1
|
Monroy JDR, Deshpande T, Schlecht J, Douglas C, Stirling R, Grabicki N, Smales GJ, Kochovski Z, Fabozzi FG, Hecht S, Feldmann S, Dumele O. Homochiral versus Racemic 2D Covalent Organic Frameworks. J Am Chem Soc 2025; 147:17750-17763. [PMID: 40371924 PMCID: PMC12123627 DOI: 10.1021/jacs.5c01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025]
Abstract
The synthesis of homochiral two-dimensional covalent organic frameworks (2D COFs) from chiral π-conjugated building blocks is challenging, as chiral units often lead to misaligned stacking interactions. In this work, we introduce helical chirality into 2D COFs using configurationally stable enantiopure and racemic [5]helicenes as linkers in the backbone of 2D [5]HeliCOFs as powders and films. Through condensation with 1,3,5-triformylbenzene (TFB) or 1,3,5-triformylphloroglucinol (TFP), our approach enables the efficient formation of a set of homochiral and racemic 2D [5]HeliCOFs. The resulting carbon-based crystalline and porous frameworks exhibit distinct structural features and different properties between homochiral and racemic counterparts. Propagation of helical chirality into the backbone of the crystalline frameworks leads to the observation of advanced chiroptical properties in the far-red visible spectrum, along with a less compact structure compared with the racemic frameworks. Homogeneous thin films of [5]HeliCOFs disclosed photoluminescent properties arising from the controlled growth of highly ordered π-conjugated lattices. The present study offers insight into general chiral framework formation and extends the Liebisch-Wallach rule to 2D COFs.
Collapse
Affiliation(s)
- José del Refugio Monroy
- Department
of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, Berlin12489, Germany
- Institute
of Organic Chemistry, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, Freiburg79104, Germany
| | - Tejas Deshpande
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne, Rue de l’Industrie 17, Sion1951, Switzerland
| | - Joël Schlecht
- Institute
of Organic Chemistry, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, Freiburg79104, Germany
| | - Clara Douglas
- Institute
of Organic Chemistry, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, Freiburg79104, Germany
| | - Robbie Stirling
- Department
of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, Berlin12489, Germany
| | - Niklas Grabicki
- Department
of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, Berlin12489, Germany
| | - Glen J. Smales
- Bundesanstalt
für Materialforschung und -prüfung, Unter den Eichen 87, Berlin12205, Germany
| | - Zdravko Kochovski
- Institute
of Electrochemical Energy Storage, Helmholtz-Zentrum
Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, Berlin14109, Germany
| | - Filippo Giovanni Fabozzi
- Department
of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, Berlin12489, Germany
| | - Stefan Hecht
- Department
of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, Berlin12489, Germany
| | - Sascha Feldmann
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne, Rue de l’Industrie 17, Sion1951, Switzerland
| | - Oliver Dumele
- Institute
of Organic Chemistry, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, Freiburg79104, Germany
- Freiburg
Materials Research Center, Albert-Ludwigs-Universität
Freiburg, Stefan-Meier-Strasse
21, Freiburg79104, Germany
- Freiburg
Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, Freiburg79110, Germany
| |
Collapse
|
2
|
Krappe AR, Mayer JC, Zhang W, Filla LM, Ligorio G, Hermerschmidt F, Eitelhuber LS, Güttler A, Weber M, Paulus B, Resch‐Genger U, List‐Kratochvil EJW, Eigler S. Highly Emissive Hexa-peri-benzocoronene-fluoranthene Hybrid as Easily Processable and Stable OLED Material. Chemistry 2025; 31:e202500742. [PMID: 40208964 PMCID: PMC12117179 DOI: 10.1002/chem.202500742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/12/2025]
Abstract
We report the synthesis of a fluorescent polycyclic aromatic hydrocarbon dye with a "symmetry-broken" core, derived from the related hexa-peri-benzocoronene (HBC) core with a fluoranthene subunit. The fluorophore is composed of a pure carbon skeleton without heteroatoms and exhibits remarkable photoluminescence properties with a photoluminescence quantum yield (PLQY) of up to 67% in toluene, exceeding that of the parent HBC by a factor of 30. The single crystal X-ray structure reveals the distorted polycyclic aromatic hydrocarbon structure, which is responsible for the optoelectronic properties, as supported by density functional theory calculations. We show that the new fluorescent dye can be readily used for the fabrication of organic light-emitting diodes (OLED) without extensive optimization, whereby solubility in a variety of solvents and successful film formation are decisive.
Collapse
Affiliation(s)
- Alexander R. Krappe
- Institut für Chemie und Biochemie (SupraFAB)Freie Universität BerlinAltensteinstr. 23a14195BerlinGermany
| | - Jacob C. Mayer
- Helmholtz‐Zentrum Berlin für Materialien und Energie GmbHHahn‐Meitner‐Platz 114109BerlinGermany
| | - Wuai Zhang
- Institut für PhysikInstitut für ChemieHumboldt‐Universität zu BerlinZum Großen Windkanal 212489BerlinGermany
| | - Lina M. Filla
- Institut für Chemie und Biochemie (SupraFAB)Freie Universität BerlinAltensteinstr. 23a14195BerlinGermany
| | - Giovanni Ligorio
- Institut für PhysikInstitut für ChemieHumboldt‐Universität zu BerlinZum Großen Windkanal 212489BerlinGermany
- Center for the Science of Materials BerlinZum Großen Windkanal 212489BerlinGermany
| | - Felix Hermerschmidt
- Institut für PhysikInstitut für ChemieHumboldt‐Universität zu BerlinZum Großen Windkanal 212489BerlinGermany
| | - Larissa S. Eitelhuber
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Arne Güttler
- Bundesanstalt für Materialforschung und ‐prüfung (BAM)Department 1Division BiophotonicsRichard‐Willstätter‐Straße 1112489BerlinGermany
| | - Manuela Weber
- Institut für Chemie und BiochemieFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| | - Beate Paulus
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Ute Resch‐Genger
- Bundesanstalt für Materialforschung und ‐prüfung (BAM)Department 1Division BiophotonicsRichard‐Willstätter‐Straße 1112489BerlinGermany
| | - Emil J. W. List‐Kratochvil
- Helmholtz‐Zentrum Berlin für Materialien und Energie GmbHHahn‐Meitner‐Platz 114109BerlinGermany
- Institut für PhysikInstitut für ChemieHumboldt‐Universität zu BerlinZum Großen Windkanal 212489BerlinGermany
- Center for the Science of Materials BerlinZum Großen Windkanal 212489BerlinGermany
| | - Siegfried Eigler
- Institut für Chemie und Biochemie (SupraFAB)Freie Universität BerlinAltensteinstr. 23a14195BerlinGermany
| |
Collapse
|
3
|
Kumar V, Páez JL, Míguez-Lago S, Cuerva JM, Cruz CM, Campaña AG. Chiral nanographenes exhibiting circularly polarized luminescence. Chem Soc Rev 2025; 54:4922-4947. [PMID: 40208628 DOI: 10.1039/d4cs00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Chiral nanographenes constitute an unconventional material class that deviates from planar graphene cutouts. They have gained considerable attention for their ability to exhibit circularly polarized luminescence (CPL), which offers new opportunities in chiral optoelectronics. Their unique π-conjugated architectures, coupled with the ability to introduce chirality at the molecular level, have made them powerful contenders in developing next-generation optoelectronic devices. This review thoroughly explores recent advances in the synthesis, structural design, and CPL performance of chiral nanographenes. We delve into diverse strategies for inducing chirality, including covalent functionalization, helically twisted frameworks, and heteroatom doping, each of which unlocks distinct CPL behaviors. In addition, we discuss the mechanistic principles governing CPL and future directions in chiral nanographenes to achieve high dissymmetry factors (glum) and tunable emission properties. We also discuss the key challenges in this evolving field, including designing robust chiral frameworks, optimizing CPL efficiency, and scaling up real-world applications. Through this review, we aim to shed light on recent developments in the bottom-up synthesis of structurally precise chiral nanographenes and evaluate their impact on the growing domain of circularly polarized luminescent materials.
Collapse
Affiliation(s)
- Viksit Kumar
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada. Avda. Fuente Nueva s/n, 18071 Granada, Spain.
| | - José L Páez
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada. Avda. Fuente Nueva s/n, 18071 Granada, Spain.
| | - Sandra Míguez-Lago
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada. Avda. Fuente Nueva s/n, 18071 Granada, Spain.
| | - Juan M Cuerva
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada. Avda. Fuente Nueva s/n, 18071 Granada, Spain.
| | - Carlos M Cruz
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada. Avda. Fuente Nueva s/n, 18071 Granada, Spain.
| | - Araceli G Campaña
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada. Avda. Fuente Nueva s/n, 18071 Granada, Spain.
| |
Collapse
|
4
|
Yang X, Su S, Hu C, Cheung KM, Yang D, Chen X, Yang J, Huang Z, Kwong FY, Miao Q. A Key Fragment in Carbon Schwarzite Unit Cells and Its Triple [6]Helicene Precursor. Angew Chem Int Ed Engl 2025; 64:e202501169. [PMID: 40059461 PMCID: PMC12087845 DOI: 10.1002/anie.202501169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
This study explores two structurally related π-skeletons. The π-skeleton of compounds 1a-e containing three heptagons represents a key fragment in theoretical carbon schwarzites, while that of 2a-b is a triple [6]helicene. Compounds 1a-e were synthesized via Scholl reactions, and using a weaker acid allowed the reaction to stop at an intermediate stage, yielding 2a-b. X-ray crystallography revealed not only distinct stereochemistry of 1b and 2a but also unique supramolecular assemblies in the clathrate of 2a with chloroform. Compound 1b adopts a saddle-like geometry, while 2a exhibits a propeller-like structure with C3 symmetry, consistent with density functional theory (DFT) calculations. The π-skeleton of 1a-e is flexible, enabling rapid enantiomerization, whereas that of 2a-b is rigid, allowing resolution of 2b into optically pure forms with an absorption dissymmetry factor as high as 0.015. Comparative analysis shows that presence of seven-membered rings in 1a-e does not significantly alter the local aromaticity of the triple [6]helicene framework.
