1
|
Pu Q, Lai X, Peng Y, Wu Q. A controllable DNA: structural features and advanced applications of i-motif. Analyst 2025; 150:1726-1740. [PMID: 40183738 DOI: 10.1039/d4an01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The i-motif consists of two parallel-stranded duplexes, stabilized by intercalated semi-protonated cytosine-cytosine (C·C+) pairing. Initially, the i-motif was thought to be unstable under physiological pH, which limited its biological interest. However, recent studies have demonstrated the presence of i-motifs in regulatory regions of the human genome at neutral pH, making their study biologically relevant. In addition, in the field of nanotechnology, the reversible pH-responsive properties of i-motif structures have been utilized to construct functional nanostructures for biomedical diagnostics and therapeutics. In this review, we present an overview of the structural features of i-motifs, the factors affecting their stability, and detection methods. Furthermore, we focus on summarizing recent advances in the application of i-motif-based functional nanostructures at the cellular level. The challenges and future prospects of i-motifs in nanomedicine are also discussed at the end of this paper.
Collapse
Affiliation(s)
- Qiumei Pu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| | - Xiangde Lai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| | - Yanan Peng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China.
| | - Qiang Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China
| |
Collapse
|
2
|
Roxo C, Pasternak A. Switching off cancer - An overview of G-quadruplex and i-motif functional role in oncogene expression. Bioorg Med Chem Lett 2025; 116:130038. [PMID: 39577601 DOI: 10.1016/j.bmcl.2024.130038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
DNA can self-assemble into G-quadruplexes and i-motifs non-canonical secondary structures that are formed by guanine-rich sequences and the cytosine-rich sequences, respectively. G-quadruplexes and i-motifs have been closely linked to cancer development since they can regulate genes expression in various promoter regions. Moreover, these structures have gained attention as viable targets for anticancer treatments because of their physicochemical properties and gene-regulatory functions. As a result, they are attractive molecular targets for innovative cancer therapies. Herein, we review the G-quadruplex and i-motif structures, their dynamic relationship in biological systems, as well as their significance in cancer biology and the potential therapeutic approaches. Furthermore, we also address the simultaneous and mutually exclusive formation of G-quadruplex and i-motif structures in cellular environment.
Collapse
Affiliation(s)
- Carolina Roxo
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
3
|
Tsvetkov V, Mir B, Alieva R, Arutyunyan A, Oleynikov I, Novikov R, Boravleva E, Kamzeeva P, Zatsepin T, Aralov A, González C, Zavyalova E. Unveiling the unusual i-motif-derived architecture of a DNA aptamer exhibiting high affinity for influenza A virus. Nucleic Acids Res 2025; 53:gkae1282. [PMID: 39777463 PMCID: PMC11704962 DOI: 10.1093/nar/gkae1282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Non-canonical nucleic acid structures play significant roles in cellular processes through selective interactions with proteins. While both natural and artificial G-quadruplexes have been extensively studied, the functions of i-motifs remain less understood. This study investigates the artificial aptamer BV42, which binds strongly to influenza A virus hemagglutinin and unexpectedly retains its i-motif structure even at neutral pH. However, BV42 conformational heterogeneity hinders detailed structural analysis. Molecular dynamics simulations and chemical modifications of BV42 helped us to identify a potential binding site, allowing for aptamer redesign to eliminate the conformational diversity while retaining binding affinity. Nuclear magnetic resonance spectroscopy confirmed the i-motif/duplex junction with the three-cytosine loop nearby. This study highlights the unique structural features of the functional i-motif and its role in molecular recognition of the target.
