1
|
Huang YT, Huang HY, Cheng JL, Xie M, Feng LW, Cai Z, Zhu JB. A Regio- and Stereoselective Ring-Opening Polymerization Approach to Isotactic Alternating Poly(lactic-co-glycolic acid) with Stereocomplexation. Angew Chem Int Ed Engl 2025; 64:e202422147. [PMID: 39831782 DOI: 10.1002/anie.202422147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) has been widely employed for various biomedical applications owing to its biodegradability and biocompatibility. The discovery of the stereocomplex formation between enantiomeric alternating PLGA pairs underscored its potential as high-performance biodegradable materials with diverse material properties and biodegradability. Herein, we have established a regio- and stereoselective ring-opening polymerization approach for the synthesis of stereocomplexed isoenriched alternating PLGA from racemic methyl-glycolide (rac-MG). The high sequence and tacticity control was accomplished by an optimized enantiopure scandium catalyst bearing a spiro-salen scaffold. Varying polymer stereoregularity Pm from 0.4 to 0.91 led to a transformation of the resulting alternating PLGA from amorphous to semicrystalline materials. Notably, the stereocomplexed alternating PLGA demonstrated enhanced melting transition temperature (Tm up to 191 °C) and crystallization rate. This regio- and stereocontrolled polymerization represented a versatile approach for the preparation of high-performance biodegradable PLGA materials.
Collapse
Affiliation(s)
- Yu-Ting Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Hao-Yi Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Jing-Liang Cheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Min Xie
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| |
Collapse
|
2
|
Huang HY, Ren BH, Xie M, Huang YT, Li K, Cai Z, Lu XB, Zhu JB. Access to Polyhydroxyalkanoates with Diverse Syndiotacticity via Polymerization by Spiro-Salen Complexes and Insights into the Stereocontrol Mechanism. Angew Chem Int Ed Engl 2025; 64:e202419494. [PMID: 39714575 DOI: 10.1002/anie.202419494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Polyhydroxyalkanoates (PHAs) have attracted broad interest as promising sustainable materials to address plastic pollution and resource scarcity. However, the chemical synthesis of stereoregular PHAs via ring-opening polymerization (ROP) has long been an elusive endeavor. In this contribution, we exploited a robust spiro-salen yttrium complex (Y3) as the catalyst to successfully prepare syndiotactic PHAs with diverse pendent groups. Simply altering the ratio of enantiomeric catalysts allowed to access of PHAs with diverse syndiotacticity (Pr=0.5-0.99, from sticky oil to tough materials), delivering tunable thermal properties (glass transition temperature, Tg from -52 to 70 °C and melting transition temperature, Tm from 38 to 223 °C). A combined experimental and computational study suggested a polymeric exchange mechanism could boost the polymerization activity and control the syndioselectivity.
Collapse
Affiliation(s)
- Hao-Yi Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Min Xie
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Yu-Ting Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Kun Li
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Zhongzheng Cai
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jian-Bo Zhu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan) College of Chemistry, Sichuan University, 29 Wangjiang Rd, Chengdu, 610064, P. R. China
| |
Collapse
|
3
|
Li ZM, Li XL, Li Y, Zhang YH, Fu T, Wang XL, Wang YZ. High-performance chemically recyclable multifunctional polyolefin-like biomass-derived polyester materials. MATERIALS HORIZONS 2025; 12:946-956. [PMID: 39545318 DOI: 10.1039/d4mh01203h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Polyolefins are the most widely used and produced petroleum-based plastics. Unfortunately, the enormous production and usage of traditional polyolefins, coupled with the lack of effective disposal or recycling options, have led to significant fossil fuel depletion and severe environmental pollution. To foster sustainable societal development, there is an urgent need to design high-performance and inherently recyclable polyolefin-like bio-derived materials by innovative structural and molecular designs. Here, inspired by a copolymerization molecular design approach that simultaneously confers recyclability and superior properties to materials, high-performance recyclable polyolefin-like bio-derived polyesters (PBCxS) enabled by a novel judicious combination of building blocks are reported. PBCxS display excellent mechanical (40.6 MPa, 498.4%) and gas barrier properties (O2 0.09 barrer, H2O 1.70 × 10-13 g cm cm-2 s-1 Pa-1), even greater than those of bio-based materials and most aliphatic polyester. Meanwhile, PBCxS also exhibit multifunctionality with excellent biocompatibility properties and ultra-high processability (thermoforming, extrusion spinning, and 3D printing processing). Notably, PBCxS undergo depolymerization in the absence of any additional organic solvents, regenerating 92.0% of the high-purity (98.3%) original monomers, even with polyolefin blend plastics. Repolymerized polyesters still maintain their exceptional mechanical and thermal qualities. The successful application of this approach in polyesters opens up exciting possibilities for designing high-performance and recyclable bio-derived polyolefin-like materials.