Collapse
Affiliation(s)
- Xinhe Yang
- State Key Laboratory of Antiviral DrugsPingyuan LaboratorySchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
- Shanghai‐Hong Kong Joint Laboratory in Chemical SynthesisShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai230032China
| | - Shilong Su
- Department of ChemistryThe Chinese University of Hong KongShatinHong KongNew TerritoriesChina
| | - Chenyu Hu
- Department of ChemistryThe University of Hong KongHong KongChina
| | - Ka Man Cheung
- Department of ChemistryThe Chinese University of Hong KongShatinHong KongNew TerritoriesChina
| | - Daiyue Yang
- Department of ChemistryThe Chinese University of Hong KongShatinHong KongNew TerritoriesChina
| | - Xiao Chen
- Department of ChemistryThe Chinese University of Hong KongShatinHong KongNew TerritoriesChina
| | - Jun Yang
- Department of ChemistryThe University of Hong KongHong KongChina
| | - Zhifeng Huang
- Department of ChemistryThe Chinese University of Hong KongShatinHong KongNew TerritoriesChina
| | - Fuk Yee Kwong
- Department of ChemistryThe Chinese University of Hong KongShatinHong KongNew TerritoriesChina
| | - Qian Miao
- Department of ChemistryThe Chinese University of Hong KongShatinHong KongNew TerritoriesChina
- Shanghai‐Hong Kong Joint Laboratory in Chemical SynthesisThe Chinese University of Hong KongShatinHong KongNew TerritoriesChina
| |
Collapse
|
5
|
Lión-Villar J, Fernández-García JM, Medina Rivero S, Perles J, Wu S, Aranda D, Wu J, Seki S, Casado J, Martín N. Synthesis of zwitterionic open-shell bilayer spironanographenes. Nat Chem 2025:10.1038/s41557-025-01810-2. [PMID: 40307418 DOI: 10.1038/s41557-025-01810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Molecular nanographenes (NGs) are nanoscale graphene fragments obtained by organic synthetic protocols. Here we report the bottom-up synthesis of two spiro-NGs formed by two substituted hexa-peri-hexabenzocoronenes (HBCs), spiro-NG and F-spiro-NG. The X-ray crystal structure of the deca-tert-butyl-functionalized spiro-NG shows a bilayer disposition of the HBCs in face-to-face contact. By contrast, F-spiro-NG, which features tert-butyl substituents on one HBC unit, and fluorine on the other HBC unit, is an electron donor-acceptor bilayer NG. The structural assembly of the donor and acceptor graphenic layers enables an electron-transfer process that leads to the formation of a zwitterionic open shell, paramagnetic species constituted by a radical cation and a radical anion located in the donor and the acceptor HBCs, respectively. Magnetic and spectroelectrochemical experiments, together with theoretical calculations, support the persistent/dominant charge-separated nature of F-spiro-NG. Furthermore, photoconductivity measurements show a significant increase of the charge carrier mobility in the case of F-spiro-NG (Σμ = 6 cm2 V-1 s-1) compared with spiro-NG.
Collapse
Affiliation(s)
- Juan Lión-Villar
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús M Fernández-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Samara Medina Rivero
- Departamento de Química-Física, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Josefina Perles
- Laboratorio DRX Monocristal, SIdI, Universidad Autónoma de Madrid, Madrid, Spain
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Daniel Aranda
- Departamento de Química-Física, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shu Seki
- Department of Molecular Engineering, Kyoto University, Kyoto, Japan
| | - Juan Casado
- Departamento de Química-Física, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
| | - Nazario Martín
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain.
- IMDEA-Nanociencia, Madrid, Spain.
| |
Collapse
|
6
|
Yu Y, Wang C, Hung FF, Jiang L, Che CM, Liu J. π-Extended Heli(aminoborane)s with Highly Bright Circularly Polarized Luminescence and Narrowband Emission. Angew Chem Int Ed Engl 2025; 64:e202501645. [PMID: 39971717 DOI: 10.1002/anie.202501645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
Helical molecular carbons (HMCs) possess high absorption/luminescence dissymmetry factors (gabs/glum) and significant luminescence quantum yield (Φlum), resulting in a high circularly polarized luminescence (CPL) brightness (BCPL), which is essential for the development of CPL materials for practical applications. Herein, we designed and synthesized a series of boron-nitrogen (BN)-doped HMCs, named π-extended heli(aminoborane)s (E[10]HAB-A, E[10]HAB-B and E[10]HAB-C), consisting of laterally π-extended [10]helicene skeleton with alternating N and B atoms at the inner rim. The aromaticity, electronic structures, and photophysical properties of E[10]HAB-A/B/C were systematically investigated through experiments and theoretical calculations. E[10]HAB-A/B/C displayed remarkable photophysical properties, including high molar extinction coefficient and bright narrowband emission. The isolated enantiomers of E[10]HAB-A/B/C exhibited intense circular dichroism (CD) and CPL, in which E[10]HAB-A shows gabs and glum values up to 0.024 and 0.017, simultaneously with high Φlum of 82 % and a narrow full width at half maximum of 16 nm. Accordingly, E[10]HAB-A exhibits a BCPL as high as 583 M-1 cm-1, which is the largest value among the reported BN-doped HMCs. Our study indicates that inner rim BN-doping and π-extension are effective strategies to achieve high Φlum and balanced glum values in HMCs.
Collapse
Affiliation(s)
- Yang Yu
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chang Wang
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Faan-Fung Hung
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Long Jiang
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou, 510275, P.R. China
| | - Chi-Ming Che
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Junzhi Liu
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China
| |
Collapse
|
7
|
Fabri B, De Rosa DF, Black DJ, Mucci R, Krimovs A, Pal R, Lacour J. Two-photon Excitation of Bright Diaza[4]Helicenes for Isotropic and Circularly Polarized Emission. Chemistry 2025:e202501212. [PMID: 40261255 DOI: 10.1002/chem.202501212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Helicenes are chiral organic dyes that are attracting growing attention due to the high tunability of their (chir)optical and electronic properties. In this work, a series of functionalized cationic diaza[4]helicenes based on dimethoxyquinacridinium (DMQA) scaffolds are presented. By merging branched N-alkyl side chains and triple para-functionalization with OMe groups, structures combine improved chiroptical responses (5x increase) and strong fluorescence quantum yields (Φf ≈ 70% in acetonitrile). An overall improved efficiency of the emission of circularly polarized light with BCPL values reaching 3.4 M-1 cm-1 is obtained. Additionally, two-photon excitation (2PE) studies were performed, showing good values of cross section (CS) at 810 nm. Interestingly, 2PE circularly polarized luminescence (CPL) spectra were acquired for the most performant derivatives (N-isopropyl and N-cyclohexyl); this type of measurement being usually challenging for organic molecular species. Finally, the viability of these compounds in single-photon (1PE) and 2PE microscopy is also shown.
Collapse
Affiliation(s)
- Bibiana Fabri
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4, 1211, Switzerland
| | | | - Dominic J Black
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Rebecca Mucci
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4, 1211, Switzerland
| | | | - Robert Pal
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4, 1211, Switzerland
| |
Collapse
|
8
|
Ruan L, Li R, Li M, Huang Y, An P. Phenylenediamine-Linked, Folded Nanographene Dimers: Access to Structure-Dependent Redox Capability. J Org Chem 2025; 90:4365-4373. [PMID: 40105489 DOI: 10.1021/acs.joc.5c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with open-shell or redox characteristics are highly desirable due to their intriguing electronic properties and potential applications. Here, we demonstrate a series of phenylenediamine-linked nanographenes (NGs) 1-3 by connecting two aza-hexa-peri-hexabenzocoronene (HBC) units to p-phenylene, p,p'-biphenylene, and p,p"-terphenylene, respectively, and unveil their 3D conformations, electronic structures, and redox properties. As proved by X-ray crystallographic analysis and quantum chemical calculation, 1-3 adopted anti-folded, Z-shaped 3D structures with rotatable single bonds. The structure-dependent redox capabilities were disclosed. For 1, a stable monoradical cation was generated by one-electron oxidation as the terminal product. X-ray crystallographic analysis revealed an unprecedented syn-folded structure of monoradical 1+. However, 2 and 3 were demonstrated as redox-active molecules from neutral to dication that each oxidative state can be precisely controlled by chemical oxidation/reduction.
Collapse
Affiliation(s)
- Lan Ruan
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ranran Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Meng Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yuxin Huang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Peng An
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
9
|
Cadart T, Feriancová L, Henke P, Gyepes R, Císařová I, Kalíková K, Kotora M. Synthesis of highly fluorescent helical quinolizinium salts by a Rh-catalyzed cyclotrimerization/C-H activation sequence. Chem Commun (Camb) 2025; 61:4662-4665. [PMID: 39907286 DOI: 10.1039/d4cc06512c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A series of helical quinolizinium salts were prepared utilizing Rh-catalyzed [2+2+2]cyclotrimerization and C-H activation processes as the crucial synthetic steps. The cyclotrimerization of appropriately substituted diynes with trimethylsilylethyne under Rh-catalyzed conditions provided the 1-arylisoquinolines in up to 61% isolated yields. Their Rh-catalyzed C-H activation/annulation with various aryl and alkyl disubstituted alkynes gave rise to [7]-helical quinolizinium salts in high isolated yields (up to 93%). Enantioselective C-H activation was also tried with asymmetric induction up to 62% ee. The respective boron and platinum complexes of 1-arylisoquinolines were prepared as well. All prepared compounds exhibit fluorescence in the orange-red light region (606-682 nm) with ΦFs 28-99%.
