1
|
Tavani F, Tofoni A, Vandone M, Busato M, Braglia L, Torelli P, Stanzione MG, Armstrong AR, Morris RE, Colombo V, D'Angelo P. A combined soft X-ray and theoretical investigation discloses the water harvesting behaviour of Mg-MOF-74 at the crystal surface. Chem Sci 2025:d5sc01482d. [PMID: 40313522 PMCID: PMC12041880 DOI: 10.1039/d5sc01482d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/20/2025] [Indexed: 05/03/2025] Open
Abstract
Metal-organic frameworks (MOFs) are receiving growing interest as transformative materials for real-world atmospheric water harvesting applications. However, obtaining molecular-level details on how surface effects regulate MOF water uptake has proven to be elusive. Here, we present a novel methodology based on ambient pressure soft X-ray absorption spectroscopy (AP-NEXAFS), machine learning-assisted theoretical spectroscopy and molecular dynamics simulations to gain selective insights into the behaviour of water at a MOF crystal surface. We applied our interdisciplinary method to investigate the structural and dynamical properties of water at the surface of the Mg-MOF-74 system, while obtaining complementary information on the water uptake and release from the bulk by synchrotron powder X-ray diffraction. Our investigation pointed out the simultaneous presence of Mg open sites and residual gas-phase water during dehydration, and proved that during water release a high number of surface Mg sites still interact with one or two water molecules. Conversely, when looking at the bulk, a significantly lower number of Mg sites have been found to interact with water molecules in the same experimental conditions. This behaviour suggests that the water adsorption (desorption) process starts from the interior of the material and propagates towards the channel openings. The combined approach based on AP-NEXAFS, PXRD experimental determinations and ML-supported theoretical analyses has been found to be a valuable tool to provide a thorough description of the water harvesting process at both surface and bulk of the crystal.
Collapse
Affiliation(s)
- Francesco Tavani
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza P.le A. Moro 5 I-00185 Rome Italy
| | - Alessandro Tofoni
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza P.le A. Moro 5 I-00185 Rome Italy
| | - Marco Vandone
- Dipartimento di Chimica & UdR INSTM di Milano, Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Matteo Busato
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza P.le A. Moro 5 I-00185 Rome Italy
| | - Luca Braglia
- CNR-Istituto Officina dei Materiali, TASC 34149 Trieste Italy
- AREA Science Park Padriciano 99 I-34149 Trieste Italy
| | - Piero Torelli
- CNR-Istituto Officina dei Materiali, TASC 34149 Trieste Italy
- AREA Science Park Padriciano 99 I-34149 Trieste Italy
| | | | - Anthony R Armstrong
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY16 9ST UK
| | - Russell E Morris
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY16 9ST UK
| | - Valentina Colombo
- Dipartimento di Chimica & UdR INSTM di Milano, Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Paola D'Angelo
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza P.le A. Moro 5 I-00185 Rome Italy
| |
Collapse
|
2
|
Donaldson PM, Hawkins AP, Howe RF. Distinctive signatures and ultrafast dynamics of Brønsted sites, silanol nests and adsorbed water in zeolites revealed by 2D-IR spectroscopy. Chem Sci 2025; 16:6688-6704. [PMID: 40144509 PMCID: PMC11935784 DOI: 10.1039/d4sc08093a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Characterising hydroxyl groups in zeolites and other amorphous solids often relies on methods such as IR and NMR spectroscopy. Their power to distinguish different types of hydroxyl groups diminishes when band broadening from hydrogen bonding and structural heterogeneity occurs. In support of this problem, we report in situ femtosecond 2D-IR spectroscopy of some of the different types of hydroxyl groups present in zeolites. Despite the samples studied being optically scattering pellets, we show that their structural and rotational dynamics can be determined. We show that the hydroxyl groups of Brønsted acid sites, silanol defects and water of hydration display distinct features in their 2D-IR spectra. Brønsted site hydroxyl group structural distributions have characteristic inhomogeneously broadened 2D-IR bandshapes. Water of hydration and partially hydrogen bonded silanol groups give unique 2D-IR cross peak signatures off-diagonal. Hydrogen bonded silanol groups arising from vacancy defects (silanol nests) show a distinctive 2D-IR signature with unique ultrafast dynamics observed to be identical between ZSM-5 and silicalite-1. 2D-IR spectroscopy makes IR measurements quantitative, and we use this property to estimate the concentration of ZSM-5 silanol nest hydroxyl groups relative to the number of Brønsted sites. Overlapping silanol nest spectral features are revealed by frequency dependence of their vibrational lifetime. In contrast to other framework hydroxyls, the silanol nest band shows picosecond 2D-IR anisotropy decay and spectral diffusion. The signatures of nest structural mobility revealed here presents new opportunities to understand these hitherto elusive structural defects.
