1
|
Sheng H, Guo D, Shi Y, Xie H, Kong W, Li W, Yu Y, Li T. Radical [3+2] cycloaddition enables polysubstituted pyrrole synthesis via a visible-light-mediated reaction. Chem Commun (Camb) 2025. [PMID: 40390668 DOI: 10.1039/d5cc01840d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
We report a novel photocatalytic [3+2] annulation strategy employing N-aryl glycinates and 2-benzylidenemalononitrile partners for the efficient construction of polysubstituted pyrrole architectures. This methodology features operationally mild, redox-neutral conditions with exceptional functional group tolerance and broad substrate generality, while maintaining remarkable atom economy. Notably, the transformation utilizes dimethyl sulfoxide as both a reaction medium and a green oxidant. These features collectively offer a sustainable and practical approach to accessing poly-substituted pyrrole. The protocol has good scalability and excellent compatibility with biomolecules, which further underscores its potential utility.
Collapse
Affiliation(s)
- Heyun Sheng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Dabo Guo
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Yibo Shi
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Huanping Xie
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Weiguang Kong
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Wenguang Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Yongqi Yu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| |
Collapse
|
2
|
Zhu ZQ, Ge DH, Cao ZJ, Shi F. Palladium-Catalyzed (3 + 2) Annulation of Azaborines with Vinyl Epoxides for Constructing Polycyclic Oxazaborolidines. J Org Chem 2025; 90:4690-4703. [PMID: 40131852 DOI: 10.1021/acs.joc.5c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
A palladium-catalyzed (3 + 2) annulation of azaborines with vinyl epoxides has been established. By this strategy, various polycyclic oxazaborolidines with structural diversity were synthesized in generally high yields (up to 99%). The annulation can be scaled up and the polycyclic oxazaborolidines can be further functionalized through olefin metathesis and Heck reaction, which demonstrated good feasibility for downstream transformations. Moreover, the catalytic asymmetric version of this (3 + 2) annulation has been accomplished under the catalysis of palladium/chiral phosphoramidite ligand, producing chiral oxazaborolidines in overall good enantioselectivities (up to 98:2 er). This work not only represents the first catalytic asymmetric (3 + 2) annulation of 1,2-azaborines with vinyl epoxides but also offers an efficient strategy for constructing benzooxazaborolidine skeletons, particularly those in an enantioenriched fashion.
Collapse
Affiliation(s)
- Zi-Qi Zhu
- School of Petrochemical Engineering, Institute of Functional Heterocycles, Changzhou University, Changzhou 213164, China
| | - Ding-Hao Ge
- School of Petrochemical Engineering, Institute of Functional Heterocycles, Changzhou University, Changzhou 213164, China
| | - Zhi-Jie Cao
- School of Petrochemical Engineering, Institute of Functional Heterocycles, Changzhou University, Changzhou 213164, China
| | - Feng Shi
- School of Petrochemical Engineering, Institute of Functional Heterocycles, Changzhou University, Changzhou 213164, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Che C, Lu YN, Fang T, Zhen GJ, Qi X, Wang CJ. Asymmetric Three-Component Radical Cascade Reactions Enabled by Synergistic Photoredox/Brønsted Acid Catalysis: Access to α-Amino Acid Derivatives. ACS CENTRAL SCIENCE 2025; 11:36-45. [PMID: 39866695 PMCID: PMC11758273 DOI: 10.1021/acscentsci.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 01/28/2025]
Abstract
Multicomponent reactions (MCRs), highly sought-after methods to produce atom-, step-, and energy-economic organic syntheses, have been developed extensively. However, catalytic asymmetric MCRs, especially those involving radical species, remain largely unexplored owing to the difficulty in stereoselectively regulating the extraordinarily high reactivity of open-shell radical species. Herein, we report a conceptually novel catalytic asymmetric three-component radical cascade reaction of readily accessible glycine esters, α-bromo carbonyl compounds and 2-vinylcyclopropyl ketones via synergistic photoredox/Brønsted acid catalysis, in which three sequential C-C (σ/π/σ) bond-forming events occurred through a radical addition/ring-opening/radical-radical coupling protocol, affording an array of valuable enantioenriched unnatural α-amino acid derivatives bearing two contiguous stereogenic centers and an alkene moiety in moderate to good yield with high diastereoselectivity, excellent enantioselectivity and good E-dominated geometry under mild reaction conditions. The radical relay cascade process, especially a unique proton-coupled electron transfer (PCET)-promoted radical-radical coupling, is supported by mechanistic investigations and quantum mechanics calculations and should garner broad interest and further inspire the development of asymmetric multicomponent radical reactions.
