1
|
Wei R, Zhao T, Xu H, Gao J. Recent advances and challenges of metal-organic frameworks for CO 2 capture. Dalton Trans 2025. [PMID: 40384371 DOI: 10.1039/d5dt00204d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Carbon dioxide (CO2) emissions resulting from extensive fossil fuel consumption have become an increasingly critical global challenge, underscoring the importance of carbon capture and separation technologies. As emerging porous materials, metal-organic frameworks (MOFs) exhibit remarkable potential for CO2 capture due to their unique structures and tunable properties. Current MOF-based CO2 capture methods have been broadly categorized into two major mechanisms: chemisorption and physisorption. By precisely tailoring MOF pore size and shape, creating unsaturated metal sites, and introducing functional groups, researchers significantly boost CO2 capture efficiency. This Frontier article discussed these two mechanisms and highlighted the latest advances in MOF-based CO2 capture, offering valuable guidelines for the development of novel MOF-related technologies.
Collapse
Affiliation(s)
- Runzhi Wei
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Tao Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Hui Xu
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, China.
| | - Junkuo Gao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Zou S, Zhang W, Chen C, Song D, Li H, Li Y, Yang J, Krishna R, Wu M. Electrostatic Potential Matching in an Anion-Pillared Framework for Benchmark Hexafluoroethane Purification from Ternary Mixture. Angew Chem Int Ed Engl 2025:e202505355. [PMID: 40197772 DOI: 10.1002/anie.202505355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/10/2025]
Abstract
One-step purification of CF3CF3 from ternary CF3CH2F/CF3CHF2/CF3CF3 mixture is crucial since its vital role in the semiconductor industry. However, efficient separation of chemically inert CF₃CF₃ remains challenging due to the difficulty in creating specific recognition sites in porous materials. In this work, we report the first example of anion-pillared MOFs to the separation of fluorinated electronic specialty gases, utilizing the unique electrostatic potential matching in the bipolar pores of SIFSIX-1-Cu to realize a benchmark CF3CH2F/CF3CHF2/CF3CF3 separation. SIFSIX-1-Cu exhibits the highest CF3CH2F and CF3CHF2 adsorption capacity at 0.01 bar, as well as the highest CF3CH2F/CF3CF3 and CF3CHF2/CF3CF3 IAST selectivity. Additionally, high-purity (≥ 99.995%) CF3CF3 with record productivity (882.9 L kg-1) can be acquired through one-step breakthrough experiment of CF3CH2F/CF3CHF2/CF3CF3 (5/5/90). Theoretical calculations further reveal that the coexistence of electronegative SiF6 2- and partially electropositive H sites promotes SIFSIX-1-Cu to effectively anchor CF3CH2F and CF3CHF2 through multiple supramolecular interactions.
Collapse
Affiliation(s)
- Shuixiang Zou
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Zhang
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Cheng Chen
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Danhua Song
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Hengbo Li
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yashuang Li
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jinghong Yang
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Mingyan Wu
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Hao YZ, Shao K, Zhang X, Yu YH, Liu D, Wen HM, Cui Y, Li B, Chen B, Qian G. Pore Space Partition Enabled by Lithium(I) Chelation of a Metal-Organic Framework for Benchmark C 2H 2/CO 2 Separation. J Am Chem Soc 2025; 147:11257-11266. [PMID: 40111185 DOI: 10.1021/jacs.4c18209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Adsorptive separation of acetylene (C2H2) from carbon dioxide (CO2) offers a promising approach to purify C2H2 with low-energy footprints. However, the development of ideal adsorbents with simultaneous high C2H2 adsorption and selectivity remains a great challenge due to their very small molecular sizes and physical properties. Herein, we report a lithium(I)-chelation strategy for pore space partition (PSP) in a microporous MOF (Li+@NOTT-101-(COOH)2) to achieve simultaneous high C2H2 uptake and selectivity. The chelation model of Li+ ions within the framework was visually identified by single-crystal X-ray diffraction studies. The immobilized Li+ ions were found to have two functions: (1) partitioning large pore cages into smaller ones while maintaining high surface area and (2) providing specific binding sites to selectively take up C2H2 over CO2. The resulting Li+@NOTT-101-(COOH)2 exhibits a rare combination of a simultaneous high C2H2 capture capacity (205 cm3 g-1) and C2H2/CO2 selectivity (13) at ambient conditions, far surpassing that of NOTT-101-(COOH)2 (148 cm3 g-1 and 3.8, respectively) and most top-tier materials reported. Theoretical calculations and gas-loaded SCXRD studies reveal that the chelated Li+ ions combined with the segmented small cages can selectively bind with a large amount of C2H2 through the unique π-complexation, accounting for the improved C2H2 uptake and selectivity. Breakthrough experiments validated its excellent separation capacity for actual C2H2/CO2 mixtures, providing one of the highest C2H2 productivities of 118.9 L kg-1 (>99.5% purity) in a single adsorption-desorption cycle.