Collapse
Affiliation(s)
- Timothée Cadart
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Lucia Feriancová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Petr Henke
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic
| | - Robert Gyepes
- Academy of Sciences of the Czech Republic J. Heyrovský Institute of Physical Chemistry, v.v.i. Dolejškova 2155/3, 182 23 Praha 8, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic
| | - Martin Kotora
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| |
Collapse
|
10
|
Fukuda H, Kobayashi M, Tsurumaki E, Yamashina M, Hasegawa M, Wakamatsu K, Toyota S. Structures, Chiroptical Properties, and Unexpectedly Facile Helical Inversion of Highly Elongated Anthracene-Fused Expanded Helicenes. Chemistry 2025; 31:e202404348. [PMID: 39664000 DOI: 10.1002/chem.202404348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
Helical fused anthracenes were elongated by fusing additional aromatic units at both ends to yield novel expanded helicenes. Compounds [5]HA2N and [7]HA consisting of 19 and 21 benzene rings, respectively, were synthesized by fourfold cycloisomerization of the corresponding terminal alkyne precursors. The helical structures were confirmed by X-ray crystallographic analysis, where the aromatic frameworks stacked effectively with the helical turn numbers exceeding two. The enantiomers of the two compounds were resolved by chiral HPLC. Whereas [5]HA2N readily underwent enantiomerization at room temperature at the barrier to enantiomerization of 91 kJ mol-1, the barrier was enhanced to 99 kJ mol-1 for the long analog [7]HA. The enantiomers of [7]HA exhibited strong responses in the circular dichroism (CD) and circularly polarized luminescence (CPL) spectra, as scaled by dissymmetry factors |gabs|=0.034 and |glum|=0.012. Theoretical calculations by the r2SCAN-3c method suggested stepwise mechanisms for the enantiomerization via helical inversion with acceptable barrier heights. The unexpectedly flexible nature of the aromatic frameworks of [5]HA2N and [7]HA was discussed on the basis of the proposed mechanism.
Collapse
Affiliation(s)
- Hiroki Fukuda
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Moe Kobayashi
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masashi Hasegawa
- Department of Chemistry, School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science Ridaicho, Kita-ku, Okayama, 700-0005, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
11
|
Maeda C, Michishita S, Yasutomo I, Ema T. B,N-Embedded Helical Nanographenes Showing an Ion-Triggered Chiroptical Switching Function. Angew Chem Int Ed Engl 2025; 64:e202418546. [PMID: 39776135 DOI: 10.1002/anie.202418546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Intramolecular oxidative aromatic coupling of 3,6-bis(m-terphenyl-2'-yl)carbazole provided a bis(m-terphenyl)-fused carbazole, while that of 3,6-bis(m-terphenyl-2'-yl)-1,8-diphenylcarbazole afforded a bis(quaterphenyl)-fused carbazole. Borylation of the latter furnished a B,N-embedded helical nanographene binding a fluoride anion via a structural change from the three-coordinate boron to the four-coordinate boron. The anionic charge derived from the fluoride anion is stabilized over the expanded π-framework, which leads to the high binding constant (Ka) of 1×105 M-1. The four-coordinate boron species was converted back to the parent three-coordinate boron species with Ag+, and the chiroptical switch between the three-coordinate boron and four-coordinate boron species has been achieved via the ion recognition with the change in the color and glum values.
Collapse
Affiliation(s)
- Chihiro Maeda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Sayaka Michishita
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Issa Yasutomo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
12
|
Li G, Mao LL, Gao JN, Shi X, Huo ZY, Yang J, Zhou W, Li H, Yang HB, Tung CH, Wu LZ, Cong H. A Helical Tubular Dyad of [9]Cycloparaphenylene: Synthesis, Chiroptical Properties and Post-Functionalization. Angew Chem Int Ed Engl 2025; 64:e202419435. [PMID: 39582429 DOI: 10.1002/anie.202419435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/26/2024]
Abstract
The bottom-up synthesis of discrete tubular molecules that mimic the structural features of carbon nanotubes has been a long-standing pursuit for synthetic chemists. As the shortest segments of armchair-type carbon nanotubes, cycloparaphenylenes are regarded as ideal macrocyclic building blocks for achieving this goal. Here we report the synthesis of a helical tubular molecule featuring three diyne linkers between two site-specifically functionalized [9]cycloparaphenylenes. Its C3-symmetrical, radially conjugated structure and solid-state packing have been elucidated by spectroscopic and crystallographic characterizations. Notably, the resolved enantiomers display a circularly polarized luminescence brightness value of 1.47×103 M-1 cm-1, which is among the highest values for chiral organic molecules. Furthermore, the diyne-linked molecule could be directly converted into a thiophene-linked helical molecule, demonstrating the post-functionalization approach for the construction of chiral tubular molecules from cycloparaphenylenes.
Collapse
Affiliation(s)
- Gaolei Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liang-Liang Mao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia-Nan Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zi-Ye Huo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingxuan Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wen Zhou
- College of Chemistry and Molecular Engineering, Beijing NMR Center, Peking University, Beijing, 100871, China
| | - Hongwei Li
- College of Chemistry and Molecular Engineering, Beijing NMR Center, Peking University, Beijing, 100871, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
13
|
Dongre SD, Venugopal G, Kumar V, Badrinarayan Jadhav A, Kumar J, Santhosh Babu S. Chiroptical Amplification of [7]-Helicene Nanographene by Additional Helical Chirality. Angew Chem Int Ed Engl 2025; 64:e202420767. [PMID: 39641263 DOI: 10.1002/anie.202420767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/07/2024]
Abstract
Nanographenes have captivated scientific interest since the pioneering discovery of graphene. Recently, attention has shifted towards exploring chiral and nonplanar nanographenes, for their distinct optical, chiroptical, and electronic properties. Despite the growing acceptance of helicenes, the research on inducing helical chirality on π-extended derivatives to boost chiroptical properties remains unattended. In our study, we introduce a new π-extended [7]-helicene resulting from the condensation of diamines with 3,6-dibromophenanthrene-9,10-dione, complemented by two hexabenzocoronene arms in the periphery. Notably, the nanographene containing binaphtho-[1,4]diazocine, compared to the corresponding phenazine, exhibits a remarkable average 2.5, 5, and 10-fold enhancements in quantum yield, dissymmetry factor, and brightness, respectively, when measured in five different solvents. These improvements underscore the significance of the induced helical chirality by the antiaromatic binaphtho-[1,4]diazocine in influencing the chiroptical properties of the helical nanographene. Our research represents a significant stride toward unlocking the potential of π-extended helicenes and lays the groundwork for further exploration in designing and synthesizing new chiral nanomaterials.
Collapse
Affiliation(s)
- Sangram D Dongre
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Geethu Venugopal
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Viksit Kumar
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ashok Badrinarayan Jadhav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517 507, India
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517 507, India
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
14
|
Li Y, Stec GJ, Kim HK, Thapa S, Zheng SL, McClelland A, Mason JA. Self-assembly of chiroptical ionic co-crystals from silver nanoclusters and organic macrocycles. Nat Chem 2025; 17:169-176. [PMID: 39779970 DOI: 10.1038/s41557-024-01696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025]
Abstract
Atomically precise nanoclusters can be assembled into ordered superlattices with unique electronic, magnetic, optical and catalytic properties. The co-crystallization of nanoclusters with functional organic molecules provides opportunities to access an even wider range of structures and properties, but can be challenging to control synthetically. Here we introduce a supramolecular approach to direct the assembly of atomically precise silver nanoclusters into a series of nanocluster‒organic ionic co-crystals with tunable structures and properties. By leveraging non-covalent interactions between anionic silver nanoclusters and cationic organic macrocycles of varying sizes, the orientation of nanocluster surface ligands can be manipulated to achieve in situ resolution of enantiopure nanocluster‒organic ionic co-crystals that feature large chiroptical effects. Beyond chirality, this co-crystal assembly approach provides a promising platform for designing functional solid-state nanomaterials through a combination of supramolecular chemistry and atomically precise nanochemistry.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Grant J Stec
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hong Ki Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Surendra Thapa
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Arthur McClelland
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
15
|
Sumita M, Terayama K, Ishida S, Suga K, Saito S, Tsuda K. Qcforever2: Advanced Automation of Quantum Chemistry Computations. J Comput Chem 2025; 46:e70017. [PMID: 39865308 DOI: 10.1002/jcc.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/28/2025]
Abstract
QCforever is a wrapper designed to automatically and simultaneously calculate various physical quantities using quantum chemical (QC) calculation software for blackbox optimization in chemical space. We have updated it to QCforever2 to search the conformation and optimize density functional parameters for a more accurate and reliable evaluation of an input molecule. In blackbox optimization, QCforever2 can work as compactly arranged surrogate models for costly chemical experiments. QCforever2 is the future of QC calculations and would be a good companion for chemical laboratories, providing more reliable search and exploitation in the chemical space.
Collapse
Affiliation(s)
- Masato Sumita
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Kei Terayama
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Japan
- MDX Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Shoichi Ishida
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Japan
| | - Kensuke Suga
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Shohei Saito
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Koji Tsuda
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
16
|
Huo GF, Xu WT, Hu J, Han Y, Fan W, Wang W, Sun Z, Yang HB, Wu J. Perylene-Embedded Helical Nanographenes with Emission up to 1010 nm: Synthesis, Structures, and Chiroptical Properties. Angew Chem Int Ed Engl 2025; 64:e202416707. [PMID: 39363697 DOI: 10.1002/anie.202416707] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Near-infrared (NIR) circularly polarized absorbing or emitting materials offer distinct advantages over their visible-light counterparts and have attracted considerable interest across various fields. Materials exhibiting NIR chiroptical properties with high fluorescence quantum yields (ΦF) are particularly rare. In this study, we report the synthesis of a series of helical nanographenes (1, 2, 3, and 4), where perylene is fused with one to four hexa-peri-hexabenzocoronene (sub) units by a strategy involving Diels-Alder cycloaddition followed by a Scholl reaction. X-ray crystallographic analysis confirmed their structures, revealing helicene moieties integrated into a highly contorted framework. Benefiting from a similar distribution pattern of frontier molecular orbitals to perylene and extended π-conjugation, compounds 1-4 demonstrate respectable ΦF values of 31.9 %, 15.0 %, 13.7 %, and 6.5 %, respectively, with emission maxima reaching up to 1010 nm. Their enantiopure forms, isolated by preparative chiral HPLC, exhibit distinct circular dichroism signals and circularly polarized luminescence across a broad spectral range, extending from the ultraviolet to the NIR.