Collapse
Affiliation(s)
- Zheng-Ming Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xing-Liang Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yao Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yu-Hang Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Teng Fu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
4
|
Guo Z, Zhang H, Chen H, Zhang M, Tang X, Wang M, Ma D. Hydrogenating Polyethylene Terephthalate into Degradable Polyesters. Angew Chem Int Ed Engl 2025; 64:e202418157. [PMID: 39491320 DOI: 10.1002/anie.202418157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/05/2024]
Abstract
The recycling and upcycling of polyethylene terephthalate (PET), the most widely used polyester plastic globally, has attracted growing attention concerning its disposal as non-degradable waste in the natural environment. Transforming end-of-life PET into (bio)degradable polyester offers a novel approach to managing its waste. In this study, we introduce a simple process capable of converting waste PET into degradable polyester, polyethylene terephthalate-polyethylene-1,4-cyclohexanedicarboxylate (PET-PECHD), by partly hydrogenating the aromatic rings (x) into aliphatic ones (y). The polyesters with variable x/y compositions ranging from 100/0 to 0/100 can be achieved, and the molecular weight (Mw) can be maintained when x/y >87/13 due to the nonobvious depolymerization. Pronounced depolymerization would occur with deeper hydrogenation, which generates a blend of PET-PECHD and polyethylene-1,4-cyclohexanedicarboxylate (PECHD) with lower Mw, and finally a single-type polymer PECHD. The PET-PECHD demonstrates comparable thermal stability and mechanical strength compared to PET, along with superior extensibility, barrier properties, and (bio)degradability in acidic, alkaline solutions, and moist soil. This research highlights the potential for cost-effective, large-scale production of degradable polyester from real-life plastic waste.
Collapse
Affiliation(s)
- Zhenbo Guo
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Haoran Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Haoyu Chen
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Meiqi Zhang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaoyan Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
5
|
Zhang Z, Quinn EC, Kenny JK, Grigoropoulos A, DesVeaux JS, Chen T, Zhou L, Xu T, Beckham GT, Chen EYX. Stereomicrostructure-regulated biodegradable adhesives. Science 2025; 387:297-303. [PMID: 39818898 DOI: 10.1126/science.adr7175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
Commercial adhesives are petroleum-based thermoset networks or nonbiodegradable thermoplastic hot melts, making them ideal targets for replacement by biodegradable alternatives. Poly(3-hydroxybutyrate) (P3HB) is a biorenewable and biodegradable alternative to conventional plastics, but microbial P3HB, which has a stereoperfect stereomicrostructure, exhibits no adhesion. In this study, by elucidating the fundamental relationship between chemocatalytically engineered P3HB stereomicrostructures and adhesion properties, we found that biodegradable syndio-rich P3HB exhibits high adhesion strength and outperforms common commercial adhesives, whereas syndiotactic, isotactic, or iso-rich P3HB shows no measurable adhesion. The syndio-rich stereomicrostructure brings about desired thermomechanical and viscoelastic properties of P3HB that enable strong adhesion to a range of substrates tested, including aluminum, steel, glass, and wood, and its performance is insensitive to molar mass and reprocessing or reuse.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Jacob K Kenny
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- BOTTLE Consortium, Golden, CO, USA
| | - Alexandra Grigoropoulos
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jason S DesVeaux
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- BOTTLE Consortium, Golden, CO, USA
| | - Tiffany Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Kavli Energy NanoScience Institute, Berkeley, CA, USA
| | - Li Zhou
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Kavli Energy NanoScience Institute, Berkeley, CA, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- BOTTLE Consortium, Golden, CO, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Yu C, Zeng C, Han M, Liu J, Zhu R, Wang L, Shan G, Bao Y, Zheng Y, Pan P. Defect Crystal Formation and Thermal-Induced Structural Ordering of Semicrystalline Copolymers Induced by Comonomer Inclusion/Exclusion. J Phys Chem Lett 2025; 16:281-287. [PMID: 39720897 DOI: 10.1021/acs.jpclett.4c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Comonomer defects can induce semicrystalline polymers to form unique crystalline structures (e.g., defect crystals), which can greatly influence the materials' physical properties. However, the formation mechanism and structural evolution of defect polymer crystals are not yet well understood. Herein, we chose the poly(l-lactic acid) (PLA) containing glycolic acid (GA) units as the model defect-containing polymer and investigated its crystallization structure and phase transition. The presence of GA units reduces the crystallizability of PLA and leads to the formation of unique defect crystals with enlarged unit cell size. The formation of defect crystals is favored at a low crystallization temperature or high content of GA units due to the inclusion of more comonomer defects. The defect crystals are metastable and undergo structural ordering to form thermally stable α-crystals upon heating and high-temperature annealing, as governed by the exclusion of comonomer defects. This work sheds light on the crystallization and phase transition of defect-containing polymers.