Collapse
Affiliation(s)
- Yi-Zhan Hao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai Shao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xu Zhang
- Jiangsu Engineering Laboratory for Environmental Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Yi-Hong Yu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Di Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Wen K, Zhou J, Ke T, Li J, Jin Y, Zhang Q, Zhang Z, Bao Z, Ren Q, Yang Q. Metal-Organic Framework with Constrained Flexibility for Benchmark Separation of Hexane Isomers. Angew Chem Int Ed Engl 2025; 64:e202500519. [PMID: 39946292 DOI: 10.1002/anie.202500519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Indexed: 02/27/2025]
Abstract
Flexible metal-organic frameworks (MOFs) are promising candidates for adsorptive separations, but achieving a balance among flexibility, adsorption capacity, and selectivity remains challenging. Herein, we report a novel flexible MOF, Ni(bhdc)(ted)0.5 (ZUL-C6), incorporating hybrid three-dimensional alkane-bridged ligands, which realizes high-capacity molecular sieving for hexane isomer separation - a critical process in the petroleum industry. The alkyl-rich, confined pore system within the ZUL-C6 framework facilitated a strong affinity for n-hexane and 3-methylpentane. However, the narrow pore size and the constrained flexibility limited the uptake of 2,2-dimethylbutane (<4.0 mg/g), accompanied by a high gate-opening pressure. The gating behavior was elucidated by guest-loaded single-crystal (SC) X-ray diffraction and density functional theory (DFT) simulations, which revealed a unique SC to SC transformation driven by the non-centrosymmetric rotation of the 3D bhdc linker and distortion of the metal cluster and pillar units, along with a high deformation energy barrier. As a result, ZUL-C6 exhibited not only significantly higher uptake and selectivity than the industrially used 5 A molecular sieve, but also the record-high nHEX/3MP breakthrough uptake (92.8/73.9 mg/g) and unprecedented 22DMB producing time (309.2 min/g, corresponding to the productivity of 770 mmol/kg and yield of 92.8 %) among reported MOFs.
Collapse
Affiliation(s)
- Kuishan Wen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, China
| | - Jingyi Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, China
| | - Tian Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, China
| | - Jinjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, China
| | - Yuanyuan Jin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, China
| | - Qianglong Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000, Quzhou, Zhejiang, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000, Quzhou, Zhejiang, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000, Quzhou, Zhejiang, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, 324000, Quzhou, Zhejiang, China
| |
Collapse
|
5
|
Zhao X, Chang X, Qin C, Wang X, Xu M, Fan W, Meng Q, Sun D. Solvent Regulation in Layered Zn-MOFs for C 2H 2/CO 2 and CO 2/CH 4 Separation. Molecules 2025; 30:1171. [PMID: 40076394 PMCID: PMC11901866 DOI: 10.3390/molecules30051171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The development of alternative adsorptive separation technologies is extremely significant for the separation of C2H2/CO2 and CO2/CH4 in the chemical industry. Emerging metal-organic frameworks (MOFs) have shown great potential as adsorbents for gas adsorption and separation. Herein, we synthesized two layered Zn-MOFs, UPC-96 and UPC-97, with 1,2,4,5-tetrakis(4-carboxyphenyl)-3,6-dimethylbenzene (TCPB-Me) as a ligand via the solvent regulation of the pH values. UPC-96 with a completely deprotonated ligand was obtained without the addition of acid, exhibiting two different channels with cross-sectional sizes of 11.6 × 7.1 and 8.3 × 5.2 Å2. In contrast, the addition of acid led to the partial deprotonation of the ligand and afforded UPC-97 two types of channels with cross-sectional sizes of 11.5 × 5.7 and 7.4 × 3.9 Å2. Reversible N2 adsorption isotherms at 77 K confirmed their permanent porosity, and the differentiated single-component C2H2, CO2, and CH4 adsorption isotherms indicated their potential in C2H2/CO2 and CO2/CH4 separation.