Collapse
Affiliation(s)
- Vladimir Tsvetkov
- Center for Mathematical Modeling in Drug Development, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Department of Cell Biology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Bartomeu Mir
- Instituto de Química Física Blas Cabrera, CSIC, Madrid 28006, Spain
| | - Rugiya Alieva
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ilya Oleynikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roman Novikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elizaveta Boravleva
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products (Institute of Poliomyelitis), Russian Academy of Sciences, Moscow 108819, Russia
| | - Polina Kamzeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Timofei Zatsepin
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Carlos González
- Instituto de Química Física Blas Cabrera, CSIC, Madrid 28006, Spain
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
4
|
Chan AM, Ebrahimi SB, Samanta D, Leshchev D, Nijhawan AK, Hsu DJ, Ho MB, Ramani N, Kosheleva I, Henning R, Mirkin CA, Kohlstedt KL, Chen LX. Early Folding Dynamics of i-Motif DNA Revealed by pH-Jump Time-Resolved X-ray Solution Scattering. J Am Chem Soc 2024; 146:33743-33752. [PMID: 39607431 DOI: 10.1021/jacs.4c11768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The i-motif is a pH-responsive cytosine-rich oligonucleotide sequence that forms, under acidic conditions, a quadruplex structure. This tunable structural switching has made the i-motif a useful platform for designing pH-responsive nanomaterials. Despite the widespread application of i-motif DNA constructs as biomolecular switches, the mechanism of i-motif folding on the atomic scale has yet to be established. We investigate the early folding structural dynamics of i-motif oligonucleotides with laser-pulse-induced pH-jump time-resolved X-ray solution scattering. Following the pH-jump, we observe that the initial random coil ensemble converts into a contracted intermediate state within 113 ns followed by further folding on the 10 ms time scale. We reveal the representative structures of these transient species, hitherto unknown, with molecular dynamics simulations and ensemble fitting. These results pave the way for understanding metastable conformations of i-motif folding and for benchmarking emerging theoretical models for simulating noncanonical nucleic acid structures.
Collapse
Affiliation(s)
- Arnold M Chan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Sasha B Ebrahimi
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biomolecular Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Devleena Samanta
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Denis Leshchev
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam K Nijhawan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Darren J Hsu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Madeline B Ho
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Namrata Ramani
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Material Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biomolecular Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Material Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne 60439, Illinois, United States
| |
Collapse
|
5
|
Fan Q, Sun B, Chao J. Advancements in Engineering Tetrahedral Framework Nucleic Acids for Biomedical Innovations. SMALL METHODS 2024:e2401360. [PMID: 39487613 DOI: 10.1002/smtd.202401360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Tetrahedral framework nucleic acids (tFNAs) are renowned for their controllable self-assembly, exceptional programmability, and excellent biocompatibility, which have led to their widespread application in the biomedical field. Beyond these features, tFNAs demonstrate unique chemical and biological properties including high cellular uptake efficiency, structural bio-stability, and tissue permeability, which are derived from their distinctive 3D structure. To date, an extensive range of tFNA-based nanostructures are intelligently designed and developed for various biomedical applications such as drug delivery, gene therapy, biosensing, and tissue engineering, among other emerging fields. In addition to their role in drug delivery systems, tFNAs also possess intrinsic properties that render them highly effective as therapeutic agents in the treatment of complex diseases, including arthritis, neurodegenerative disorders, and cardiovascular diseases. This dual functionality significantly enhances the utility of tFNAs in biomedical research, presenting valuable opportunities for the development of next-generation medical technologies across diverse therapeutic and diagnostic platforms. Consequently, this review comprehensively introduces the latest advancements of tFNAs in the biomedical field, with a focus on their benefits and applications as drug delivery nanoplatforms, and their inherent capabilities as therapeutic agents. Furthermore, the current limitations, challenges, and future perspectives of tFNAs are explored.
Collapse
Affiliation(s)
- Qin Fan
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
| | - Bicheng Sun
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
| | - Jie Chao
- State Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, 210000, China
- Portland Institute, Nanjing University of Posts and Telecommunications, Nanjing, 210000, China
| |
Collapse
|
6
|
Tao S, Run Y, Monchaud D, Zhang W. i-Motif DNA: identification, formation, and cellular functions. Trends Genet 2024; 40:853-867. [PMID: 38902139 DOI: 10.1016/j.tig.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
An i-motif (iM) is a four-stranded (quadruplex) DNA structure that folds from cytosine (C)-rich sequences. iMs can fold under many different conditions in vitro, which paves the way for their formation in living cells. iMs are thought to play key roles in various DNA transactions, notably in the regulation of genome stability, gene transcription, mRNA translation, DNA replication, telomere and centromere functions, and human diseases. We summarize the different techniques used to assess the folding of iMs in vitro and provide an overview of the internal and external factors that affect their formation and stability in vivo. We describe the possible biological relevance of iMs and propose directions towards their use as target in biology.