Collapse
Affiliation(s)
- Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Chang Zeng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Mengzhe Han
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Ronghua Zhu
- Zhejiang Hisun Biomaterials Corporation Limited, Taizhou 318000, China
| | - Lunhe Wang
- Zhejiang Hisun Biomaterials Corporation Limited, Taizhou 318000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Ying Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| |
Collapse
|
7
|
Zhou L, Zhang Z, Sangroniz A, Shi C, Gowda RR, Scoti M, Barange DK, Lincoln C, Beckham GT, Chen EYX. Chain-End Controlled Depolymerization Selectivity in α,α-Disubstituted Propionate PHAs with Dual Closed-Loop Recycling and Record-High Melting Temperature. J Am Chem Soc 2024; 146:29895-29904. [PMID: 39413833 DOI: 10.1021/jacs.4c11920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Within the large poly(3-hydroxyalkanoate) (PHA) family, C3 propionates are much less studied than C4 butyrates, with the exception of α,α-disubstituted propionate PHAs, particularly poly(3-hydroxy-2,2-dimethylpropionate), P3H(Me)2P, due to its high melting temperature (Tm ∼ 230 °C) and crystallinity (∼76%). However, inefficient synthetic routes to its monomer 2,2-dimethylpropiolactone [(Me)2PL] and extreme brittleness of P3H(Me)2P largely hinder its broad applications. Here, we introduce simple, efficient step-growth polycondensation (SGP) of a hydroxyacid or methyl ester to afford P3H(Me)2P with low to medium molar mass, which is then utilized to produce lactones through base-catalyzed depolymerization. The ring-opening polymerization (ROP) of the 4-membered lactone leads to high-molar-mass P3H(Me)2P, which can be depolymerized by hydrolysis to the hydroxyacid in 99% yield or methanolysis to the hydroxyester in 91% yield, achieving closed-loop recycling via both SGP and ROP routes. Intriguingly, the chain end of the SGP-P3H(Me)2P determines the depolymerization selectivity toward 4- or 12-membered lactone formation, while both can be repolymerized back to P3H(Me)2P. Through the formation of copolymers P3H(Me/R)2P (R = Et, nPr), PHAs with high tensile strength and ductility, coupled with high barriers to water vapor and oxygen, have been created. Notably, the PHA structure-property study led to P3H(nPr)2P with a record-high Tm of 266 °C within the PHA family.
Collapse
Affiliation(s)
- Li Zhou
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ainara Sangroniz
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ravikumar R Gowda
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Miriam Scoti
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Deepak K Barange
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Clarissa Lincoln
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE Consortium, Golden, Colorado 80401, United States
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE Consortium, Golden, Colorado 80401, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
8
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
9
|
Chellali JE, Woodside AJ, Yu Z, Neogi S, Külaots I, Guduru PR, Robinson JR. Access to Stereoblock Polyesters via Irreversible Chain-Transfer Ring-Opening Polymerization (ICT-ROP). J Am Chem Soc 2024. [PMID: 38593434 DOI: 10.1021/jacs.4c02976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Precise control over polymer microstructure can enable the molecular tunability of material properties and represents a significant challenge in polymer chemistry. Stereoblock copolymers are some of the simplest stereosequenced polymers, yet the synthesis of stereoblock polyesters from prochiral or racemic monomers outside of "simple" isotactic stereoblocks remains limited. Herein, we report the development of irreversible chain-transfer ring-opening polymerization (ICT-ROP), which overcomes the fundamental limitations of single catalyst approaches by using transmetalation (e.g., alkoxide-chloride exchange) between two catalysts with distinct stereoselectivities as a means to embed temporally controlled multicatalysis in ROP. Our combined small-molecule model and catalytic polymerization studies lay out a clear molecular basis for ICT-ROP and are exploited to access the first examples of atactic-syndiotactic stereoblock (at-sb-st) polyesters, at-sb-st polyhydroxyalkanoates (PHAs). We achieve high levels of control over molecular weight, tacticity, monomer composition, and block structures in a temporally controlled manner and demonstrate that stereosequence control leads to polymer tensile properties that are independent of thermal properties.
