1
|
Sun K, Cao N, Silveira OJ, Fumega AO, Hanindita F, Ito S, Lado JL, Liljeroth P, Foster AS, Kawai S. On-surface synthesis of Heisenberg spin-1/2 antiferromagnetic molecular chains. SCIENCE ADVANCES 2025; 11:eads1641. [PMID: 40020073 PMCID: PMC11870052 DOI: 10.1126/sciadv.ads1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Magnetic exchange interactions between localized spins in π-electron magnetism of carbon-based nanostructures have attracted tremendous interest due to their great potential for nano spintronics. Unique many-body quantum characteristics, such as gaped excitations, strong spin entanglement, and fractionalized excitations, have been demonstrated, but the spin-1/2 Heisenberg model with a single antiferromagnetic coupling J value remained unexplored. Here, we realized the entangled antiferromagnetic quantum spin-1/2 Heisenberg model with diazahexabenzocoronene oligomers (up to 7 units) on Au(111). Extensive low-temperature scanning tunneling microscopy/spectroscopy measurements and density functional theory and many-body calculations show that even-numbered spin chains host a collective state with gapped excitations, while odd-numbered chains feature a Kondo excitation. We found that a given antiferromagnetic coupling J value between first neighbors in the entangled quantum states is responsible for the quantum phenomena, strongly relating to their parities of the chain. The tunable molecular building blocks act as an ideal platform for the experimental realization of topological spin lattices.
Collapse
Affiliation(s)
- Kewei Sun
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Center for Basic Research on Materials, National Institute for Materials Sciences, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Nan Cao
- Department of Applied Physics, Aalto University, Espoo, Finland
| | | | | | - Fiona Hanindita
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Shingo Ito
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jose L. Lado
- Department of Applied Physics, Aalto University, Espoo, Finland
| | - Peter Liljeroth
- Department of Applied Physics, Aalto University, Espoo, Finland
| | - Adam S. Foster
- Department of Applied Physics, Aalto University, Espoo, Finland
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Japan
| | - Shigeki Kawai
- Center for Basic Research on Materials, National Institute for Materials Sciences, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
| |
Collapse
|
2
|
Pawlak R, Anindya KN, Chahib O, Liu JC, Hiret P, Marot L, Luzet V, Palmino F, Chérioux F, Rochefort A, Meyer E. On-Surface Synthesis and Characterization of Radical Spins in Kagome Graphene. ACS NANO 2025; 19:4768-4777. [PMID: 39793973 PMCID: PMC11803911 DOI: 10.1021/acsnano.4c15519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
Flat bands in Kagome graphene might host strong electron correlations and frustrated magnetism upon electronic doping. However, the porous nature of Kagome graphene opens a semiconducting gap due to quantum confinement, preventing its fine-tuning by electrostatic gates. Here we induce zero-energy states into a semiconducting Kagome graphene by inserting π-radicals at selected locations. We utilize the on-surface reaction of tribromotrioxoazatriangulene molecules to synthesize carbonyl-functionalized Kagome graphene on Au(111), thereafter modified in situ by exposure to atomic hydrogen. Atomic force microscopy and tunneling spectroscopy unveil the stepwise chemical transformation of the carbonyl groups into radicals, which creates local magnetic defects of spin state S = 1/2 and zero-energy states as confirmed by density functional theory. The ability to imprint local magnetic moments opens up prospects to study the interplay between topology, magnetism, and electron correlation in Kagome graphene.
Collapse
Affiliation(s)
- Rémy Pawlak
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Khalid N. Anindya
- Engineering
Physics Department, Polytechnique Montréal, Montréal (Québec) H3C 3A7, Canada
| | - Outhmane Chahib
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Jung-Ching Liu
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Paul Hiret
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Laurent Marot
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Vincent Luzet
- Université
de Franche-Comté, FEMTO-ST, CNRS, Besançon F-25000, France
| | - Frank Palmino
- Université
de Franche-Comté, FEMTO-ST, CNRS, Besançon F-25000, France
| | - Frédéric Chérioux
- Université
de Franche-Comté, FEMTO-ST, CNRS, Besançon F-25000, France
| | - Alain Rochefort
- Engineering
Physics Department, Polytechnique Montréal, Montréal (Québec) H3C 3A7, Canada
| | - Ernst Meyer
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| |
Collapse
|
3
|
Daugherty M, Jacobse PH, Jiang J, Jornet-Somoza J, Dorit R, Wang Z, Lu J, McCurdy R, Tang W, Rubio A, Louie SG, Crommie MF, Fischer FR. Regioselective On-Surface Synthesis of [3]Triangulene Graphene Nanoribbons. J Am Chem Soc 2024; 146:15879-15886. [PMID: 38813680 PMCID: PMC11177251 DOI: 10.1021/jacs.4c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
The integration of low-energy states into bottom-up engineered graphene nanoribbons (GNRs) is a robust strategy for realizing materials with tailored electronic band structure for nanoelectronics. Low-energy zero-modes (ZMs) can be introduced into nanographenes (NGs) by creating an imbalance between the two sublattices of graphene. This phenomenon is exemplified by the family of [n]triangulenes (n ∈ N ). Here, we demonstrate the synthesis of [3]triangulene-GNRs, a regioregular one-dimensional (1D) chain of [3]triangulenes linked by five-membered rings. Hybridization between ZMs on adjacent [3]triangulenes leads to the emergence of a narrow band gap, Eg,exp ∼ 0.7 eV, and topological end states that are experimentally verified using scanning tunneling spectroscopy. Tight-binding and first-principles density functional theory calculations within the local density approximation corroborate our experimental observations. Our synthetic design takes advantage of a selective on-surface head-to-tail coupling of monomer building blocks enabling the regioselective synthesis of [3]triangulene-GNRs. Detailed ab initio theory provides insights into the mechanism of on-surface radical polymerization, revealing the pivotal role of Au-C bond formation/breakage in driving selectivity.