Collapse
Affiliation(s)
- Chao Che
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Yi-Nan Lu
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Ting Fang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Guang-Jin Zhen
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Xiaotian Qi
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Chun-Jiang Wang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
- State
Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Tian K, Jin Z, Liu XL, He L, Liu HF, Yu PK, Chang X, Dong XQ, Wang CJ. Stereodivergent assembly of δ-valerolactones with an azaarene-containing quaternary stereocenter enabled by Cu/Ru relay catalysis. Chem Sci 2025; 16:1233-1240. [PMID: 39677940 PMCID: PMC11635979 DOI: 10.1039/d4sc05852f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
Developing methodologies for the expedient construction of biologically important δ-valerolactones bearing a privileged azaarene moiety and a sterically congested all-carbon quaternary stereocenter is important and full of challenges. We present herein a novel multicatalytic strategy for the stereodivergent synthesis of highly functionalized chiral δ-valerolactones bearing 1,4-nonadjacent quaternary/tertiary stereocenters by orthogonally merging borrowing hydrogen and Michael addition between α-azaaryl acetates and allylic alcohols followed by lactonization in a one-pot manner. Enabled by Cu/Ru relay catalysis, this cascade protocol offers the advantages of atom/step economy, redox-neutrality, mild reaction conditions, and broad substrate tolerance. Scale-up experiments and synthetic transformations further demonstrated the potential for synthetic applications. Mechanistic experiments support the envisioned bimetallic relay catalytic mechanism, and the key role of Cs2CO3 in promoting lactonization was also revealed.
Collapse
Affiliation(s)
- Kui Tian
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Zhuan Jin
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xin-Lian Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Ling He
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Hong-Fu Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Pin-Ke Yu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xin Chang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Xiu-Qin Dong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
| | - Chun-Jiang Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
5
|
Du Y, Han P, Wang T, Wang YQ. Organocatalytic Enantioselective Synthesis of [5.7]-Fused ε-Sultam N, O-Heterocycles via (3 + 2)-Annulation of Seven-Membered Cyclic N-Sulfonylimines with γ-Hydroxy-α,β-Unsaturated Ketones. J Org Chem 2024; 89:18698-18706. [PMID: 39656695 DOI: 10.1021/acs.joc.4c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
A highly stereoselective protocol for the (3 + 2)-annulation of biphenyl-bridged seven-membered cyclic N-sulfonylimines with γ-hydroxy-α,β-unsaturated ketones was developed. The reactions afforded a wide range of chiral [5.7]-fused ε-sultams bearing N-adjacent 1,3-stereocenters in excellent yields (93-98% yields) and high enantio/diastereoselectivities (up to >99% ee, >20:1 d.r.) and two other examples with alkoxyl groups were obtained in 52-61% yields, 95% ee, and >20:1 d.r. by utilizing organocatalysis with quinine-derived squaramides.
Collapse
Affiliation(s)
- Ying Du
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Peng Han
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Tao Wang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan 475004, P. R. China
| | - You-Qing Wang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
6
|
Wang Y, Zhang S, Zeng K, Zhang P, Song X, Chen TG, Xia G. Deoxygenative radical cross-coupling of C(sp 3)-O/C(sp 3)-H bonds promoted by hydrogen-bond interaction. Nat Commun 2024; 15:6745. [PMID: 39117625 PMCID: PMC11310525 DOI: 10.1038/s41467-024-50897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Building C(sp3)-rich architectures using simple and readily available starting materials will greatly advance modern drug discovery. C(sp3)-H and C(sp3)-O bonds are commonly used to strategically disassemble and construct bioactive compounds, respectively. However, the direct cross coupling of these two chemical bonds to form C(sp3)-C(sp3) bonds is rarely explored in existing literature. Conventional methods for forming C(sp3)-C(sp3) bonds via radical-radical coupling pathways often suffer from poor selectivity, severely limiting their practicality in synthetic applications. In this study, we present a single electron transfer (SET) strategy that enables the cleavage of amine α-C - H bonds and heterobenzylic C - O bonds to form C(sp3)-C(sp3) bonds. Preliminary mechanistic studies reveal a hydrogen bond interaction between substrates and phosphoric acid facilitates the cross-coupling of two radicals with high chemoselectivity. This methodology provides an effective approach to a variety of aza-heterocyclic unnatural amino acids and bioactive molecules.