Collapse
Affiliation(s)
- Jonathan E Chellali
- Department of Chemistry, Brown University, 324 Brook St., Providence, Rhode Island 02912, United States
| | - Audra J Woodside
- Department of Chemistry, Brown University, 324 Brook St., Providence, Rhode Island 02912, United States
| | - Ziyan Yu
- Department of Chemistry, Brown University, 324 Brook St., Providence, Rhode Island 02912, United States
| | - Srijan Neogi
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Indrek Külaots
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Pradeep R Guduru
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, 324 Brook St., Providence, Rhode Island 02912, United States
| |
Collapse
|
10
|
Yang H, Xu G, Li J, Wang L, Yu K, Yan J, Zhang S, Zhou H. Fabrication of bio-based biodegradable poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composite foams for highly efficient oil-water separation. Int J Biol Macromol 2024; 257:128750. [PMID: 38101682 DOI: 10.1016/j.ijbiomac.2023.128750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
The open-cell bio-based biodegradable polymer foams show good application prospect in dealing with the serious environmental issue caused by oil spill and organic solvents spills, while the cell structures and hydrophobic properties of the foams limit their performance. In this work, the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was selected to help prepare bio-based biodegradable poly(lactic acid) (PLA) foams. Based on a two-step foaming method, the crystallization ability of different samples was regulated by the "original crystals" together with PHBV in the foaming process, where skeleton structures were provided to facilitate the open-cell structures and promote their mechanical property. As illustrated, PHBV facilitated the formation of open-cell PLA foams, where the foams displayed superior oil-water separation capacity. The maximum volume expansion ratio of the foams was 80.08, the contact angle of deionized water reached to 134.5°, the adsorption capacity for oil or organic solvents was 10.8 g/g-51.8 g/g, and the adsorption capacity for CCl4 can still maintained 83.5 % of the initial value after 10 adsorption-desorption cycles. This work not only clarified the foaming mechanism of open-cell foams, but also provided a green and simple method for preparing bio-based biodegradable foams possessing excellent oil-water separation performance.
Collapse
Affiliation(s)
- Hailong Yang
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Guohe Xu
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Jiantong Li
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Linyan Wang
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China.
| | - Kesong Yu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, People's Republic of China
| | - Jundian Yan
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Shuo Zhang
- College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Hongfu Zhou
- Key Laboratory of Processing and Application of Polymeric Foams of China National Light Industry Council, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
| |
Collapse
|
11
|
Martinaud E, Hierro-Iglesias C, Hammerton J, Hadad B, Evans R, Sacharczuk J, Lester D, Derry MJ, Topham PD, Fernandez-Castane A. Valorising Cassava Peel Waste Into Plasticized Polyhydroxyalkanoates Blended with Polycaprolactone with Controllable Thermal and Mechanical Properties. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:3503-3515. [PMID: 39161457 PMCID: PMC11330390 DOI: 10.1007/s10924-023-03167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 08/21/2024]
Abstract
Approximately 99% of plastics produced worldwide were produced by the petrochemical industry in 2019 and it is predicted that plastic consumption may double between 2023 and 2050. The use of biodegradable bioplastics represents an alternative solution to petroleum-based plastics. However, the production cost of biopolymers hinders their real-world use. The use of waste biomass as a primary carbon source for biopolymers may enable a cost-effective production of bioplastics whilst providing a solution to waste management towards a carbon-neutral and circular plastics economy. Here, we report for the first time the production of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with a controlled molar ratio of 2:1 3-hydroxybutyrate:3-hydroxvalerate (3HB:3HV) through an integrated pre-treatment and fermentation process followed by alkaline digestion of cassava peel waste, a renewable low-cost substrate, through Cupriavidus necator biotransformation. PHBV was subsequently melt blended with a biodegradable polymer, polycaprolactone (PCL), whereby the 30:70 (mol%) PHBV:PCL blend exhibited an excellent balance of mechanical properties and higher degradation temperatures than PHBV alone, thus providing enhanced stability and controllable properties. This work represents a potential environmental solution to waste management that can benefit cassava processing industries (or other crop processing industries) whilst developing new bioplastic materials that can be applied, for example, to packaging and biomedical engineering. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10924-023-03167-4.
