and Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Jincai Zhao
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanke Che
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Rajak A, Das A. Cascade Energy Transfer and White-Light Emission in Chirality-Controlled Crystallization-Driven Two-Dimensional Co-assemblies from Donor and Acceptor Dye-Conjugated Polylactides. Angew Chem Int Ed Engl 2023; 62:e202314290. [PMID: 37842911 DOI: 10.1002/anie.202314290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
Achieving predictable and programmable two-dimensional (2D) structures with specific functions from exclusively organic soft materials remains a scientific challenge. This article unravels stereocomplex crystallization-driven self-assembly as a facile method for producing thermally robust discrete 2D-platelets of diamond shape from biodegradable semicrystalline polylactide (PLA) scaffolds. The method involves co-assembling two PLA stereoisomers, namely, PY-PDLA and NMI-PLLA, which form stereocomplex (SC)-crystals in isopropanol. By conjugating a well-known Förster resonance energy transfer (FRET) donor and acceptor dye, namely, pyrene (PY) and naphthalene monoimide (NMI), respectively, to the chain termini of these two interacting stereoisomers, a thermally robust FRET process can be stimulated from the 2D array of the co-assembled dyes on the thermally resilient SC-PLA crystal surfaces. Uniquely, by decorating the surface of the SC-PLA crystals with an externally immobilized guest dye, Rhodamine-B, similar diamond-shaped structures could be produced that exhibit pure white-light emission through a surface-induced two-step cascade energy transfer process. The FRET response in these systems displays remarkable dependence on the intrinsic crystalline packing, which could be modulated by the chirality of the co-assembling PLA chains. This is supported by comparing the properties of similar 2D platelets generated from two homochiral PLLAs (PY-PLLA and NMI-PLLA) labeled with the same FRET pair.
Collapse
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
24
|
Contreras-Montoya R, Smith JP, Boothroyd SC, Aguilar JA, Mirzamani M, Screen MA, Yufit DS, Robertson M, He L, Qian S, Kumari H, Steed JW. Pathway complexity in fibre assembly: from liquid crystals to hyper-helical gelmorphs. Chem Sci 2023; 14:11389-11401. [PMID: 37886106 PMCID: PMC10599479 DOI: 10.1039/d3sc03841f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Pathway complexity results in unique materials from the same components according to the assembly conditions. Here a chiral acyl-semicarbazide gelator forms three different gels of contrasting fibre morphology (termed 'gelmorphs') as well as lyotropic liquid crystalline droplets depending on the assembly pathway. The gels have morphologies that are either hyperhelical (HH-Gel), tape-fibre (TF-Gel) or thin fibril derived from the liquid crystalline phase (LC-Gels) and exhibit very different rheological properties. The gelator exists as three slowly interconverting conformers in solution. All three gels are comprised of an unsymmetrical, intramolecular hydrogen bonded conformer. The kinetics show that formation of the remarkable HH-Gel is cooperative and is postulated to involve association of the growing fibril with a non-gelling conformer. This single molecule dynamic conformational library shows how very different materials with different morphology and hence very contrasting materials properties can arise from pathway complexity as a result of emergent interactions during the assembly process.
Collapse
Affiliation(s)
| | - James P Smith
- Department of Chemistry, Durham University Durham DH1 3LE UK
| | | | - Juan A Aguilar
- Department of Chemistry, Durham University Durham DH1 3LE UK
| | - Marzieh Mirzamani
- James L. Winkle College of Pharmacy, University of Cincinnati 231 Albert Sabin Way, Medical Science Building 3109C Cincinnati OH 45267-0514 USA
| | - Martin A Screen
- Department of Chemistry, Durham University Durham DH1 3LE UK
| | - Dmitry S Yufit
- Department of Chemistry, Durham University Durham DH1 3LE UK
| | - Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi 118 College Dr. Hattiesburg MS 39406 USA
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory 1 Bethel Valley Rd. Oak Ridge TN 37831 USA
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory 1 Bethel Valley Rd. Oak Ridge TN 37831 USA
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati 231 Albert Sabin Way, Medical Science Building 3109C Cincinnati OH 45267-0514 USA
| | | |
Collapse
|
25
|
Das G, Anand A, Vedhanarayanan B, Padmakumar A, Praveen VK, Ajayaghosh A. Controlling the Morphological Features, Aspect Ratio and Emission Patterns of Supramolecular Copolymers by Restricted Dimensional Growth. Chemistry 2023; 29:e202301819. [PMID: 37498316 DOI: 10.1002/chem.202301819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
One of the bottlenecks associated with supramolecular polymerization of functional π-systems is the spontaneous assembly of monomers leading to one- or two-dimensional (1D or 2D) polymers without control over chain length and optical properties. In the case of supramolecular copolymerization of monomers that are structurally too diverse, preferential self-sorting occurs unless they are closely interacting donor-acceptor pairs. Herein, it is established that the spontaneous 1D polymerization of a phenyleneethynylene (PE) derivative and the 2D polymerization of a Bodipy derivative (BODIPY) can be controlled by copolymerizing them in different ratios, leading to unusual spindle-shaped structures with controlled aspect ratio, as evident by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) studies. For example, when the content of BODIPY is 50 % in the BODIPY-PE mixture, the 1D polymerization of PE is significantly restricted to form elongated spindle-like structures having an aspect ratio of 4-6. The addition of 75 % of BODIPY to PE resulted in circular spindles having an aspect ratio of 1-2.5, thereby completely restricting the 1D polymerization of PE monomers. Moreover, the resultant supramolecular copolymers exhibited morphology and aspect ratio dependent emission features as observed by the time-resolved emission studies.