Collapse
Affiliation(s)
- Shentong Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yonghang Run
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - David Monchaud
- Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6302, Université Bourgogne Franche Comté (UBFC), Dijon, France
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
7
|
Dong X, Qiu Z, Wang Z, Li J, Qin W, Dang J, Zhou W, Jia G, Chen Y, Wang C. Efficient Silver(I)-Containing I-Motif DNA Hybrid Catalyst for Enantioselective Diels-Alder Reactions. Angew Chem Int Ed Engl 2024; 63:e202407838. [PMID: 38860437 DOI: 10.1002/anie.202407838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
The inherent chiral structures of DNA serve as attractive scaffolds to construct DNA hybrid catalysts for valuable enantioselective transformations. Duplex and G-quadruplex DNA-based enantioselective catalysis has made great progress, yet novel design strategies of DNA hybrid catalysts are highly demanding and atomistic analysis of active centers is still challenging. DNA i-motif structures could be finely tuned by different cytosine-cytosine base pairs, providing a new platform to design DNA catalysts. Herein, we found that a human telomeric i-motif DNA containing cytosine-silver(I)-cytosine (C-Ag+-C) base pairs interacting with Cu(II) ions (i-motif DNA(Ag+)/Cu2+) could catalyze Diels-Alder reactions with full conversions and up to 95 % enantiomeric excess. As characterized by various physicochemical techniques, the presence of Ag+ is proved to replace the protons in hemiprotonated cytosine-cytosine (C : C+) base pairs and stabilize the DNA i-motif to allow the acceptance of Cu(II) ions. The i-motif DNA(Ag+)/Cu2+ catalyst shows about 8-fold rate acceleration compared with DNA and Cu2+. Based on DNA mutation experiments, thermodynamic studies and density function theory calculations, the catalytic center of Cu(II) ion is proposed to be located in a specific loop region via binding to one nitrogen-7 atom of an unpaired adenine and two phosphate-oxygen atoms from nearby deoxythymidine monophosphate and deoxyadenosine monophosphate, respectively.
Collapse
Affiliation(s)
- Xingchen Dong
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ziyang Qiu
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zixiao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiaqi Li
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Weijun Qin
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jingshuang Dang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenqin Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yashao Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Changhao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
8
|
Wu Y, Wang GA, Yang Q, Li F. Native Characterization of Noncanonical Nucleic Acid Thermodynamics via Programmable Dynamic DNA Chemistry. J Am Chem Soc 2024; 146:18041-18049. [PMID: 38899479 DOI: 10.1021/jacs.4c04721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Folding thermodynamics, quantitatively described using parameters such as ΔGfold°, ΔHfold°, and ΔSfold°, is essential for characterizing the stability and functionality of noncanonical nucleic acid structures but remains difficult to measure at the molecular level. Leveraging the programmability of dynamic deoxyribonucleic acid (DNA) chemistry, we introduce a DNA-based molecular tool capable of performing a free energy shift assay (FESA) that directly characterizes the thermodynamics of noncanonical DNA structures in their native environments. FESA operates by the rational design of a reference DNA probe that is energetically equivalent to a target noncanonical nucleic acid structure in a series of toehold-exchange reactions, yet is structurally incapable of folding. As a result, a free energy shift (ΔΔGrxn°) is observed when plotting the reaction yield against the free energy of each toehold-exchange. We mathematically demonstrated that ΔGfold°, ΔHfold°, and ΔSfold° of the analyte can be calculated based on ΔΔGrxn°. After validating FESA using six DNA hairpins by comparing the measured ΔGfold°, ΔHfold°, and ΔSfold° values against predictions made by NUPACK software, we adapted FESA to characterize noncanonical nucleic acid structures, encompassing DNA triplexes, G-quadruplexes, and aptamers. This adaptation enabled the successful characterization of the folding thermodynamics for these complex structures under various experimental conditions. The successful development of FESA marks a paradigm shift and a technical advancement in characterizing the thermodynamics of noncanonical DNA structures through molecular tools. It also opens new avenues for probing fundamental chemical and biophysical questions through the lens of molecular engineering and dynamic DNA chemistry.