Collapse
Affiliation(s)
- Emma Martinaud
- École Nationale Supérieure de Chimie, de Biologie et de Physique, Polytechnic Institute of Bordeaux, 33607 Pessac Cedex, France
- Energy and Bioproducts Research Institute, Aston University, Birmingham, B4 7ET UK
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | | | - James Hammerton
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Bawan Hadad
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Rob Evans
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Jakub Sacharczuk
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Daniel Lester
- Polymer Characterisation Research Technology Platform, University of Warwick, Coventry, CV4 7AL UK
| | - Matthew J. Derry
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Paul D. Topham
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| | - Alfred Fernandez-Castane
- Energy and Bioproducts Research Institute, Aston University, Birmingham, B4 7ET UK
- Aston Advanced Materials Research Centre, Aston University, Birmingham, B4 7ET UK
| |
Collapse
|
12
|
Zhou Z, LaPointe AM, Coates GW. Atactic, Isotactic, and Syndiotactic Methylated Polyhydroxybutyrates: An Unexpected Series of Isomorphic Polymers. J Am Chem Soc 2023; 145:25983-25988. [PMID: 37976254 DOI: 10.1021/jacs.3c10944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Polyhydroxyalkanoates (PHAs), such as poly[(R)-3-hydroxybutyrates] [(R)-P3HB], are produced by bacteria and are promising alternatives to nondegradable polyolefin plastics, but their semicrystallinity and high melting points are only maintained at high tacticity, which are commonly seen in other semicrystalline polymers like isotactic polypropylene (iPP). We herein report a class of synthetic PHAs, cis-poly(3-hydroxy-2-methylbutyrate)s (cis-PHMBs), that exhibit tacticity-independent semicrystallinity. The syndiotactic, isotactic, and even atactic PHMBs all share high melting points (Tm > 170 °C) and nearly identical crystal structures. The isomorphism of these polymers across three different tacticities has allowed access to iPP-like, high-performance PHMB without the requirement of high tacticity.
Collapse
Affiliation(s)
- Zhiyao Zhou
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Anne M LaPointe
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
13
|
Zhang Z, Quinn EC, Olmedo-Martínez JL, Caputo MR, Franklin KA, Müller AJ, Chen EYX. Toughening Brittle Bio-P3HB with Synthetic P3HB of Engineered Stereomicrostructures. Angew Chem Int Ed Engl 2023; 62:e202311264. [PMID: 37878997 DOI: 10.1002/anie.202311264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Poly(3-hydroxybutyrate) (P3HB), a biologically produced, biodegradable natural polyester, exhibits excellent thermal and barrier properties but suffers from mechanical brittleness, largely limiting its applications. Here we report a mono-material product design strategy to toughen stereoperfect, brittle bio or synthetic P3HB by blending it with stereomicrostructurally engineered P3HB. Through tacticity ([mm] from 0 to 100 %) and molecular weight (Mn to 788 kDa) tuning, high-performance synthetic P3HB materials with tensile strength to ≈30 MPa, fracture strain to ≈800 %, and toughness to 126 MJ m-3 (>110× tougher than bio-P3HB) have been produced. Physical blending of the brittle P3HB with such P3HB in 10 to 90 wt % dramatically enhances its ductility from ≈5 % to 95-450 % and optical clarity from 19 % to 85 % visible light transmittance while maintaining desirably high elastic modulus (>1 GPa), tensile strength (>35 MPa), and melting temperature (160-170 °C). This P3HB-toughening-P3HB methodology departs from the traditional approach of incorporating chemically distinct components to toughen P3HB, which hinders chemical or mechanical recycling, highlighting the potential of the mono-material product design solely based on biodegradable P3HB to deliver P3HB materials with diverse performance properties.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Jorge L Olmedo-Martínez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
| | - Maria Rosaria Caputo
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
| | - Kevin A Franklin
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| |
Collapse
|
14
|
Caputo M, Shi C, Tang X, Sardon H, Chen EYX, Müller AJ. Tailoring the Nucleation and Crystallization Rate of Polyhydroxybutyrate by Copolymerization. Biomacromolecules 2023; 24:5328-5341. [PMID: 37782027 PMCID: PMC10646943 DOI: 10.1021/acs.biomac.3c00808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/20/2023] [Indexed: 10/03/2023]
Abstract