Collapse
Affiliation(s)
- Xingyao Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.Z.); (X.C.); (C.Q.); (M.X.); (D.S.)
| | - Xiaotong Chang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.Z.); (X.C.); (C.Q.); (M.X.); (D.S.)
| | - Caixian Qin
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.Z.); (X.C.); (C.Q.); (M.X.); (D.S.)
| | - Xiaokang Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.Z.); (X.C.); (C.Q.); (M.X.); (D.S.)
| | - Mingming Xu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.Z.); (X.C.); (C.Q.); (M.X.); (D.S.)
| | - Weidong Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.Z.); (X.C.); (C.Q.); (M.X.); (D.S.)
| | - Qingguo Meng
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China;
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; (X.Z.); (X.C.); (C.Q.); (M.X.); (D.S.)
| |
Collapse
|
6
|
Chen Y, Wang W, Alston S, Xiao Y, Ajayan P, Bu X, Feng P. Multi-Stage Optimization of Pore Size and Shape in Pore-Space-Partitioned Metal-Organic Frameworks for Highly Selective and Sensitive Benzene Capture. Angew Chem Int Ed Engl 2025; 64:e202415576. [PMID: 39298644 DOI: 10.1002/anie.202415576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Compared to exploratory development of new structure types, pushing the limits of isoreticular synthesis on a high-performance MOF platform may have higher probability of achieving targeted properties. Multi-modular MOF platforms could offer even more opportunities by expanding the scope of isoreticular chemistry. However, navigating isoreticular chemistry towards best properties on a multi-modular platform is challenging due to multiple interconnected pathways. Here on the multi-modular pacs (partitioned acs) platform, we demonstrate accessibility to a new regime of pore geometry using two independently adjustable modules (framework-forming module 1 and pore-partitioning module 2). A series of new pacs materials have been made. Benzene/cyclohexane selectivity is tuned, progressively, from 4.5 to 15.6 to 195.4 and to 482.5 by pushing the boundary of the pacs platform towards the smallest modules known so far. The exceptional stability of these materials in retaining both porosity and single crystallinity enables single-crystal diffraction studies of different crystal forms (as-synthesized, activated, guest-loaded) that help reveal the mechanistic aspects of adsorption in pacs materials.