Collapse
Affiliation(s)
- Yuqin Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Guan Alex Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Qianfan Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Feng Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
9
|
Cox L, Bai C, Platnich CM, Rizzuto FJ. Divergent Polymer Superstructures from Protonated Poly(adenine) DNA and RNA. Biomacromolecules 2024; 25:3163-3168. [PMID: 38651279 DOI: 10.1021/acs.biomac.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Studies have shown that poly(adenine) DNA and RNA strands protonate at a low pH to form self-associating duplexes; however, the nanoscopic morphology of these structures is unclear. Here, we use Transition Electron Microscopy (TEM), Atomic Force Microscopy (AFM), dynamic light scattering (DLS), and fluorescence spectroscopy to show that both ribose identity (DNA or RNA) and assembly conditions (thermal or room-temperature annealing) dictate unique hierarchical structures for poly(adenine) sequences at a low pH. We show that while the thermodynamic product of protonating poly(adenine) DNA is a discrete dimer of two DNA strands, the kinetic product is a supramolecular polymer that branches and aggregates to form micron-diameter superstructures. In contrast, we find that protonated poly(A) RNA polymerizes into micrometer-length, twisted fibers under the same conditions. These divergent hierarchical morphologies highlight the amplification of subtle chemical differences between RNA and DNA into unique nanoscale behaviors. With the use of poly(adenine) strands spanning vaccine technologies, sensing, and dynamic biotechnology, understanding and controlling the underlying assembly pathways of these structures are critical to developing robust, programmable nanotechnologies.
Collapse
Affiliation(s)
- Lachlan Cox
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Changzhuang Bai
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Casey M Platnich
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Felix J Rizzuto
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
10
|
Mir B, Serrano-Chacón I, Medina P, Macaluso V, Terrazas M, Gandioso A, Garavís M, Orozco M, Escaja N, González C. Site-specific incorporation of a fluorescent nucleobase analog enhances i-motif stability and allows monitoring of i-motif folding inside cells. Nucleic Acids Res 2024; 52:3375-3389. [PMID: 38366792 PMCID: PMC11014255 DOI: 10.1093/nar/gkae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
The i-motif is an intriguing non-canonical DNA structure, whose role in the cell is still controversial. Development of methods to study i-motif formation under physiological conditions in living cells is necessary to study its potential biological functions. The cytosine analog 1,3-diaza-2-oxophenoxazine (tCO) is a fluorescent nucleobase able to form either hemiprotonated base pairs with cytosine residues, or neutral base pairs with guanines. We show here that when tCO is incorporated in the proximity of a G:C:G:C minor groove tetrad, it induces a strong thermal and pH stabilization, resulting in i-motifs with Tm of 39ºC at neutral pH. The structural determination by NMR methods reveals that the enhanced stability is due to a large stacking interaction between the guanines of the tetrad with the tCO nucleobase, which forms a tCO:C+ in the folded structure at unusually-high pHs, leading to an increased quenching in its fluorescence at neutral conditions. This quenching is much lower when tCO is base-paired to guanines and totally disappears when the oligonucleotide is unfolded. By taking profit of this property, we have been able to monitor i-motif folding in cells.