Collapse
Affiliation(s)
- Paul M Donaldson
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Harwell Science and Innovation Campus, Didcot OX11 0QX UK
| | - Alexander P Hawkins
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Harwell Science and Innovation Campus, Didcot OX11 0QX UK
| | - Russell F Howe
- Department of Chemistry, University of Aberdeen Aberdeen AB24 3UE UK
| |
Collapse
|
3
|
Chu T, Zhou Z, Tian P, Yu T, Lian C, Zhang B, Xuan FZ. Nanofluidic sensing inspired by the anomalous water dynamics in electrical angstrom-scale channels. Nat Commun 2024; 15:7329. [PMID: 39187549 PMCID: PMC11347597 DOI: 10.1038/s41467-024-51877-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Manipulation of confined water dynamics by voltage keeps great importance for diverse applications. However, limitations on the membrane functions, voltage-control range, and unclear dynamics need to be addressed. Herein, we report an anomalous electrically controlled gating phenomenon on cation-intercalated multi-layer Ti3C2 membranes and reveal the confined water dynamics. The water permeation rate was improved rapidly following the application and rise of voltage and finally reached a maximum rate at 0.9 V. The permeation rate starts to decrease from 0.9 V. Below 0.9 V, the electric field affects the charge and polarity of water molecules and then leads to ordered and denser rearrangement in the two-dimensional (2D) channel to accelerate the permeation rate. Above 0.9 V, with the assistance of metal cations, the surge in current induced aggregation of water molecules into clusters, thereby limiting the water mobility. Based on these findings, a high-performance humidity sensor was developed by simultaneously optimizing the response and recovery speeds through electric manipulation. This work provides flexible strategies in intelligent membrane design and nanofluidic sensing.
Collapse
Affiliation(s)
- Tianshu Chu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Shanghai, PR China
- School of Mechanical and Power Engineering and, East China University of Science and Technology, Shanghai, PR China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, PR China
| | - Ze Zhou
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Shanghai, PR China
- School of Mechanical and Power Engineering and, East China University of Science and Technology, Shanghai, PR China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, PR China
| | - Pengfei Tian
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Shanghai, PR China
- School of Mechanical and Power Engineering and, East China University of Science and Technology, Shanghai, PR China
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, PR China
| | - Tingting Yu
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Bowei Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Shanghai, PR China.
- School of Mechanical and Power Engineering and, East China University of Science and Technology, Shanghai, PR China.
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, PR China.
| | - Fu-Zhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Shanghai, PR China.
- School of Mechanical and Power Engineering and, East China University of Science and Technology, Shanghai, PR China.
- Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
4
|
Zhang M, Peng J, Gao Y, Wang B, He J, Bai Y, Liu J, Chen CL, Fang Y, Bian H. Unveiling the Structural and Dynamic Characteristics of Concentrated LiNO 3 Aqueous Solutions through Ultrafast Infrared Spectroscopy and Molecular Dynamics Simulations. J Phys Chem Lett 2024; 15:7610-7619. [PMID: 39028986 DOI: 10.1021/acs.jpclett.4c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Highly concentrated aqueous electrolytes have attracted a significant amount of attention for their potential applications in lithium-ion batteries. Nevertheless, a comprehensive understanding of the Li+ solvation structure and its migration within electrolyte solutions remains elusive. This study employs linear vibrational spectroscopy, ultrafast infrared spectroscopy, and molecular dynamics (MD) simulations to elucidate the structural dynamics in LiNO3 solutions by using intrinsic and extrinsic vibrational probes. The N-O stretching vibrations of NO3- exhibit a distinct spectral splitting, attributed to its asymmetric interaction with the surrounding solvation structure. Analysis of the vibrational relaxation dynamics of intrinsic and extrinsic probes, in combination with MD simulations, reveals cage-like networks formed through electrostatic interactions between Li+ and NO3-. This microscopic heterogeneity is reflected in the intertwined arrangement of ions and water molecules. Furthermore, both vehicular transport and structural diffusion assisted by solvent rearrangement for Li+ were analyzed, which are closely linked with the bulk concentration.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiahui Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yuting Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Baihui Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiman He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yimin Bai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Cheng-Lung Chen
- Department of Chemistry, National Sunyat-sen University, Kaohsiung 80424, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
5
|
Mapile AN, LeRoy MA, Fabrizio K, Scatena LF, Brozek CK. The Surface of Colloidal Metal-Organic Framework Nanoparticles Revealed by Vibrational Sum Frequency Scattering Spectroscopy. ACS NANO 2024; 18:13406-13414. [PMID: 38722052 DOI: 10.1021/acsnano.4c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Solvation shells strongly influence the interfacial chemistry of colloidal systems, from the activity of proteins to the colloidal stability and catalysis of nanoparticles. Despite their fundamental and practical importance, solvation shells have remained largely undetected by spectroscopy. Furthermore, their ability to assemble at complex but realistic interfaces with heterogeneous and rough surfaces remains an open question. Here, we apply vibrational sum frequency scattering spectroscopy (VSFSS), an interface-specific technique, to colloidal nanocrystals with porous metal-organic frameworks (MOFs) as a case study. Due to the porous nature of the solvent-particle boundary, MOF particles challenge conventional models of colloidal and interfacial chemistry. Their multiweek colloidal stability in the absence of conventional surface ligands suggests that stability may arise in part from solvation forces. Spectra of colloidally stable Zn(2-methylimidazolate)2 (ZIF-8) in polar solvents indicate the presence of ordered solvation shells, solvent-metal binding, and spontaneous ordering of organic bridging linkers within the MOF. These findings help explain the unexpected colloidal stability of MOF colloids, while providing a roadmap for applying VSFSS to wide-ranging colloidal nanocrystals in general.