In the polyester family, the biopolymer with the greatest industrial potential could be poly(3-hydroxybutyrate) (PHB), which can be produced nowadays biologically or chemically. The scarce commercial use of PHB derives from its poor mechanical properties, which can be improved by incorporating a flexible aliphatic polyester with good mechanical performance, such as poly(ε-caprolactone) (PCL), while retaining its biodegradability. This work studies the structural, thermal, and morphological properties of block and random copolymers of PHB and PCL. The presence of a comonomer influences the thermal parameters following nonisothermal crystallization and the kinetics of isothermal crystallization. Specifically, the copolymers exhibit lower melting and crystallization temperatures and present lower overall crystallization kinetics than neat homopolymers. The nucleation rates of the PHB components are greatly enhanced in the copolymers, reducing spherulitic sizes and promoting transparency with respect to neat PHB. However, their spherulitic growth rates are depressed so much that superstructural growth becomes the dominating factor that reduces the overall crystallization kinetics of the PHB component in the copolymers. The block and random copolymers analyzed here also display important differences in the structure, morphology, and crystallization that were examined in detail. Our results show that copolymerization can tailor the thermal properties, morphology (spherulitic size), and crystallization kinetics of PHB, potentially improving the processing, optical, and mechanical properties of PHB.
Collapse
Affiliation(s)
- Maria
Rosaria Caputo
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Changxia Shi
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United
States
| | - Xiaoyan Tang
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United
States
| | - Haritz Sardon
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Eugene Y.-X. Chen
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United
States
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
15
|
Xie X, Huo Z, Jang E, Tong R. Recent advances in enantioselective ring-opening polymerization and copolymerization. Commun Chem 2023; 6:202. [PMID: 37775528 PMCID: PMC10541874 DOI: 10.1038/s42004-023-01007-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Precisely controlling macromolecular stereochemistry and sequences is a powerful strategy for manipulating polymer properties. Controlled synthetic routes to prepare degradable polyester, polycarbonate, and polyether are of recent interest due to the need for sustainable materials as alternatives to petrochemical-based polyolefins. Enantioselective ring-opening polymerization and ring-opening copolymerization of racemic monomers offer access to stereoregular polymers, specifically enantiopure polymers that form stereocomplexes with improved physicochemical and mechanical properties. Here, we highlight the state-of-the-art of this polymerization chemistry that can produce microstructure-defined polymers. In particular, the structures and performances of various homogeneous enantioselective catalysts are presented. Trends and future challenges of such chemistry are discussed.
Collapse
Affiliation(s)
- Xiaoyu Xie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Eungyo Jang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia, 24061, USA.
| |
Collapse
|
16
|
Westlie AH, Hesse SA, Tang X, Quinn EC, Parker CR, Takacs CJ, Tassone CJ, Chen EYX. All-Polyhydroxyalkanoate Triblock Copolymers via a Stereoselective-Chemocatalytic Route. ACS Macro Lett 2023; 12:619-625. [PMID: 37094112 DOI: 10.1021/acsmacrolett.3c00162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Biodegradable polyhydroxyalkanoate (PHA) homopolymers and statistical copolymers are ubiquitous in microbially produced PHAs, but the step-growth polycondensation mechanism the biosynthesis operates on presents a challenge to access well-defined block copolymers (BCPs), especially higher-order tri-BCP PHAs. Here we report a stereoselective-chemocatalytic route to produce discrete hard-soft-hard ABA all-PHA tri-BCPs based on the living chain-growth ring-opening polymerization of racemic (rac) 8-membered diolides (rac-8DLR; R denotes the two substituents on the ring). Depending on the composition of the soft B block, originated from rac-8DLR (R = Et, nBu), and its ratio to the semicrystalline, high-melting hard A block, derived from rac-8DLMe, the resulting all-PHA tri-BCPs with high molar mass (Mn up to 238 kg mol-1) and low dispersity (Đ = 1.07) exhibit tunable mechanical properties characteristic of a strong and tough thermoplastic, elastomer, or a semicrystalline thermoplastic elastomer.
Collapse
Affiliation(s)
- Andrea H Westlie
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Sarah A Hesse
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xiaoyan Tang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Celine R Parker
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Christopher J Tassone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|