Collapse
Affiliation(s)
- Bartomeu Mir
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
- Inorganic and Organic Chemistry Department. Organic Chemistry Section and IBUB. University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona. Spain
| | - Israel Serrano-Chacón
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
| | - Pedro Medina
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
- Departament de Bioquímica i Biomedicina. Facultat de Biologia. Universitat de Barcelona. 08028 Barcelona. Spain
| | - Veronica Macaluso
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
| | - Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
- Inorganic and Organic Chemistry Department. Organic Chemistry Section and IBUB. University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona. Spain
| | - Albert Gandioso
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
| | - Miguel Garavís
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology (BIST). 08028 Barcelona. Spain
- Departament de Bioquímica i Biomedicina. Facultat de Biologia. Universitat de Barcelona. 08028 Barcelona. Spain
| | - Núria Escaja
- Inorganic and Organic Chemistry Department. Organic Chemistry Section and IBUB. University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona. Spain
| | - Carlos González
- Instituto de Química Física ‘Blas Cabrera’. CSIC. Serrano 119. 28006 Madrid. Spain
| |
Collapse
|
11
|
Feng Y, Ma X, Yang Y, Tao S, Ahmed A, Gong Z, Cheng X, Zhang W. The roles of DNA methylation on pH dependent i-motif (iM) formation in rice. Nucleic Acids Res 2024; 52:1243-1257. [PMID: 38180820 PMCID: PMC10853798 DOI: 10.1093/nar/gkad1245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
I-motifs (iMs) are four-stranded non-B DNA structures containing C-rich DNA sequences. The formation of iMs is sensitive to pH conditions and DNA methylation, although the extent of which is still unknown in both humans and plants. To investigate this, we here conducted iMab antibody-based immunoprecipitation and sequencing (iM-IP-seq) along with bisulfite sequencing using CK (original genomic DNA without methylation-related treatments) and hypermethylated or demethylated DNA at both pH 5.5 and 7.0 in rice, establishing a link between pH, DNA methylation and iM formation on a genome-wide scale. We found that iMs folded at pH 7.0 displayed higher methylation levels than those formed at pH 5.5. DNA demethylation and hypermethylation differently influenced iM formation at pH 7.0 and 5.5. Importantly, CG hypo-DMRs (differentially methylated regions) and CHH (H = A, C and T) hyper-DMRs alone or coordinated with CG/CHG hyper-DMRs may play determinant roles in the regulation of pH dependent iM formation. Thus, our study shows that the nature of DNA sequences alone or combined with their methylation status plays critical roles in determining pH-dependent formation of iMs. It therefore deepens the understanding of the pH and methylation dependent modulation of iM formation, which has important biological implications and practical applications.
Collapse
Affiliation(s)
- Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Xing Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Ying Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Shentong Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Asgar Ahmed
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| |
Collapse
|
12
|
Bchara L, Eritja R, Gargallo R, Benavente F. Rapid and Highly Efficient Separation of i-Motif DNA Species by CE-UV and Multivariate Curve Resolution. Anal Chem 2023; 95:15189-15198. [PMID: 37782260 PMCID: PMC10585953 DOI: 10.1021/acs.analchem.3c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
The i-motif is a class of nonstandard DNA structure with potential biological implications. A novel capillary electrophoresis with an ultraviolet absorption spectrophotometric detection (CE-UV) method has been developed for the rapid analysis of the i-motif folding equilibrium as a function of pH and temperature. The electrophoretic analyses are performed in reverse polarity of the separation voltage with 32 cm long fused silica capillaries permanently coated with hydroxypropyl cellulose (HPC), after an appropriate conditioning procedure was used to achieve good repeatability. However, the electrophoretic separation between the folded and unfolded conformers of the studied cytosine-rich i-motif sequences (i.e., TT, Py39WT, and nmy01) is compromised, especially for Py39WT and nmy01, which result in completely overlapped peaks. Therefore, deconvolution with multivariate curve resolution-alternating least-squares (MCR-ALS) has been required for the efficient separation of the folded and unfolded species found at different concentration levels at pH 6.5 and between 12 and 40 °C, taking advantage of the small dissimilarities in the electrophoretic mobilities and UV spectra levels. MCR-ALS has also provided quantitative information that has been used to estimate melting temperatures (Tm), which are similar to those determined by UV and circular dichroism (CD) spectroscopies. The obtained results demonstrate that CE-UV assisted by MCR-ALS may become a very useful tool to get novel insight into the folding of i-motifs and other complex DNA structures.