Collapse
Affiliation(s)
- Michael
C. Daugherty
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peter H. Jacobse
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Jingwei Jiang
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Joaquim Jornet-Somoza
- Nano-Bio
Spectroscopy Group and ETSF, Universidad
del País Vasco UPV/EHU, Donostia E20018, Spain
- Max
Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany
| | - Reis Dorit
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ziyi Wang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California Berkeley
and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jiaming Lu
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Ryan McCurdy
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Weichen Tang
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Angel Rubio
- Nano-Bio
Spectroscopy Group and ETSF, Universidad
del País Vasco UPV/EHU, Donostia E20018, Spain
- Max
Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany
- Center for
Computational Quantum Physics (CCQ), The
Flatiron Institute, New York, New York 10010, United States
| | - Steven G. Louie
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Michael F. Crommie
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California Berkeley
and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Felix R. Fischer
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California Berkeley
and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bakar
Institute of Digital Materials for the Planet, Division of Computing,
Data Science, and Society, University of
California, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Slicker K, Delgado A, Jiang J, Tang W, Cronin A, Blackwell RE, Louie SG, Fischer FR. Engineering Small HOMO-LUMO Gaps in Polycyclic Aromatic Hydrocarbons with Topologically Protected States. NANO LETTERS 2024; 24:5387-5392. [PMID: 38629638 PMCID: PMC11066967 DOI: 10.1021/acs.nanolett.4c01476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Topological phases in laterally confined low-dimensional nanographenes have emerged as versatile design tools that can imbue otherwise unremarkable materials with exotic band structures ranging from topological semiconductors and quantum dots to intrinsically metallic bands. The periodic boundary conditions that define the topology of a given lattice have thus far prevented the translation of this technology to the quasi-zero-dimensional (0D) domain of small molecular structures. Here, we describe the synthesis of a polycyclic aromatic hydrocarbon (PAH) featuring two localized zero modes (ZMs) formed by the topological junction interface between a trivial and nontrivial phase within a single molecule. First-principles density functional theory calculations predict a strong hybridization between adjacent ZMs that gives rise to an exceptionally small HOMO-LUMO gap. Scanning tunneling microscopy and spectroscopy corroborate the molecular structure of 9/7/9-double quantum dots and reveal an experimental quasiparticle gap of 0.16 eV, corresponding to a carbon-based small molecule long-wavelength infrared (LWIR) absorber.
Collapse
Affiliation(s)
- Kaitlin Slicker
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Aidan Delgado
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Jingwei Jiang
- Department
of Physics, University of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Weichen Tang
- Department
of Physics, University of California, Berkeley, Berkeley, California 94720, United States
| | - Adam Cronin
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Raymond E. Blackwell
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Steven G. Louie
- Department
of Physics, University of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Felix R. Fischer
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kavli
Energy NanoSciences Institute at the University of California, Berkeley,
and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bakar
Institute of Digital Materials for the Planet, Division of Computing,
Data Science, and Society, University of
California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Zhu X, Li K, Liu J, Wang Z, Ding Z, Su Y, Yang B, Yan K, Li G, Yu P. Topological Structure Realized in Cove-Edged Graphene Nanoribbons via Incorporation of Periodic Pentagon Rings. J Am Chem Soc 2024; 146:7152-7158. [PMID: 38421279 DOI: 10.1021/jacs.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cove-edged zigzag graphene nanoribbons are predicted to show metallic, topological, or trivial semiconducting band structures, which are precisely determined by their cove offset positions at both edges as well as the ribbon width. However, due to the challenge of introducing coves into zigzag-edged graphene nanoribbons, only a few cove-edged graphene nanoribbons with trivial semiconducting bandgaps have been realized experimentally. Here, we report that the topological band structure can be realized in cove-edged graphene nanoribbons by embedding periodic pentagon rings on the cove edges through on-surface synthesis. Upon noncontact atomic force microscopy and scanning tunneling spectroscopy measurements, the chemical and electronic structures of cove-edged graphene nanoribbons with periodic pentagon rings have been characterized for different lengths. Combined with theoretical calculations, we find that upon inducing periodic pentagon rings the cove-edged graphene nanoribbons exhibit nontrivial topological structures. Our results provide insights for the design and understanding of the topological character in cove-edged graphene nanoribbons.
Collapse
Affiliation(s)
- Xujie Zhu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Kezhen Li
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhou Wang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhihao Ding
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Yunlong Su
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Gang Li
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, 201210 Shanghai, China
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|