Collapse
Affiliation(s)
- Gui-Fei Huo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jinlian Hu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformation Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Wei Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformation Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
17
|
Zhou Z, Petrukhina MA. Adding multiple electrons to helicenes: how they respond? Chem Sci 2025; 16:468-479. [PMID: 39583570 PMCID: PMC11583768 DOI: 10.1039/d4sc06062h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Helicenes of increasing dimensions and complexity have recently burst into the scene due to their unique structures coupled with interesting chiral, optical, and conducting properties. The helicene-related research has quickly progressed from fundamental curiosity to a diverse range of applications in organic catalysis, optoelectronic devices, chiroptical switches, sensors, and energy storage. The in-depth understanding of electron accepting properties of helicenes should further advance their materials chemistry applications, however, previous reports only relied on spectrocopic and electrochemical studies, while their structural changes weren't extensively discussed. Therefore, we initiated a broad investigation of chemical reduction behaviour of helicenes ranging in size and properties coupled with X-ray diffraction characterization of the reduced products. The responses of helicenes with different structures to the stepwise electron addition were investigated using a combination of X-ray crystallography, spectroscopic methods, and calculations. This study revealed topology- and charge-dependent consequences of chemical reduction ranging from reversible geometry perturbation to irreversible core transformation and site-specific reactivity of helicenes in addition to original alkali metal coordination patterns. This overview is focused on the crystallographically confirmed examples stemming from chemical reduction reactions of different helicenes with alkali metals. The opened discussion should stimulate further exploration of reactivity and complexation of novel π-expanded and heteroatom-doped helicenes based on the revealed structure-property correlations, thus advancing their applications as intriguing new materials.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York Albany NY 12222 USA
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York Albany NY 12222 USA
| |
Collapse
|
18
|
Deyerling J, Berionni Berna B, Biloborodov D, Haag F, Tömekce S, Cuxart MG, Li C, Auwärter W, Bonifazi D. Solution Versus On-Surface Synthesis of Peripherally Oxygen-Annulated Porphyrins through C-O Bond Formation. Angew Chem Int Ed Engl 2025; 64:e202412978. [PMID: 39196673 DOI: 10.1002/anie.202412978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/30/2024]
Abstract
This study investigates the synthesis of tetra- and octa-O-fused porphyrinoids employing an oxidative O-annulation approach through C-H activation. Despite encountering challenges such as overoxidation and instability in conventional solution protocols, successful synthesis was achieved on Au(111) surfaces under ultra-high vacuum (UHV) conditions. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and non-contact atomic force microscopy elucidated the preferential formation of pyran moieties via C-O bond formation and subsequent self-assembly driven by C-H⋅⋅⋅O interactions. Furthermore, the O-annulation process was found to reduce the HOMO-LUMO gap by lifting the HOMO energy level, with the effect rising upon increasing the number of embedded O-atoms.
Collapse
Affiliation(s)
- Joel Deyerling
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Beatrice Berionni Berna
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Dmytro Biloborodov
- Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Felix Haag
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Sena Tömekce
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Marc G Cuxart
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Conghui Li
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Willi Auwärter
- Physics Department E20, TUM School of Natural Sciences, Technical University of Munich, D 85748, Garching, Germany
| | - Davide Bonifazi
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
19
|
Izquierdo-García P, Fernández-García JM, Perles J, Martín N. Enantiomerically Pure Helical Bilayer Nanographenes: A Straightforward Chemical Approach. J Am Chem Soc 2024; 146:34943-34949. [PMID: 39642941 DOI: 10.1021/jacs.4c14544] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The semiconductor properties of nanosized graphene fragments, known as molecular nanographenes, position them as exceptional candidates for next-generation optoelectronics. In addition to their remarkable optical and electronic features, chiral nanographenes exhibit high dissymmetry factors in circular dichroism and circularly polarized luminescence measurements. However, the synthesis of enantiomerically pure nanographenes remains a significant challenge. Typically, these materials are synthesized in their racemic form, followed by separation of the enantiomers using high-performance liquid chromatography (HPLC). While effective, this method often requires expensive instrumentation, extensive optimization of separation conditions, and typically yields analytical quantities of the desired samples. An alternative approach is the enantioselective synthesis of chiral molecular nanographenes; however, to date, only two examples have been documented in the literature. In this work, we present a straightforward chemical method for the chiral resolution of helical bilayer nanographenes. This approach enables the effective and scalable preparation of enantiomerically pure nanographenes while avoiding the need for HPLC. The incorporation of a BINOL core into the polyarene precursor facilitates the separation of diastereomers through esterification with enantiomerically pure camphorsulfonyl chloride. Following the separation of the diastereomers by standard chromatographic column, the hydrolysis of the camphorsulfonyl group yields enantiomerically pure nanographene precursors. The subsequent graphitization, achieved through the Scholl reaction, occurs in an enantiospecific manner and with the concomitant formation of a furan ring and a heterohelicene moiety. The absolute configurations of the final enantiomers, P-oxa[9]HBNG and M-oxa[9]HBNG, have been determined using X-ray diffraction. Additionally, electrochemical, photophysical, and chiroptical properties have been thoroughly evaluated.
Collapse
Affiliation(s)
- Patricia Izquierdo-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jesús M Fernández-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Josefina Perles
- Laboratorio DRX Monocristal, SIdI, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
20
|
Izquierdo-García P, Fernández-García JM, Martín N. Twenty Years of Graphene: From Pristine to Chemically Engineered Nano-Sized Flakes. J Am Chem Soc 2024; 146:32222-32234. [PMID: 39537345 PMCID: PMC11613509 DOI: 10.1021/jacs.4c12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
It is a celebratory moment for graphene! This year marks the 20th anniversary of the discovery of this amazing material by Geim and Novoselov. Curiously, it coincides with the century mark of graphite's layered structure discovery. Since the discovery of graphene with the promise that its outstanding properties would change the world, society often wonders where is graphene? In this context, their discoverers said in 2005, "despite the reigning optimism about graphene-based electronics, "graphenium" microprocessors are unlikely to appear for the next 20 years". Today, possibilities for graphene are endless! It can be used in electronics, photonics, fuel cells, energy storage, artificial intelligence, biomedicine, and even cultural heritage or sports. Additionally, the electronic properties of this material have been modified in fascinating ways. Bilayer graphene sheets have been found to be superconductive when twisted at a "magic angle", leading to a new and exciting field of research known as "moiré quantum materials" or "twistronics". Additionally, small graphene fragments with nanometer sizes undergo a quantum confinement effect of electrons, affording semiconductive materials with applications in optoelectronics. Organic synthesis allows the preparation of molecules with a graphene-like pattern with total control of the shape and size, exhibiting a big catalog of chiroptical and optoelectronic properties. This Perspective shows some of the fascinating milestones raised in the field of graphene-like materials from a chemical point of view, including functionalization strategies employed to chemically modify the topology and the properties of pristine graphene as well as the rising molecular graphenes.
Collapse
Affiliation(s)
- Patricia Izquierdo-García
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Jesús M. Fernández-García
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Nazario Martín
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
21
|
Liu Y, Xu Q, Wang L, Gao A, Li Q, Chen S, Zhao Y, Wang M, Jiang J, Jia C. Rational Control of Maximum EMI/CPL Intensity and Wavelength of Bora[6]helicene via Polarity and Vibronic Effects. J Phys Chem Lett 2024; 15:10818-10825. [PMID: 39435702 DOI: 10.1021/acs.jpclett.4c02500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Solvent polarity control as an efficient methodology to regulate the chiroptical properties, including spectral shape, width, intensity, wavelength, etc., has emerged as a novel frontier in optical materials design. However, the underling relationship connecting polarity to the optical property remains unclear. Herein, using state-of-the-art computations and the FC|VG model, the solvent effect on the chiroptical properties of bora[6]helicene was accurately and systematically computed to shed light on this issue. It is found that the vibronic coupling is crucial in explaining the spectral shape, width, and relative intensity of different peaks. Moreover, the intensity and position of the emission (EMI) and circularly polarized luminescence (CPL) are closely related to the polarity of the solvent. Intriguingly, we got a series of good linear relationships between polarity and EMI|CPL (|r| ≥ 0.95). Thus, this parameter can be used as a potential descriptor to estimate the intensity and position of EMI|CPL, leading to new strategies for designing fully colored fluorescent materials.