Collapse
Affiliation(s)
- Ashley N Mapile
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael A LeRoy
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Kevin Fabrizio
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Lawrence F Scatena
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
6
|
Yan S, Song H, Huang Z, Su Y, Lv Y. Multisignals Sensing Platform for Highly Sensitive, Accurate, and Rapid Detection of p-Aminophenol Based on Adsorption and Oxidation Effects Induced by Defective NH 2-Ag-nMOFs. Anal Chem 2024. [PMID: 38330440 DOI: 10.1021/acs.analchem.3c05444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Labile toxic pollutants detection remains a challenge due to the problem that a single method is prone to producing false-negative/-positive signals. The construction of a multisignal sensing platform with the advantages of different strategies is an effective way to solve this problem. Herein, a novel resonant light scattering (RLS), fluorescent and rapid visual multisignals sensing strategy for p-aminophenol (p-AP) detection was designed based on the adsorption and oxidation effects of defective amino-functionalized Ag-based nano metal-organic frameworks (NH2-Ag-nMOFs). In this reaction process, NH2-Ag-nMOFs with incomplete coordination oxidize H2O2 to produce singlet oxygen (1O2) which rapidly oxidizes p-AP, leading to the reduction of Ag+ to Ag0, thereby disrupting the structure of NH2-Ag-nMOFs and resulting in fluorescence quenching of NH2-Ag-nMOFs. Synchronously, owing to Ag0 aggregation and p-AP oxidation, the color of the system changed from colorless to purplish-red and pale brown within 20 s. The assay has realized the rapid naked-eye detection of 5 μM p-AP rapidly. Additionally, thanks to the intermolecular hydrogen bonding, NH2-Ag-nMOFs-p-AP aggregates formed, which enhanced the RLS signal. With the RLS signal, the designed multisignals sensing platform can analyze p-AP at a concentration as low as 11 nM and yield a wider dynamic response range than any single signal strategy reported before, which can quickly meet the measurement requirement of different actual samples. Overall, the proposed strategy without assembling various signal indicators presented an accurate, rapid, cost-effective, and sensitive multisignals sensing platform for p-AP analysis and has great prospects in labile toxic pollutants monitoring.
Collapse
Affiliation(s)
- Shuguang Yan
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zili Huang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yingying Su
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
7
|
Ryan M, Gao L, Valiyaveetil FI, Kananenka AA, Zanni MT. Water inside the Selectivity Filter of a K + Ion Channel: Structural Heterogeneity, Picosecond Dynamics, and Hydrogen Bonding. J Am Chem Soc 2024; 146:1543-1553. [PMID: 38181505 PMCID: PMC10797622 DOI: 10.1021/jacs.3c11513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Water inside biological ion channels regulates the key properties of these proteins, such as selectivity, ion conductance, and gating. In this article, we measure the picosecond spectral diffusion of amide I vibrations of an isotope-labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100-2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope-labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D line shapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent or nonadjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations was observed on a picosecond timescale. These dynamics are in stark contrast with liquid water, which remains highly dynamic even in the presence of ions at high concentrations.