Collapse
Affiliation(s)
- Laila Bchara
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Ramon Eritja
- Institute
for Advanced Chemistry of Catalonia (IQAC−CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Raimundo Gargallo
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Fernando Benavente
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
- Institute
for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
13
|
Ghezzo M, Trajkovski M, Plavec J, Sissi C. A Screening Protocol for Exploring Loop Length Requirements for the Formation of a Three Cytosine-Cytosine + Base-Paired i-Motif. Angew Chem Int Ed Engl 2023; 62:e202309327. [PMID: 37611164 DOI: 10.1002/anie.202309327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
DNA sequences containing at least four runs of repetitive cytosines can fold into tetra-helical structures called i-Motifs (iMs). The interest in these DNA secondary structures is increasing due to their therapeutical and technological applications. Still, limited knowledge of their folding requirements is currently available. We developed a novel step-by-step pipeline for the systematic screening of putative iM-forming model sequences. Focusing on structures comprising only three cytosine-cytosine+ base pairs, we investigated what the minimal lengths of the loops required for formation of an intra-molecular iM are. Our data indicate that two and three nucleotides are required to connect the strands through the minor and majorgrooves of the iM, respectively. Additionally, they highlight an asymmetric behavior according to the distribution of the cytosines. Specifically, no sequence containing a single cytosine in the first and third run was able to fold into intra-molecular iMs with the same stability of those formed when the first and the third run comprise two cytosines. This knowledge represents a step forward toward the development of prediction tools for the proper identification of biologically functional iMs, as well as for the rational design of these secondary structures as technological devices.
Collapse
Affiliation(s)
- Michele Ghezzo
- Department of Pharmaceutical and Pharmacological Science, University of Padua, Via Marzolo 5, 35131, Padua, Italy
| | - Marko Trajkovski
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Science, University of Padua, Via Marzolo 5, 35131, Padua, Italy
| |
Collapse
|
14
|
Improta R. Shedding Light on the Photophysics and Photochemistry of I-Motifs Using Quantum Mechanical Calculations. Int J Mol Sci 2023; 24:12614. [PMID: 37628797 PMCID: PMC10454157 DOI: 10.3390/ijms241612614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
I-motifs are non-canonical DNA structures formed by intercalated hemiprotonated (CH·C)+ pairs, i.e., formed by a cytosine (C) and a protonated cytosine (CH+), which are currently drawing great attention due to their biological relevance and promising nanotechnological properties. It is important to characterize the processes occurring in I-motifs following irradiation by UV light because they can lead to harmful consequences for genetic code and because optical spectroscopies are the most-used tools to characterize I-motifs. By using time-dependent DFT calculations, we here provide the first comprehensive picture of the photoactivated behavior of the (CH·C)+ core of I-motifs, from absorption to emission, while also considering the possible photochemical reactions. We reproduce and assign their spectral signatures, i.e., infrared, absorption, fluorescence and circular dichroism spectra, disentangling the underlying chemical-physical effects. We show that the main photophysical paths involve C and CH+ bases on adjacent steps and, using this basis, interpret the available time-resolved spectra. We propose that a photodimerization reaction can occur on an excited state with strong C→CH+ charge transfer character and examine some of the possible photoproducts. Based on the results reported, some future perspectives for the study of I-motifs are discussed.
Collapse
Affiliation(s)
- Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy
| |
Collapse
|
15
|
Li KS, Jordan D, Lin LY, McCarthy SE, Schneekloth JS, Yatsunyk LA. Crystal Structure of an i-Motif from the HRAS Oncogene Promoter. Angew Chem Int Ed Engl 2023; 62:e202301666. [PMID: 36995904 PMCID: PMC10330059 DOI: 10.1002/anie.202301666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
An i-motif is a non-canonical DNA structure implicated in gene regulation and linked to cancers. The C-rich strand of the HRAS oncogene, 5'-CGCCCGTGCCCTGCGCCCGCAACCCGA-3' (herein referred to as iHRAS), forms an i-motif in vitro but its exact structure was unknown. HRAS is a member of the RAS proto-oncogene family. About 19 % of US cancer patients carry mutations in RAS genes. We solved the structure of iHRAS at 1.77 Å resolution. The structure reveals that iHRAS folds into a double hairpin. The two double hairpins associate in an antiparallel fashion, forming an i-motif dimer capped by two loops on each end and linked by a connecting region. Six C-C+ base pairs form each i-motif core, and the core regions are extended by a G-G base pair and a cytosine stacking. Extensive canonical and non-canonical base pairing and stacking stabilizes the connecting region and loops. The iHRAS structure is the first atomic resolution structure of an i-motif from a human oncogene. This structure sheds light on i-motifs folding and function in the cell.