Collapse
Affiliation(s)
- Yanli Liu
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, People's Republic of China
| | - Qiushuang Xu
- School of Physics and Electronic Information, Yantai University, 264005 Yantai, Shandong, People's Republic of China
| | - Li Wang
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, People's Republic of China
| | - Aihua Gao
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, People's Republic of China
| | - Quanjiang Li
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, People's Republic of China
| | - Shenghui Chen
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, People's Republic of China
| | - Yanliang Zhao
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, People's Republic of China
| | - Meishan Wang
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, People's Republic of China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chuanyi Jia
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, China
| |
Collapse
|
22
|
Yu Y, Wang C, Hung FF, Chen C, Pan D, Che CM, Liu J. Benzo-Extended Heli(aminoborane)s: Inner Rim BN-Doped Helical Molecular Carbons with Remarkable Chiroptical Properties. J Am Chem Soc 2024; 146:22600-22611. [PMID: 39101597 DOI: 10.1021/jacs.4c06997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Atomically precise synthesis of three-dimensional boron-nitrogen (BN)-based helical structures constitutes an undeveloped field with challenges in synthetic chemistry. Herein, we synthesized and comprehensively characterized a new class of helical molecular carbons, named benzo-extended [n]heli(aminoborane)s ([n]HABs), in which the helical structures consisted of n = 8 and n = 10 ortho-condensed conjugated rings with alternating BN atoms at the inner rims. X-ray crystallographic analysis, photophysical studies, and density functional theory calculations revealed the unique characteristics of this novel [n]HAB system. Owing to the high enantiomerization energy barriers, the optical resolution of [8]HAB and [10]HAB was achieved with chiral high-performance liquid chromatography. The isolated enantiomers of [10]HAB exhibited record absorption and luminescence dissymmetry factors (|gabs|=0.061; |glum|=0.048), and boosted CPL brightness up to 292 M-1 cm-1, surpassing most helicene derivatives, demonstrating that the introduction of BN atoms into the inner positions of helicenes can increase both the |gabs| and |glum| values.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, PR China
| | - Chang Wang
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, PR China
| | - Faan-Fung Hung
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, PR China
| | - Chen Chen
- Department of Physics and Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, PR China
| | - Ding Pan
- Department of Physics and Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, PR China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, PR China
| | - Junzhi Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, PR China
| |
Collapse
|
23
|
Borstelmann J, Schneider L, Rominger F, Deschler F, Kivala M. Helically Chiral π-Expanded Azocines Through Regioselective Beckmann Rearrangement and Their Charged States. Angew Chem Int Ed Engl 2024; 63:e202405570. [PMID: 38716767 DOI: 10.1002/anie.202405570] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 06/16/2024]
Abstract
We report a synthetic approach to π-expanded [6]helicenes incorporating tropone and azocine units in combination with a 5-membered ring, which exhibit intriguing structural, electronic, and chiroptical properties. The regioselective Beckmann rearrangement allows the isolation of helical scaffolds containing 8-membered lactam, azocine, and amine units. As shown by X-ray crystallographic analysis, the incorporation of tropone or azocine units leads to highly distorted [6]helicene moieties, with distinct packing motifs in the solid state. The compounds exhibit promising optoelectronic properties with considerable photoluminescence quantum yields and tunable emission wavelengths depending on the relative position of the nitrogen center within the polycyclic framework. Separation of the enantiomers by chiral high-performance liquid chromatography (HPLC) allowed characterization of their chiroptical properties by circular dichroism (CD) and circularly polarized luminescence (CPL) spectroscopy. The azocine compounds feature manifold redox chemistry, allowing for the characterization of the corresponding radical anions and cations as well as the dications and dianions, with near-infrared (NIR) absorption bands extending beyond 3000 nm. Detailed theoretical studies provided insights into the aromaticity evolution upon reduction and oxidation, suggesting that the steric strain prevents the azocine unit from undergoing aromatization, while the indene moiety dominates the observed redox chemistry.
Collapse
Affiliation(s)
- Jan Borstelmann
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lars Schneider
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Felix Deschler
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Milan Kivala
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
24
|
Šámal M, Sturm L, Banasiewicz M, Deperasinska I, Kozankiewicz B, Morawski O, Nagata Y, Dechambenoit P, Bock H, Rossel A, Buděšínský M, Boudier A, Jančařík A. Carbonyl mediated fluorescence in aceno[ n]helicenones and fluoreno[ n]helicenes. Chem Sci 2024; 15:9842-9850. [PMID: 38939154 PMCID: PMC11206200 DOI: 10.1039/d4sc00892h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/19/2024] [Indexed: 06/29/2024] Open
Abstract
Helicenes are very attractive chiral non-planar polycyclic aromatic hydrocarbons possessing strong chiroptical properties. However, most of the helicenes absorb light mainly in the ultraviolet region, with only a small segment in the blue part of the visible spectrum. Furthermore, carbo[n]helicenes exhibit only weak luminescence that limits their utilization. Herein, we demonstrate that peripheral decoration of the helicene backbone with an aryl-carbonyl group shifts the absorption to the visible region and simultaneously improves their fluorescence quantum yields. We thus show that the carbonyl group, commonly considered as detrimental to emission, has the capability of improving optical and photophysical properties. Two different families, aceno[n]helicenones and fluoreno[n]helicenes, are presented with comprehensive spectrochemical characterization. TD-DFT calculations were implemented to clarify their electronic profiles. We show that increasing the helical length in aceno[n]helicenes increases absorption onset, g abs and g lum. Extension of the peripheral aromatic part in fluoreno[n]helicenes leads to a blue shift in both absorption and emission.
Collapse
Affiliation(s)
- Michal Šámal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences 166 10 Prague 6 Czech Republic
| | - Ludmilla Sturm
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP UMR 5031 33600 Pessac France
| | - Marzena Banasiewicz
- Institute of Physics, Polish Academy of Sciences Al. Lotników 32/46 02-668 Warsaw Poland
| | - Irena Deperasinska
- Institute of Physics, Polish Academy of Sciences Al. Lotników 32/46 02-668 Warsaw Poland
| | - Boleslaw Kozankiewicz
- Institute of Physics, Polish Academy of Sciences Al. Lotników 32/46 02-668 Warsaw Poland
| | - Olaf Morawski
- Institute of Physics, Polish Academy of Sciences Al. Lotników 32/46 02-668 Warsaw Poland
| | - Yuuya Nagata
- Japan Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido 001-0021 Japan
| | - Pierre Dechambenoit
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP UMR 5031 33600 Pessac France
| | - Harald Bock
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP UMR 5031 33600 Pessac France
| | - Amandine Rossel
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP UMR 5031 33600 Pessac France
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences 166 10 Prague 6 Czech Republic
| | - Anthony Boudier
- Institut de Chimie et Biologie des Membranes et des Nanoobjets (CBMN), Université de Bordeaux-INP UMR 5248, Allée St Hilaire 33607 Pessac Cedex France
| | - Andrej Jančařík
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP UMR 5031 33600 Pessac France
| |
Collapse
|
25
|
Qiu S, Valdivia AC, Zhuang W, Hung FF, Che CM, Casado J, Liu J. Nonalternant Nanographenes Containing N-Centered Cyclopenta[ ef]heptalene and Aza[7]Helicene Units. J Am Chem Soc 2024; 146:16161-16172. [PMID: 38720418 DOI: 10.1021/jacs.4c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Introducing helical subunits into negatively curved π-systems has a significant effect on both the molecular geometry and photophysical properties; however, the synthesis of these helical π-systems embedded with nonbenzenoid subunits remains challenging due to the high strain deriving from both the curvature and helix. Here, we report a family of nonalternant nanographenes containing a nitrogen (N)-doped cyclopenta[ef]heptalene unit. Among them, CPH-2 and CPH-3 can be viewed as hybrids of benzoannulated cyclopenta[ef]heptalene and aza[7]helicene. The crystal structures revealed a saddle geometry for CPH-1, a saddle-helix hybrid for CPH-2, and a twist-helix hybrid for CPH-3. Experimental measurements and theoretical calculations indicate that the saddle moieties in CPHs undergo flexible conformational changes at room temperature, while the aza[7]helicene subunit exhibits a dramatically increased racemization energy barrier (78.2 kcal mol-1 for CPH-2, 143.2 kcal mol-1 for CPH-3). The combination of the nitrogen lone electron pairs of the N-doped cyclopenta[ef]heptalene unit with the twisted helix fragments results in rich photophysics with distinctive fluorescence and phosphorescence in CPH-1 and CPH-2 and the similar energy fluorescence and phosphorescence in CPH-3. Both enantiopure CPH-2 and CPH-3 display distinct circular dichroism (CD) signals in the UV-vis range. Notably, compared to the reported fully π-extended helical nanographenes, CPH-3 exhibits excellent chiroptical properties with a |gabs| value of 1.0 × 10-2 and a |glum| value of 7.0 × 10-3; these values are among the highest for helical nanographenes.
Collapse
Affiliation(s)
- Shuhai Qiu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Abel Cárdenas Valdivia
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| | - Weiwen Zhuang
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Faan-Fung Hung
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Juan Casado
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| | - Junzhi Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| |
Collapse
|
26
|
Xu F, Su H, van der Tol JJB, Jansen SAH, Fu Y, Lavarda G, Vantomme G, Meskers S, Meijer EW. Supramolecular Polymerization as a Tool to Reveal the Magnetic Transition Dipole Moment of Heptazines. J Am Chem Soc 2024; 146:15843-15849. [PMID: 38815616 PMCID: PMC11177250 DOI: 10.1021/jacs.4c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Heptazine derivatives have attracted significant interest due to their small S1-T1 gap, which contributes to their unique electronic and optical properties. However, the nature of the lowest excited state remains ambiguous. In the present study, we characterize the lowest optical transition of heptazine by its magnetic transition dipole moment. To measure the magnetic transition dipole moment, the flat heptazine must be chiroptically active, which is difficult to achieve for single heptazine molecules. Therefore, we used supramolecular polymerization as an approach to make homochiral stacks of heptazine derivatives. Upon formation of the supramolecular polymers, the preferred helical stacking of heptazine introduces circular polarization of absorption and fluorescence. The magnetic transition dipole moments for the S1 ← S0 and S1 → S0 are determined to be 0.35 and 0.36 Bohr magneton, respectively. These high values of magnetic transition dipole moments support the intramolecular charge transfer nature of the lowest excited state from nitrogen to carbon in heptazine and further confirm the degeneracy of S1 and T1.