Collapse
Affiliation(s)
- Matthew
J. Ryan
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lujia Gao
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Francis I. Valiyaveetil
- Department
of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alexei A. Kananenka
- Department
of Physics and Astronomy, University of
Delaware, Newark, Delaware 19716, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Hack JH, Chen Y, Lewis NHC, Kung HH, Tokmakoff A. Strong H-bonding from Zeolite Bro̷nsted Acid Site to Water: Origin of the Broad IR Doublet. J Phys Chem B 2023; 127:11054-11063. [PMID: 38109274 DOI: 10.1021/acs.jpcb.3c06819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Hydrogen bonding between water molecules and zeolite Bro̷nsted acid sites (BAS) has received much attention due to the significant influence of water on the adsorption and catalytic properties of these widely used porous materials. When a single water molecule is adsorbed at the BAS, the zeolite O-H stretch vibration decreases in frequency and splits into two extraordinarily broad bands peaked near 2500 and 2900 cm-1 in the infrared (IR) spectrum. This broad doublet feature is the predominant IR signature used to identify and interpret water-BAS H-bonding at low hydration levels, but the origin of the band splitting is not well understood. In this study, we used broadband two-dimensional infrared (2D IR) spectroscopy to investigate zeolite HZSM-5 prepared with a single water molecule per BAS. We find that the 2D IR spectrum is not explained by the most common interpretation of Fermi resonance coupling between the stretch and the bend of the BAS OH group, which predicts intense excited-state transitions that are absent from the experimental results. We present an alternative model of a double-well proton stretch potential, where the band splitting is caused by excited-state tunneling through the proton-transfer barrier. This one-dimensional model reproduces the basic experimental pattern of transition frequencies and amplitudes, suggesting that the doublet bands may originate from a highly anharmonic potential in which the excited state proton wave functions are delocalized over the H-bond between zeolite BAS and adsorbed H2O. Additional details about molecular orientation and coordination of the adsorbed water molecule are also resolved in the 2D IR spectroscopy.
Collapse
Affiliation(s)
- John H Hack
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yaxin Chen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas H C Lewis
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Harold H Kung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Alezi D, Oppenheim JJ, Sarver PJ, Iliescu A, Dinakar B, Dincă M. Tunable Low-Relative Humidity and High-Capacity Water Adsorption in a Bibenzotriazole Metal-Organic Framework. J Am Chem Soc 2023; 145:25233-25241. [PMID: 37956363 DOI: 10.1021/jacs.3c08335] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Materials capable of selectively adsorbing or releasing water can enable valuable applications ranging from efficient humidity and temperature control to the direct atmospheric capture of potable water. Despite recent progress in employing metal-organic frameworks (MOFs) as privileged water sorbents, developing a readily accessible, water-stable MOF platform that can be systematically modified for high water uptake at low relative humidity remains a significant challenge. We herein report the development of a tunable MOF that efficiently captures atmospheric water (up to 0.78 g water/g MOF) across a range of uptake humidity (27-45%) employing a readily accessible Zn bibenzotriazolate MOF, CFA-1 ([Zn5(OAc)4(bibta)3], H2bibta = 1H,1H'-5,5'-bibenzo[d][1,2,3]triazole), as a base for subsequent diversification. Controlling the metal identity (zinc, nickel) and coordinating nonstructural anion (acetate, chloride) via postsynthetic exchange modulates the relative humidity of uptake, facilitating the use of a single MOF scaffold for a diverse range of potential water sorption applications. We further present a fundamental theory dictating how continuous variation of the pore environment affects the relative humidity of uptake. Exchange of substituents preserves capacity for water sorption, increases hydrolytic stability (with 5.7% loss in working capacity over 450 water adsorption-desorption cycles for the nickel-chloride-rich framework), and enables continuous modulation for the relative humidity of pore condensation. This combination of stability and tunability within a synthetically accessible framework renders Ni-incorporated M5X4bibta3 promising materials for practical water sorption applications.
Collapse
Affiliation(s)
- Dalal Alezi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21441, Saudi Arabia
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Patrick J Sarver
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrei Iliescu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bhavish Dinakar
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Ryan MJ, Gao L, Valiyaveetil FI, Kananenka AA, Zanni MT. Water inside the selectivity filter of a K + ion channel: structural heterogeneity, picosecond dynamics, and hydrogen-bonding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567415. [PMID: 38014355 PMCID: PMC10680850 DOI: 10.1101/2023.11.16.567415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Water inside biological ion channels regulates the key properties of these proteins such as selectivity, ion conductance, and gating. In this Article we measure the picosecond spectral diffusion of amide I vibrations of an isotope labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100 - 2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D lineshapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent, or non-adjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations were observed on a picosecond timescale. These dynamics are in stark contrast with liquid water that remains highly dynamic even in the presence of ions at high concentrations.