Collapse
Affiliation(s)
- Kevin S Li
- Department Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Deondre Jordan
- Department Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Linda Y Lin
- Department Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - Sawyer E McCarthy
- Department Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, National Institute of Health, Frederick, MD 21702, USA
| | - Liliya A Yatsunyk
- Department Chemistry and Biochemistry, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA
| |
Collapse
|
16
|
Karimi A, Wang K, Basran K, Copp W, Luedtke NW. A Bright and Ionizable Cytosine Mimic for i-Motif Structures. Bioconjug Chem 2023. [PMID: 37196003 DOI: 10.1021/acs.bioconjchem.3c00055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A new fluorescent cytosine analog "tsC" containing a trans-stilbene moiety was synthesized and incorporated into hemiprotonated base pairs that comprise i-motif structures. Unlike previously reported fluorescent base analogs, tsC mimics the acid-base properties of cytosine (pKa ≈ 4.3) while exhibiting bright (ε × Φ ≈ 1000 cm-1 M-1) and red-shifted fluorescence (λem = 440 → 490 nm) upon its protonation in the water-excluded interface of tsC+:C base pairs. Ratiometric analyses of tsC emission wavelengths facilitate real-time tracking of reversible conversions between single-stranded, double-stranded, and i-motif structures derived from the human telomeric repeat sequence. Comparisons between local changes in tsC protonation with global structure changes according to circular dichroism suggest partial formation of hemiprotonated base pairs in the absence of global i-motif structures at pH = 6.0. In addition to providing a highly fluorescent and ionizable cytosine analog, these results suggest that hemiprotonated C+:C base pairs can form in partially folded single-stranded DNA in the absence of global i-motif structures.
Collapse
Affiliation(s)
- Ashkan Karimi
- Department of Chemistry, McGill University, Montreal, Quebec H3A-0B8, Canada
- Centre de recherche en biologie structural, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Kaixiang Wang
- Department of Chemistry, McGill University, Montreal, Quebec H3A-0B8, Canada
| | - Kaleena Basran
- Department of Chemistry, McGill University, Montreal, Quebec H3A-0B8, Canada
| | - William Copp
- Department of Chemistry, McGill University, Montreal, Quebec H3A-0B8, Canada
| | - Nathan W Luedtke
- Department of Chemistry, McGill University, Montreal, Quebec H3A-0B8, Canada
- Centre de recherche en biologie structural, McGill University, Montreal, Quebec H3G 0B1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3A-1A3, Canada
| |
Collapse
|
17
|
Rodriguez J, Domínguez A, Aviñó A, Borgonovo G, Eritja R, Mazzini S, Gargallo R. Exploring the stabilizing effect on the i-motif of neighboring structural motifs and drugs. Int J Biol Macromol 2023; 242:124794. [PMID: 37182626 DOI: 10.1016/j.ijbiomac.2023.124794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Cytosine-rich DNA sequences may fold into a structure known as i-motif, with potential in vivo modulation of gene expression. The stability of the i-motif is residual at neutral pH values. To increase it, the addition of neighboring moieties, such as Watson-Crick stabilized loops, tetrads, or non-canonical base pairs have been proposed. Taking a recently described i-motif structure as a model, the relative effect of these structural moieties, as well as several DNA ligands, on the stabilization of the i-motif has been studied. To this end, not only the original sequence but different mutants were considered. Spectroscopic techniques, PAGE, and multivariate data analysis methods have been used to model the folding/unfolding equilibria induced by changes of pH, temperature, and the presence of ligands. The results have shown that the duplex is the moiety that is responsible of the stabilization of the i-motif structure at neutral pH. The T:T base pair, on the contrary, shows little stabilization of the i-motif. From several selected DNA-binding ligands, the G-quadruplex ligand BA41 is shown to interact with the duplex moiety, whereas non-specific interaction and little stabilization has been observed within the i-motif.
Collapse
Affiliation(s)
- Judit Rodriguez
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, Marti i Franqués 1-11, E-08028 Barcelona, Spain
| | - Arnau Domínguez
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan (Università degli Studi di Milano), Milan, Italy
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), University of Milan (Università degli Studi di Milano), Milan, Italy
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, Marti i Franqués 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|