Collapse
Affiliation(s)
- Fan Xu
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Hao Su
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
- College
of Polymer Science and Engineering and State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Joost J. B. van der Tol
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Stef A. H. Jansen
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Youxin Fu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh4, Groningen 9747AG, Netherlands
| | - Giulia Lavarda
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Ghislaine Vantomme
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
| | - Stefan Meskers
- Institute
for Complex Molecular Systems and Molecular Materials and Nanosystems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - E. W. Meijer
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, Netherlands
- School
of Chemistry and RNA Institute, UNSW, Sydney NSW 2052, Australia
| |
Collapse
|
27
|
Ju YY, Luo H, Li ZJ, Zheng BH, Xing JF, Chen XW, Huang LX, Nie GH, Zhang B, Liu J, Tan YZ. Helical Nanographenes Bearing Pentagon-Heptagon Pairs by Stepwise Dehydrocyclization. Angew Chem Int Ed Engl 2024; 63:e202402621. [PMID: 38443314 DOI: 10.1002/anie.202402621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
The incorporation of pentagon-heptagon pairs into helical nanographenes lacks a facile synthetic route, and the impact of these pairs on chiroptical properties remains unclear. In this study, a method for the stepwise construction of pentagon-heptagon pairs in helical nanographenes by the dehydrogenation of [6]helicene units was developed. Three helical nanographenes containing pentagon-heptagon pairs were synthesized and characterized using this approach. A wide variation in the molecular geometries and photophysical properties of these helical nanographenes was observed, with changes in the helical length of these structures and the introduction of the pentagon-heptagon pairs. The embedded pentagon-heptagon pairs reduced the oxidation potential of the synthesized helical nanographenes. The high isomerization energy barriers enabled the chiral resolution of the helicene enantiomers. Chiroptical investigations revealed remarkably enhanced circularly polarized luminescence and luminescence dissymmetry factors with an increasing number of the pentagon-heptagon pairs.
Collapse
Affiliation(s)
- Yang-Yang Ju
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huan Luo
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Ze-Jia Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bing-Hui Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiang-Feng Xing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuan-Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ling-Xi Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guo-Hui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Junzhi Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
28
|
Niu W, Fu Y, Deng Q, Qiu ZL, Liu F, Popov AA, Komber H, Ma J, Feng X. Enhancing Chiroptical Responses in Helical Nanographenes via Geometric Engineering of Double [7]Helicenes. Angew Chem Int Ed Engl 2024; 63:e202319874. [PMID: 38372180 DOI: 10.1002/anie.202319874] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Helical nanographenes with high quantum yields and strong chiroptical responses are pivotal for developing circularly polarized luminescence (CPL) materials. Here, we present the successful synthesis of novel π-extended double [7]helicenes (ED7Hs) where two helicene units are fused at the meta- or para-position of the middle benzene ring, respectively, as the structural isomers of the reported ortho-fused ED7H. The structural geometry of these ED7Hs is clearly characterized by single-crystal X-ray analysis. Notably, this class of ED7Hs exhibits bright luminescence with high quantum yields exceeding 40 %. Through geometric regulation of two embedded [7]helicene units from ortho-, meta- to para-position, these ED7Hs display exceptional amplification in chiroptical responses. This enhancement is evident in a remarkable approximate fivefold increase in the absorbance and luminescence dissymmetry factors (gabs and glum), respectively, along with a boosted CPL brightness up to 176 M-1 cm-1, surpassing the performance of most helicene-based chiral NGs. Furthermore, DFT calculations elucidate that the geometric adjustment of two [7]helicene units allows the precise alignment of electric and magnetic transition dipole moments, leading to the observed enhancement of their chiroptical responses. This study offers an effective strategy for magnifying the CPL performance in chiral NGs, promoting their expanded application as CPL emitters.
Collapse
Affiliation(s)
- Wenhui Niu
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Yubin Fu
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Qingsong Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhen-Lin Qiu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069, Dresden, Germany
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, 100049, Beijing, P. R. China
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| |
Collapse
|
29
|
Salem MSH, Sharma R, Suzuki S, Imai Y, Arisawa M, Takizawa S. Impact of helical elongation of symmetric oxa[n]helicenes on their structural, photophysical, and chiroptical characteristics. Chirality 2024; 36:e23673. [PMID: 38698568 DOI: 10.1002/chir.23673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
The adjustment of the main helical scaffold in helicenes is a fundamental strategy for modulating their optical features, thereby enhancing their potential for diverse applications. This work explores the influence of helical elongation (n = 5-9) on the structural, photophysical, and chiroptical features of symmetric oxa[n]helicenes. Crystal structure analyses revealed structural variations with helical extension, impacting torsion angles, helical pitch, and packing arrangements. Through theoretical investigations using density functional theory (DFT) calculations, the impact of helical extension on aromaticity, planarity distortion, and heightened chiral stability were discussed. Photophysical features were studied through spectrophotometric analysis, with insights gained through time-dependent DFT (TD-DFT) calculations. Following optical resolution via chiral high-performance liquid chromatography (HPLC), the chiroptical properties of both enantiomers of oxa[7]helicene and oxa[9]helicene were investigated. A slight variation in the main helical scaffold of oxa[n]helicenes from [7] to [9] induced an approximately three-fold increase in dissymmetry factors with the biggest values of|glum| of oxa[9]helicene (2.2 × 10-3) compared to|glum|of oxa[7]helicene (0.8 × 10-3), findings discussed and supported by TD-DFT calculations.
Collapse
Grants
- 24K17681 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 21A204 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 21H05217 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 22K06502 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- Japan Society for the Promotion of Science (JSPS)
- JPMJCR20R1 Core Research for Evolutionary Science and Technology (JST CREST)
- Hoansha Foundation
Collapse
Affiliation(s)
- Mohamed S H Salem
- SANKEN, Osaka University, Osaka, Japan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Rubal Sharma
- SANKEN, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Seika Suzuki
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Osaka, Higashi-Osaka, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Osaka, Higashi-Osaka, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | |
Collapse
|
30
|
Qin L, Xie J, Wu B, Hong H, Yang S, Ma Z, Li C, Zhang G, Zhang XS, Liu K, Zhang D. Axially Chiral Nonbenzenoid Nanographene with Second Harmonic Generation Property. J Am Chem Soc 2024; 146:12206-12214. [PMID: 38637324 DOI: 10.1021/jacs.4c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Chiral nanographenes (NGs) have garnered significant interest as optoelectronic materials in recent years. While helically chiral NGs have been extensively studied, axially chiral NGs have only witnessed limited examples, with no prior reports of axially chiral nonbenzenoid NGs. Herein we report an axially chiral nonbenzenoid nanographene featuring six pentagons and four heptagons. This compound, denoted as 2, was efficiently synthesized via an efficient Pd-catalyzed aryl silane homocoupling reaction. The presence of two bulky 3,5-di-tert-butylphenyl groups around the axis connecting the two nonbenzenoid PAH (AHR) segments endows 2 with atropisomeric chirality and high racemization energy barrier, effectively preventing racemization of both R- and S-enantiomers at room temperature. Optically pure R-2 and S-2 were obtained by chiral HPLC separation, and they exhibit circular dichroism (CD) activity at wavelengths up to 660 nm, one of the longest wavelengths with CD responses reported for the chiral NGs. Interestingly, racemic 2 forms a homoconfiguration π-dimer in the crystal lattice, belonging to the I222 chiral space group. Consequently, this unique structure renders crystals of 2 with a second harmonic generation (SHG) response, distinguishing it from all the reported axially chiral benzenoid NGs. Moreover, R-2 and S-2 also exhibit SHG-CD properties.
Collapse
Affiliation(s)
- Liyuan Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jin Xie
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Botao Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao Hong
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Suyu Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhuangzhuang Ma
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaihui Liu
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
31
|
Guo WC, Zhao WL, Tan KK, Li M, Chen CF. B,N-Embedded Hetero[9]helicene Toward Highly Efficient Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2024; 63:e202401835. [PMID: 38380835 DOI: 10.1002/anie.202401835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
The intrinsic helical π-conjugated skeleton makes helicenes highly promising for circularly polarized electroluminescence (CPEL). Generally, carbon helicenes undergo low external quantum efficiency (EQE), while the incorporation of a multi-resonance thermally activated delayed fluorescence (MR-TADF) BN structure has led to an improvement. However, the reported B,N-embedded helicenes all show low electroluminescence dissymmetry factors (gEL), typically around 1×10-3. Therefore, the development of B,N-embedded helicenes with both a high EQE and gEL value is crucial for achieving highly efficient CPEL. Herein, a facile approach to synthesize B,N-embedded hetero[9]helicenes, BN[9]H, is presented. BN[9]H shows a bright photoluminescence with a maximum at 578 nm with a high luminescence dissymmetry factor (|glum|) up to 5.8×10-3, attributed to its inherited MR-TADF property and intrinsic helical skeleton. Furthermore, circularly polarized OLED devices incorporating BN[9]H as an emitter show a maximum EQE of 35.5 %, a small full width at half-maximum of 48 nm, and, more importantly, a high |gEL| value of 6.2×10-3. The Q-factor (|EQE×gEL|) of CP-OLEDs is determined to be 2.2×10-3, which is the highest among helicene analogues. This work provides a new approach for the synthesis of higher helicenes and paves a new way for the construction of highly efficient CPEL materials.
Collapse
Affiliation(s)
- Wei-Chen Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Ke-Ke Tan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100084, China
| |
Collapse
|
32
|
Pinar Solé A, Klívar J, Šámal M, Stará IG, Starý I, Mendieta-Moreno JI, Ernst KH, Jelínek P, Stetsovych O. On-Surface Synthesis of Helicene Oligomers. Chemistry 2024:e202304127. [PMID: 38587984 DOI: 10.1002/chem.202304127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/10/2024]
Abstract
We report on-surface synthesis of heterochiral 1D heptahelicene oligomers after deposition of a racemic heptahelicene monomer on an Au(111) surface followed by Ullmann coupling under ultrahigh vacuum conditions. Structure, chirality and mode of adsorption of the resulting dimers to octamers are inferred from the scanning probe microscopy and theoretical calculations.