Collapse
Affiliation(s)
- Yue Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Suping Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ke Zeng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Pengli Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Xiaorong Song
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Tie-Gen Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| | - Guoqin Xia
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| |
Collapse
|
7
|
Yang Z, Liu J, Xie L. Stabilized Carbon-Centered Radical-Mediated Carbosulfenylation of Styrenes: Modular Synthesis of Sulfur-Containing Glycine and Peptide Derivatives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402428. [PMID: 38852190 PMCID: PMC11304285 DOI: 10.1002/advs.202402428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/27/2024] [Indexed: 06/11/2024]
Abstract
Sulfur-containing amino acids and peptides play critical roles in organisms. Thiol-ene reactions between the thiol residues of L-cysteine and the alkenyl fragments in the designed coupling partners serve as primary tools for constructing C─S bonds in the synthesis of unnatural sulfur-containing amino acid derivatives. These reactions are favored due to the preference for hydrogen transfer from thiol to β-sulfanyl carbon radical intermediates. In this paper, the study proposes utilizing carbon-centered radicals stabilized by the capto-dative effect, generated under photocatalytic conditions from N-aryl glycine derivatives. The aim is to compete with the thiol hydrogen, enabling radical C─C bond formation with β-sulfanyl carbon radicals. This protocol is robust in the presence of air and water, offers significant potential as a modular and efficient platform for synthesizing sulfur-containing amino acids and modifying peptides, particularly with abundant disulfides and styrenes.
Collapse
Affiliation(s)
- Zihui Yang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Jia Liu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Lan‐Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| |
Collapse
|
8
|
Wang W, Xuan L, Chen Q, Fan R, Zhao F, Dong J, Wang H, Yan Q, Zhou H, Chen FE. Copper-Catalyzed Asymmetric Remote C(sp 3)-H Alkylation of N-Fluorocarboxamides with Glycine Derivatives and Peptides. J Am Chem Soc 2024; 146:6307-6316. [PMID: 38381876 DOI: 10.1021/jacs.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Saturated hydrocarbon bonds are ubiquitous in organic molecules; to date, the selective functionalization of C(sp3)-H bonds continues to pose a notorious difficulty, thereby garnering significant attention from the synthetic chemistry community. During the past several decades, a wide array of powerful new methodologies has been developed to enantioselectively modify C(sp3)-H bonds that is successfully applied in asymmetric formation of diverse bonds, including C-C, C-N, and C-O bonds; nevertheless, the asymmetric C(sp3)-H alkylation is elusive and, therefore, far less explored. In this work, we report a direct and robust strategy to construct highly valuable enantioenriched unnatural α-amino acid (α-AA) cognates and peptides by a copper-catalyzed enantioselective remote C(sp3)-H alkylation of N-fluorocarboxamides and readily accessible glycine esters under ambient conditions. The key to success lies in the optically active Cu catalyst generated through the coordination of glycine derivatives to enantiopure bisphosphine/Cu(I) species, which is beneficial to the single electronic reduction of N-fluorocarboxamides and the subsequent stereodetermining alkylation. More importantly, all types (primary, secondary, tertiary, and even α-oxy) of δ-C(sp3)-H bonds could be site- and stereospecifically activated by the kinetically favored 1,5-hydrogen atom transfer (1,5-HAT) step.
Collapse
Affiliation(s)
- Wei Wang
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Liangming Xuan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qinlin Chen
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Rundong Fan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fei Zhao
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jianghu Dong
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hui Zhou
- College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
9
|
Ji DS, Zhang R, Han XY, Hu XQ, Xu PF. Stereodivergent Synthesis of All Stereoisomers of 2,3-Disubstituted δ-Lactam Derivatives via Organocatalytic Cascade Reactions and Base-Induced Epimerization. Org Lett 2024; 26:315-320. [PMID: 38175121 DOI: 10.1021/acs.orglett.3c03861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A protocol was developed to achieve stereodivergent synthesis of stereoisomers of δ-lactam bearing vicinal chiral centers. Organocatalytic cascade reactions were employed to produce the target products as the kinetic products, which exhibited remarkable enantioselectivities. In the presence of DBU, the kinetic product underwent epimerization to form a thermodynamically more stable diastereomer without loss in enantioselectivity. By simply switching the chiral organocatalyst and its enantiomer, we can efficiently obtain four stereoisomers with high enantioselectivities.
Collapse
Affiliation(s)
- Dong-Sheng Ji
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu 730000, P. R. China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Rui Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu 730000, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Xu-Yan Han
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu 730000, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Xiu-Qin Hu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu 730000, P. R. China
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Gansu 730000, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
10
|
Khuntia R, Mahapatra SK, Roy L, Chandra Pan S. Correction: Structurally divergent enantioselective synthesis of benzofuran fused azocine derivatives and spiro-cyclopentanone benzofurans enabled by sequential catalysis. Chem Sci 2023; 14:12386. [PMID: 37969592 PMCID: PMC10631139 DOI: 10.1039/d3sc90206d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023] Open
Abstract
[This corrects the article DOI: 10.1039/D3SC03239F.].