Collapse
Affiliation(s)
- Gourab Das
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anjali Anand
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Balaraman Vedhanarayanan
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Akhil Padmakumar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vakayil K Praveen
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
26
|
Chakraborty A, Das PK, Jana B, Ghosh S. Supramolecular alternating copolymers with highly efficient fluorescence resonance energy transfer. Chem Sci 2023; 14:10875-10883. [PMID: 37829017 PMCID: PMC10566455 DOI: 10.1039/d3sc03056c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
This article reports alternating supramolecular copolymerization of two naphthalene-diimide (NDI)-derived building blocks (NDI-1 and NDI-2) under thermodynamic control. Both monomers contain a central NDI chromophore, attached to a hydrocarbon-chain and a carboxylic-acid group. The NDI core in NDI-2 is symmetrically substituted with two butane-thiol groups, which makes it distinct from NDI-1. In decane, a 1 : 1 mixture of NDI-1 and NDI-2 shows spontaneous gelation and a typical fibrillar network, unlike the behavior of either of the components individually. The solvent-dependent UV/vis spectrum of the mixed sample in decane shows bathochromically shifted sharp absorption bands and a sharp emission band (holds a mirror-image relationship) with a significantly small Stokes shift compared to those in CHCl3, indicating J-aggregation. In contrast, the aggregated spectra of the individual monomers show broad structureless features, suggesting ill-defined aggregates. Cooling curves derived from the temperature-dependent UV/vis spectroscopy studies revealed early nucleation and a signature of well-defined cooperative polymerization for the mixed sample, unlike either of the individual components. Molecular dynamics simulations predicted the greatest dimer formation tendency for the NDI-1 + NDI-2 (1 : 1), followed by pure NDI-1 and NDI-2. Theoretical studies further revealed a partial positive charge in the NDI ring of NDI-1 when compared to NDI-2, promoting the alternating stacking propensity, which is also favored by the steric factor as NDI-2 is core-substituted with alkyl thiols. Such theoretical predictions fully corroborate with the experimental results showing 1 : 1 stoichiometry (from Job's plot) of the two monomers, indicating alternate stacking sequences in the H-bonded (syn-syn catemer type) supramolecular copolymer. Such alternating supramolecular copolymers showed highly efficient (>93%) fluorescence resonance energy transfer (FRET).
Collapse
Affiliation(s)
- Anwesha Chakraborty
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Pradipta Kumar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road 700032 Kolkata India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road 700032 Kolkata India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata 700032 India
| |
Collapse
|
27
|
Sarkar S, Laishram R, Deb D, George SJ. Controlled Noncovalent Synthesis of Secondary Supramolecular Polymers. J Am Chem Soc 2023; 145:22009-22018. [PMID: 37754784 DOI: 10.1021/jacs.3c06844] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Dynamic supramolecular polymers, with their functional similarities to classical covalent polymers and their adaptive and self-repairing nature reminiscent of biological assemblies, have emerged as highly promising systems for the design of smart soft materials. Recent advancements in mechanistic investigations and novel synthetic strategies, such as living supramolecular polymerization, have significantly enhanced our ability to control the primary structure of these supramolecular polymers. However, realizing their full functional potential requires expanding their topological diversity in a manner akin to classical polymers as well as achieving precise molecular organization at higher hierarchical levels of self-assembly. In this paper, we present a remarkable advancement in this field, introducing an unprecedented and controlled synthesis of secondary supramolecular polymers. Our innovative strategy combines chirality-controlled surface-catalyzed secondary nucleation and a bioinspired peptide design, effectively stabilizing higher-order assembly. Furthermore, by harnessing this stereoselective nucleation process, we demonstrate the successful synthesis of racemic supramolecular polymers featuring parallelly stacked conglomerate microstructures─a previously unreported topology in synthetic self-assembled systems. Additionally, we elucidate that the extent of secondary supramolecular polymers can be regulated by modulating the enantiomeric excess of the chiral monomers. Consequently, our study unveils new topologies that exhibit enhanced higher-order structural complexity in the realm of supramolecular polymers.
Collapse
Affiliation(s)
- Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Raju Laishram
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Darshana Deb
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| |
Collapse
|