Collapse
Affiliation(s)
- Andrés Pinar Solé
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague, Czech Republic
| | - Jiří Klívar
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Michal Šámal
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Irena G Stará
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Ivo Starý
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Jesús I Mendieta-Moreno
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague, Czech Republic
- Universidad Autónoma de Madrid, Theoretical Condensed Matter Physics Department, C/ Francisco Tomás y, Valiente 7, Module 05, Facultad de Ciencias, E-28049, Madrid, Spain
| | - Karl-Heinz Ernst
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague, Czech Republic
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
- University of Zurich Department of Chemistry, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague, Czech Republic
| | - Oleksandr Stetsovych
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague, Czech Republic
| |
Collapse
|
33
|
Venugopal G, Kumar V, Badrinarayan Jadhav A, Dongre SD, Khan A, Gonnade R, Kumar J, Santhosh Babu S. Boron- and Oxygen-Doped π-Extended Helical Nanographene with Circularly Polarised Thermally Activated Delayed Fluorescence. Chemistry 2024; 30:e202304169. [PMID: 38270385 DOI: 10.1002/chem.202304169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
Helical nanographenes have garnered substantial attention owing to their finely adjustable optical and semiconducting properties. The strategic integration of both helicity and heteroatoms into the nanographene structure, facilitated by a boron-oxygen-based multiple resonance (MR) thermally activated delayed fluorescence (TADF), elevates its photophysical and chiroptical features. This signifies the introduction of an elegant category of helical nanographene that combines optical (TADF) and chiroptical (CPL) features. In this direction, we report the synthesis, optical, and chiroptical properties of boron, oxygen-doped Π-extended helical nanographene. The π-extension induces distortion in the DOBNA-incorporated nanographene, endowing a pair of helicenes, (P)-B2NG, and (M)-B2NG exhibiting circularly polarized luminescence with glum of -2.3×10-3 and +2.5×10-3, respectively. B2NG exhibited MR-TADF with a lifetime below 5 μs, and a reasonably high fluorescence quantum yield (50 %). Our molecular design enriches the optical and chiroptical properties of nanographenes and opens up new opportunities in multidisciplinary fields.
Collapse
Affiliation(s)
- Geethu Venugopal
- CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Viksit Kumar
- CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ashok Badrinarayan Jadhav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Sangram D Dongre
- CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Abujunaid Khan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- NCIM-Resource Center, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Rajesh Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Sukumaran Santhosh Babu
- CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
34
|
Wu H, Hanayama H, Coehlo M, Gu Y, Wu ZH, Takebayashi S, Jakob G, Vasylevskyi S, Schollmeyer D, Kläui M, Pieters G, Baumgarten M, Müllen K, Narita A, Qiu Z. Stable π-Extended Thio[7]helicene-Based Diradical with Predominant Through-Space Spin-Spin Coupling. J Am Chem Soc 2024; 146:7480-7486. [PMID: 38446414 DOI: 10.1021/jacs.3c12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
In this work, a novel π-extended thio[7]helicene scaffold was synthesized, where the α-position of the thiophene unit could be functionalized with bulky phenoxy radicals after considerable synthetic attempts. This open-shell helical diradical, ET7H-R, possesses high stability in the air, nontrivial π conjugation, persistent chirality, and a high diradical character (y0 of 0.998). The key feature is a predominant through-space spin-spin coupling (TSC) between two radicals at the helical terminals. Variable-temperature continuous-wave electron spin resonance (cw-ESR) and superconducting quantum interference device (SQUID) magnetometry in the solid state reveal a singlet ground state with a nearly degenerate triplet state of ET7H-R. These results highlight the significance of a stable helical diradicaloid as a promising platform for investigating intramolecular TSCs.
Collapse
Affiliation(s)
- Hao Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Max Coehlo
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191 Gif-sur-Yvette, France
| | - Yanwei Gu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Ze-Hua Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Satoshi Takebayashi
- Science and Technology Group, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Gerhard Jakob
- Institute of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 7, 55128 Mainz, Germany
| | - Serhii Vasylevskyi
- Engineering Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Mathias Kläui
- Institute of Physics, Johannes Gutenberg University Mainz, Staudinger Weg 7, 55128 Mainz, Germany
| | - Grégory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, F-91191 Gif-sur-Yvette, France
| | - Martin Baumgarten
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Zijie Qiu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| |
Collapse
|
35
|
Shioukhi I, Batchu H, Schwartz G, Minion L, Deree Y, Bogoslavsky B, Shimon LJW, Wade J, Hoffman R, Fuchter MJ, Markovich G, Gidron O. Helitwistacenes-Combining Lateral and Longitudinal Helicity Results in Solvent-Induced Inversion of Circularly Polarized Light. Angew Chem Int Ed Engl 2024; 63:e202319318. [PMID: 38224528 PMCID: PMC11497310 DOI: 10.1002/anie.202319318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Helicity is expressed differently in ortho- and para-fused acenes-helicenes and twistacenes, respectively. While the extent of helicity is constant in helicenes, it can be tuned in twistacenes, and the handedness of flexible twistacenes is often determined by more rigid helicenes. Here, we combine helicenes with rigid twistacenes consisting of a tunable degree of twisting, forming helitwistacenes. While the X-ray structures reveal that the connection does not affect the helicity of each moiety, their electronic circular dichroism (ECD) and circularly polarized luminescence (CPL) spectra are strongly affected by the helicity of the twistacene unit, resulting in solvent-induced sign inversion. ROESY NMR and TD-DFT calculations support this observation, which is explained by differences in the relative orientation of the helicene and twistacene moieties.
Collapse
Affiliation(s)
- Israa Shioukhi
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Harikrishna Batchu
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Gal Schwartz
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University6997801Tel AvivIsrael
| | - Louis Minion
- Molecular Sciences Research HubDepartment of ChemistryImperial College LondonWhite City Campus, 82 Wood LaneW12 0BZLondonU.K.
| | - Yinon Deree
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Benny Bogoslavsky
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Linda J. W. Shimon
- Chemical Research Support UnitWeizmann Institute of Science76100RehovotIsrael
| | - Jessica Wade
- Molecular Sciences Research HubDepartment of ChemistryImperial College LondonWhite City Campus, 82 Wood LaneW12 0BZLondonU.K.
- Department of MaterialsRoyal School of MinesImperial College LondonSW7 2AZLondonU.K.
| | - Roy Hoffman
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| | - Matthew J. Fuchter
- Molecular Sciences Research HubDepartment of ChemistryImperial College LondonWhite City Campus, 82 Wood LaneW12 0BZLondonU.K.
| | - Gil Markovich
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University6997801Tel AvivIsrael
| | - Ori Gidron
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemEdmond J. Safra Campus9190401JerusalemIsrael
| |
Collapse
|
36
|
Eichelmann R, Jeudy P, Schneider L, Zerhoch J, Mayer PR, Ballmann J, Deschler F, Gade LH. Chiral Bay-Alkynylated Tetraazaperylenes: Photophysics and Chiroptical Properties. Org Lett 2024; 26:1172-1177. [PMID: 38300988 DOI: 10.1021/acs.orglett.3c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Fully bay-alkynylated octaazaperopyrene dioxide (OAPPDO) derivatives were accessible through Stille cross coupling reaction of the corresponding bay-chlorinated derivatives. This steric congestion of the bay area led to helically chiral fluorophores, and chiral resolution of two derivatives allowed the investigation of their chiroptical properties as well as their kinetics of enantiomerization and the related thermodynamic parameters depending on the size of the terminal alkynyl substituent. An increase of the latter resulted in stable OAPPDO atropisomers at room temperature. The dynamics of the photoexcited states of two of the OAPPDO derivatives were investigated by transient absorption (TA) and time-resolved photoluminescence (tr-PL) spectroscopy.
Collapse
Affiliation(s)
- Robert Eichelmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Pierre Jeudy
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Lars Schneider
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Jonathan Zerhoch
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Paula R Mayer
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Felix Deschler
- Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Wang W, Sun P, Liu X, Zhang X, Zhang L, Tan YZ, Wang X. Radical Cations of Bilayer Nanographenes. Org Lett 2024; 26:1017-1021. [PMID: 38295360 DOI: 10.1021/acs.orglett.3c04084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Chemical redox reactions of bilayer nanographene complexes, (C96H24Ar6)2 (Ar = 2,6-dimethylphenyl) (12) and (C42H12R6)2 (R = tBu) (22), were investigated. Upon two-electron oxidation reactions, 12 and 22 were transformed to radical cations 122•+ and 222•+, respectively. SQUID and EPR measurements on 122•+ and 222•+ indicate that they possess an open-shell singlet ground state with antiferromagnetic interactions between two layers. The shortest separation distance between bilayers in 222•+ (3.30 Å) is shorter than that in 22 (3.44 Å) and 22•+ (3.40 Å), illustrating stronger interaction upon loss of electrons.