Collapse
Affiliation(s)
- Matthew J. Ryan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lujia Gao
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Francis I. Valiyaveetil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexei A. Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
11
|
Dean JLS, Winkler VS, Boyer MA, Sibert EL, Fournier JA. Investigating Intramolecular H Atom Transfer Dynamics in β-Diketones with Ultrafast Infrared Spectroscopies and Theoretical Modeling. J Phys Chem A 2023; 127:9258-9272. [PMID: 37882618 DOI: 10.1021/acs.jpca.3c05417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The vibrational signatures and ultrafast dynamics of the intramolecular H-bond in a series of β-diketones are investigated with 2D IR spectroscopy and computational modeling. The chosen β-diketones exhibit a range of H atom donor-acceptor distances and asymmetry along the H atom transfer coordinate that tunes the intramolecular H-bond strength. The species with the strongest H-bonds are calculated to have very soft H atom potentials, resulting in highly red-shifted OH stretch fundamental frequencies and dislocation of the H atom upon vibrational excitation. These soft potentials lead to significant coupling to the other normal mode coordinates and give rise to the very broad vibrational signatures observed experimentally. The 2D IR spectra in both the OH and OD stretch regions of the light and deuterated isotopologues reveal broadened and long-lived ground-state bleach signatures of the vibrationally hot molecules. Polarization-sensitive transient absorption measurements in the OH and OD stretch regions reveal notable isotopic differences in orientational dynamics. Orientational relaxation was measured to occur on ∼600 fs and ∼2 ps time scales for the light and deuterated isotopologues, respectively. The orientational dynamics are interpreted in terms of activated H/D atom transfer events driven by collective intramolecular structural rearrangements.
Collapse
Affiliation(s)
- Jessika L S Dean
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Valerie S Winkler
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Mark A Boyer
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin Madison, Madison, Wisconsin 53706, United States
| | - Edwin L Sibert
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin Madison, Madison, Wisconsin 53706, United States
| | - Joseph A Fournier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
12
|
Ho CH, Paesani F. Elucidating the Competitive Adsorption of H 2O and CO 2 in CALF-20: New Insights for Enhanced Carbon Capture Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48287-48295. [PMID: 37796189 DOI: 10.1021/acsami.3c11092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
In light of the pressing need for efficient carbon capture solutions, our study investigates the simultaneous adsorption of water (H2O) and carbon dioxide (CO2) as a function of relative humidity in CALF-20, a highly scalable and stable metal-organic framework (MOF). Advanced computer simulations reveal that due to their similar interactions with the framework, H2O and CO2 molecules compete for the same binding sites, occupying similar void regions within the CALF-20 pores. This competition results in distinct thermodynamic and dynamical behaviors of H2O and CO2 molecules, depending on whether one or both guest species are present. Notably, the presence of CO2 molecules forces the H2O molecules to form more connected hydrogen-bond networks within smaller regions, slowing water reorientation dynamics and decreasing water entropy. Conversely, the presence of water speeds up the reorientation of CO2 molecules, decreases the CO2 entropy, and increases the propensity for CO2 to be adsorbed within the framework due to stronger water-mediated interactions. Due to the competition for the same void spaces, both H2O and CO2 molecules exhibit slower diffusion when molecules of the other guest species are present. These findings offer valuable strategies and insights into enhancing the differential affinity of H2O and CO2 for MOFs specifically designed for carbon capture applications.
Collapse
Affiliation(s)
- Ching-Hwa Ho
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Kim T, Im J, Roh Y, Lee G, Seo M. Identification of Chemical and Structural Characteristics of Acrylic Paint Layer Using Terahertz Metasurfaces. Anal Chem 2023; 95:15302-15310. [PMID: 37769202 DOI: 10.1021/acs.analchem.3c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The precise investigation and monitoring of the internal structural change within complex layered systems are crucial, as the emergence of undesirable defects or formation of secondary internal structures significantly exerts a profound influence on the overall properties of the system. We demonstrate an advanced sensing platform utilizing terahertz metasurfaces, allowing chemical detection and precise identification within an acrylic paint layer with a noticeable sensitivity, reaching down to several hundreds of nanometers, in nondestructive and noncontact manners. The identification of solid and mixed paint samples was achieved by analyzing their optical properties, including the refractive index and absorption coefficient. Notably, the presence of internal pore defects within the mixed acrylic paint led to geometric distortions, affecting the state of the overall system. Intriguingly, even in cases where acrylic paint exhibited identical colors perceptible under visible light, distinct discrimination and identification of chemical compositions were successfully proposed.
Collapse
Affiliation(s)
- Taeyeon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jaeryong Im
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- School of Electrical and Computer Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Yeeun Roh
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Geon Lee
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Minah Seo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|