Collapse
Affiliation(s)
- Rupkumar Khuntia
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India https://www.iitg.ac.in/span/
| | - Sanat Kumar Mahapatra
- Institute of Chemical Technology Mumbai IOC Odisha Campus Bhubaneswar Bhubaneswar 751013 India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai IOC Odisha Campus Bhubaneswar Bhubaneswar 751013 India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India https://www.iitg.ac.in/span/
| |
Collapse
|
11
|
Wang S, Gao Y, Hu Y, Zhou J, Chen Z, Liu Z, Zhang Y. Direct annulation between glycine derivatives and thiiranes through photoredox/iron cooperative catalysis. Chem Commun (Camb) 2023; 59:12783-12786. [PMID: 37815520 DOI: 10.1039/d3cc04580c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
A visible-light-induced aerobic oxidative [2+3] cycloaddition reaction between glycine derivatives and thiiranes has been disclosed, which provides an efficient and atom-economical strategy for the rapid synthesis of thiazolidine-2-carboxylic acid derivatives and the post-modification of glycine-derived dipeptides under mild conditions with good yield and high diastereoselectivities. A preliminary mechanistic study favors a pathway involving a cooperative photoredox catalysis and iron catalysis.
Collapse
Affiliation(s)
- Shutao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yuan Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Jintao Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhidang Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhao Liu
- First Hospital of Lanzhou University, Lanzhou, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
12
|
Khuntia R, Mahapatra SK, Roy L, Chandra Pan S. Structurally divergent enantioselective synthesis of benzofuran fused azocine derivatives and spiro-cyclopentanone benzofurans enabled by sequential catalysis. Chem Sci 2023; 14:10768-10776. [PMID: 37829006 PMCID: PMC10566461 DOI: 10.1039/d3sc03239f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
An important objective in organic synthesis and medicinal chemistry is the capacity to access structurally varied and complex molecules rapidly and affordably from easily available starting materials. Herein, a protocol for the structurally divergent synthesis of benzofuran fused azocine derivatives and spiro-cyclopentanone benzofurans has been developed via chiral bifunctional urea catalyzed reaction between aurone-derived α,β-unsaturated imine and ynone followed by switchable divergent annulation reactions by Lewis base catalysts (DBU and PPh3) with concomitant epimerization. The skeletally diversified products were formed in high yields with high diastereo- and enantioselectivities. Computational analysis with DFT and accurate DLPNO-CCSD(T) has been employed to gain deeper insights into mechanistic intricacies and investigate the role of chiral and Lewis base catalysts in skeletal diversity.
Collapse
Affiliation(s)
- Rupkumar Khuntia
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India https://www.iitg.ac.in/span/
| | - Sanat Kumar Mahapatra
- Institute of Chemical Technology Mumbai IOC Odisha Campus Bhubaneswar Bhubaneswar 751013 India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai IOC Odisha Campus Bhubaneswar Bhubaneswar 751013 India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati Assam 781039 India https://www.iitg.ac.in/span/
| |
Collapse
|
13
|
Carmo RLL, Galster SL, Wdowik T, Song C, Chemler SR. Copper-Catalyzed Enantioselective Aerobic Alkene Aminooxygenation and Dioxygenation: Access to 2-Formyl Saturated Heterocycles and Unnatural Proline Derivatives. J Am Chem Soc 2023; 145:13715-13729. [PMID: 37327484 PMCID: PMC10330884 DOI: 10.1021/jacs.3c01985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Alkene aminooxygenation and dioxygenation reactions that result in carbonyl products are uncommon, and protocols that control absolute stereochemistry are rare. We report herein catalytic enantioselective alkene aminooxygenation and dioxygenation that directly provide enantioenriched 2-formyl saturated heterocycles under aerobic conditions. Cyclization of substituted 4-pentenylsulfonamides, catalyzed by readily available chiral copper complexes and employing molecular oxygen as both oxygen source and stoichiometric oxidant, directly provides chiral 2-formyl pyrrolidines efficiently. Reductive or oxidative workup of these aldehydes provides their respective amino alcohols or amino acids (unnatural prolines). Enantioselective synthesis of an indoline and isoquinolines is also demonstrated. Concurrently, cyclization of various alkenols under similar conditions provides 2-formyl tetrahydrofurans, phthalans, isochromans, and morpholines. The nature of the copper ligands, the concentration of molecular oxygen, and the reaction temperature all impact the product distribution. Chiral nitrogen and oxygen heterocycles are common components of bioactive small molecules, and these enabling technologies provide access to saturated heterocycles functionalized with ready-to-use carbonyl electrophiles.
Collapse
Affiliation(s)
| | | | | | - Chaeeon Song
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Sherry R. Chemler
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|