Collapse
Affiliation(s)
- Wenqing Wang
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Peiyang Sun
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xiangjun Liu
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xiudu Zhang
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Li Zhang
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Yuan-Zhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
38
|
Mandal P, Panda AN. Contrasting the excited state properties of different conformers of trans- and cis-2,2'-bipyridine oligomers in the gas phase. Phys Chem Chem Phys 2024; 26:2646-2656. [PMID: 38174437 DOI: 10.1039/d3cp05313j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this article, we present conformation-dependent photophysical and excited state properties of trans- and cis- BPY oligomers. Oligomers up to tetramers for three conformers, namely, o-, m-, and p-, are constructed and optimized at the B3LYP-D3/def2-SVPD level. The photophysical and excited state properties are interpreted in terms of UV and CD spectra at the RI-ADC(2)/def2-TZVPD level. The UV spectra of oligomers of the m-conformer show high-intensity and red-shifted UV bands compared to o- and p-oligomers. The CD spectra of p-oligomers show intense CD bands compared to o- and p-oligomers in the case of trans-structures. In contrast, oligomers of each conformer of cis-structures show high-intensity CD bands. The excited states of (BPY)2 and (BPY)4 are also characterized by analysis of one-electron transition density matrix considering three descriptors: ωCT, dexc, and PRNTO. The ωCT values of dimers are in the range of 0.06-0.32, which indicates the excited states are mainly LE states, whereas, for (BPY)4, the ωCT values range from 0.17 to 0.53, indicating the possibility of partial CT in the excited states. These observations are also explained using the NTOs and e-h correlation plots.
Collapse
Affiliation(s)
- Palak Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India.
| | - Aditya N Panda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India.
| |
Collapse
|
39
|
Ye Z, Wu H, Xu Y, Hua T, Chen G, Chen Z, Yin X, Huang M, Xu K, Song X, Huang Z, Lv X, Miao J, Cao X, Yang C. Deep-Blue Narrowband Hetero[6]helicenes Showing Circularly Polarized Thermally Activated Delayed Fluorescence Toward High-Performance OLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308314. [PMID: 37963185 DOI: 10.1002/adma.202308314] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Indexed: 11/16/2023]
Abstract
Helicenes exhibit substantial potential as circularly polarized luminescence (CPL) active molecules. However, their application in circularly polarized organic light-emitting diodes (CP-OLEDs) is typically hindered by the challenge of integrating both high color purity and efficient triplet-harvesting capability, particularly in the blue spectral region. Herein, a series of hetero[6]helicene-based emitters that is strategically engineered through the helical extension of a deep-blue double-boron-based multiple resonance thermally activated delayed fluorescence (MR-TADF) motif, is introduced. Importantly, the helical extension does not cause apparent structural deformation or perturb frontier molecular orbitals; thus, preserving the deep-blue emission and MR-TADF characteristics of the parent molecule. This approach also leads to reduced reorganization energy, resulting in emitters with narrower linewidth and higher photoluminescence quantum yield. Further, the helical motif enhances the racemization barrier and leads to improved CPL performance with luminescence dissymmetry factor values up to 1.5 × 10-3 . Exploiting these merits, devices incorporating the chiral dopants demonstrate deep-blue emission within the Broadcast Service Television 2020 color-gamut range, record external quantum efficiencies (EQEs) up to 29.3%, and have distinctive circularly polarized electroluminescence (CPEL) signals. Overall, the authors' findings underscore the helical extension as a promising strategy for designing narrowband chiroptical materials and advancing high-definition displays.
Collapse
Affiliation(s)
- Zeyuan Ye
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Han Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yulin Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tao Hua
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ke Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiufang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
40
|
Niu W, Fu Y, Qiu ZL, Schürmann CJ, Obermann S, Liu F, Popov AA, Komber H, Ma J, Feng X. π-Extended Helical Multilayer Nanographenes with Layer-Dependent Chiroptical Properties. J Am Chem Soc 2023. [PMID: 38048528 DOI: 10.1021/jacs.3c09350] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Helical nanographenes (NGs) have attracted increasing attention recently because of their intrinsic chirality and exotic chiroptical properties. However, the efficient synthesis of extended helical NGs featuring a multilayer topology is still underdeveloped, and their layer-dependent chiroptical properties remain elusive. In this study, we demonstrate a modular synthetic strategy to construct a series of novel helical NGs (1-3) with a multilayer topology through a consecutive Diels-Alder reaction and regioselective cyclodehydrogenation from the readily accessible phenanthrene-based precursors bearing ethynyl groups. The resultant NGs exhibit bilayer, trilayer, and tetralayer structures with elongated π extension and rigid helical backbones, as unambiguously confirmed by single-crystal X-ray or electron diffraction analysis. We find that the photophysical properties of these helical NGs are notably influenced by the degree of π extension, which varies with the number of layers, leading to obvious redshifted absorption, a fast rising molar extinction coefficient (ε), and markedly boosted fluorescence quantum yield (Φf). Moreover, the embedded [7]helicene subunits in these NGs result in stable chirality, enabling both chiral resolution and exploration of their layer-dependent chiroptical properties. Profiting from the good alignment of electric and magnetic dipole moments determined by the multilayer structure, the resultant NGs exhibit excellent circular dichroism and circularly polarized luminescence response with unprecedented high CPL brightness up to 168 M-1 cm-1, rendering them promising candidates for CPL emitters.
Collapse
Affiliation(s)
- Wenhui Niu
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Yubin Fu
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Zhen-Lin Qiu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | | | - Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| |
Collapse
|
41
|
Oró A, Romeo-Gella F, Perles J, Fernández-García JM, Corral I, Martín N. Tetrahedraphene: A Csp 3 -centered 3D Molecular Nanographene Showing Aggregation-Induced Emission. Angew Chem Int Ed Engl 2023; 62:e202312314. [PMID: 37846849 DOI: 10.1002/anie.202312314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
The bottom-up synthesis of 3D tetrakis(hexa-peri-hexabenzocoronenyl)methane, "tetrahedraphene", is reported. This molecular nanographene constituted by four hexa-peri-hexabenzocoronene (HBC) units attached to a central sp3 carbon atom, shows a highly symmetric arrangement of the HBC units disposed in the apex of a tetrahedron. The X-ray crystal structure reveals a tetrahedral symmetry of the molecule and the packing in the crystal is achieved mostly by CH⋅⋅⋅π interactions since the interstitial solvent molecules prevent the π⋅⋅⋅π interactions. In solution, tetrahedraphene shows the same electrochemical and photophysical properties as the hexa-t Bu-substituted HBC (t Bu-HBC) molecule. However, upon water addition, it undergoes a fluorescence change in solution and in the precipitated solid, showing an aggregation induced emission (AIE) process, probably derived from the restriction in the rotation and/or vibration of the HBCs. Time-Dependent Density Functional Theory (TDDFT) calculations reveal that upon aggregation, the high energy region of the emission band decreases in intensity, whereas the intensity of the red edge emission signal increases and presents a smoother decay, compared to the non-aggregated molecule. All in all, the excellent correlation between our simulations and the experimental findings allows explaining the colour change observed in the different solutions upon increasing the water fraction.
Collapse
Affiliation(s)
- Arturo Oró
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
| | - Fernando Romeo-Gella
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Josefina Perles
- Laboratorio de Difracción de Rayos X de Monocristal, SIdI, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 7. Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jesús M Fernández-García
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
| | - Inés Corral
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avd. Complutense S/N, 28040, Madrid, Spain
- IMDEA-Nanociencia, C/Faraday, 9. Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
42
|
Saal F, Swain A, Schmiedel A, Holzapfel M, Lambert C, Ravat P. Push-pull [7]helicene diimide: excited-state charge transfer and solvatochromic circularly polarised luminescence. Chem Commun (Camb) 2023; 59:14005-14008. [PMID: 37941499 DOI: 10.1039/d3cc04470j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
In this communication we describe a helically chiral push-pull molecule named 9,10-dimethoxy-[7]helicene diimide, displaying fluorescence (FL) and circularly polarised luminescence (CPL) over nearly the entire visible spectrum dependent on solvent polarity. The synthesised molecule exhibits an unusual solvent polarity dependence of FL quantum yield and nonradiative rate constant, as well as remarkable gabs and glum values along with high configurational stability.
Collapse
Affiliation(s)
- Fridolin Saal
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Asim Swain
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Alexander Schmiedel
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Marco Holzapfel
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Christoph Lambert
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Prince Ravat
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
43
|
Zhang ZW, Yang Y, Wu H, Zhang T. Advances in the two-dimensional layer materials for cancer diagnosis and treatment: unique advantages beyond the microsphere. Front Bioeng Biotechnol 2023; 11:1278871. [PMID: 37840663 PMCID: PMC10576562 DOI: 10.3389/fbioe.2023.1278871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
In recent years, two-dimensional (2D) layer materials have shown great potential in the field of cancer diagnosis and treatment due to their unique structural, electronic, and chemical properties. These non-spherical materials have attracted increasing attention around the world because of its widely used biological characteristics. The application of 2D layer materials like lamellar graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BPs) and so on have been developed for CT/MRI imaging, serum biosensing, drug targeting delivery, photothermal therapy, and photodynamic therapy. These unique applications for tumor are due to the multi-variable synthesis of 2D materials and the structural characteristics of good ductility different from microsphere. Based on the above considerations, the application of 2D materials in cancer is mainly carried out in the following three aspects: 1) In terms of accurate and rapid screening of tumor patients, we will focus on the enrichment of serum markers and sensitive signal transformation of 2D materials; 2) The progress of 2D nanomaterials in tumor MRI and CT imaging was described by comparing the performance of traditional contrast agents; 3) In the most important aspect, we will focus on the progress of 2D materials in the field of precision drug delivery and collaborative therapy, such as photothermal ablation, sonodynamic therapy, chemokinetic therapy, etc. In summary, this review provides a comprehensive overview of the advances in the application of 2D layer materials for tumor diagnosis and treatment, and emphasizes the performance difference between 2D materials and other types of nanoparticles (mainly spherical). With further research and development, these multifunctional layer materials hold great promise in the prospects, and challenges of 2D materials development are discussed.
Collapse
Affiliation(s)
- Zheng-Wei Zhang
- Department of Hepatopancreatobiliary Surgery, Xinghua People’s Hospital, Yangzhou University, Xinghua, Jiangsu, China
| | - Yang Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Han Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Tong Zhang
- Department of Hepatopancreatobiliary Surgery, Xinghua People’s Hospital, Yangzhou University, Xinghua, Jiangsu, China
| |
Collapse
|