Collapse
Affiliation(s)
- Yichong Chen
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Wei Wang
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Samuel Alston
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Yuchen Xiao
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Pooja Ajayan
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach 1250 Bellflower Blvd, Long Beach, CA-90840, United States
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| |
Collapse
|
7
|
Li J, Chen Y, Ke T, Jin Y, Fan R, Xu G, Yang L, Zhang Z, Bao Z, Ren Q, Yang Q. Efficient continuous SF 6/N 2 separation using low-cost and robust metal-organic frameworks composites. Nat Commun 2025; 16:632. [PMID: 39805842 PMCID: PMC11729912 DOI: 10.1038/s41467-025-56031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Physisorption presents a promising alternative to cryogenic distillation for capturing the most potent greenhouse gas, SF6, but existing adsorbents face challenges in meeting diverse chemical and engineering concerns. Herein, with insights into in-pore chemistry and industrial process design, we report a systematic investigation that constructed two low-cost composites pellets (Al(fum)@2%HPC and Al(fum)@5%Kaolin) coupled with an innovative two-stage Vacuum Temperature Swing Adsorption (VTSA) process for the ultra-efficient recovery of low-concentration SF6 from N2. Record-high selectivities (> 2×104) and SF6 dynamic capacities (~ 2.7 mmol/g) were achieved, while exceptional SF6 productivities (~ 58.7 L/kg), yields (~ 96.8%), and recyclability (~ 1000 cycles) were demonstrated in fixed-bed adsorption-desorption experiments under mild regeneration conditions. 2D solid-state NMR/in-situ FTIR, DFT-D binding/diffusion simulation analyses revealed the multi-site binding mode and the ultra-fast diffusion of SF6 within the channels. The proposed VTSA processes successfully met the dual stringent requirements of both environmental protection and electricity equipment operation: the SF6 recovery of 99.91% accompanied with a SF6 purity/working capacity of 99.91%/2.1 mmol/g, which significantly outperformed the industrial employed adsorbent zeolite 13X and showed only 18.7% the energy consumption of the cryogenic distillation.
Collapse
Affiliation(s)
- Jinjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuting Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yuanyuan Jin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rongrong Fan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guihong Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liu Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang, China.
| |
Collapse
|
8
|
Liang Y, Xie G, Liu KK, Jin M, Chen Y, Yang X, Guan ZJ, Xing H, Fang Y. Mechanochemical "Cage-on-MOF" Strategy for Enhancing Gas Adsorption and Separation through Aperture Matching. Angew Chem Int Ed Engl 2025; 64:e202416884. [PMID: 39275956 DOI: 10.1002/anie.202416884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
Post-modification of porous materials with molecular modulators has emerged as a well-established strategy for improving gas adsorption and separation. However, a notable challenge lies in maintaining porosity and the limited applicability of the current method. In this study, we employed the mechanochemical "Cage-on-MOF" strategy, utilizing porous coordination cages (PCCs) with intrinsic pores and apertures as surface modulators to improve the gas adsorption and separation properties of the parent MOFs. We demonstrated the fast and facile preparation of 28 distinct MOF@PCC composites by combining 7 MOFs with 4 PCCs with varying aperture sizes and exposed functional groups through a mechanochemical reaction in 5 mins. Only the combinations of PCCs and MOFs with closely matched aperture sizes exhibited enhanced gas adsorption and separation performance. Specifically, MOF-808@PCC-4 exhibited a significantly increased C2H2 uptake (+64 %) and a longer CO2/C2H2 separation retention time (+40 %). MIL-101@PCC-4 achieved a substantial C2H2 adsorption capacity of 6.11 mmol/g. This work not only highlights the broad applicability of the mechanochemical "Cage-on-MOF" strategy for the functionalization of a wide range of MOFs but also establishes potential design principles for the development of hybrid porous materials with enhanced gas adsorption and separation capabilities, along with promising applications in catalysis and intracellular delivery.
Collapse
Affiliation(s)
- Yu Liang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Gongfu Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Kang-Kai Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Meng Jin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Yuanyuan Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- Institute of Chemical Biology and Nanomedicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Xiaoxin Yang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- Institute of Chemical Biology and Nanomedicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zong-Jie Guan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Hang Xing
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- Institute of Chemical Biology and Nanomedicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Yu Fang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
9
|
Xu G, Ke T, Fan R, Tan K, Zhang W, Su B, Zhang Z, Bao Z, Ren Q, Yang Q. Divergent Adsorption Regulation in Metal-Organic Frameworks for Highly Efficient CF 4/C 2F 6 Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411083. [PMID: 39629969 PMCID: PMC11775566 DOI: 10.1002/advs.202411083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Indexed: 01/30/2025]
Abstract
The efficient removal of low-concentration components from homologous mixtures is often hampered by the co-directional effect of traditional thermodynamic regulation approaches, typically leading to a trade-off between adsorption capacity and selectivity. Focusing this challenge on the critical task of purifying perfluorocarbons in electronics industry, a divergent regulation strategy is reported that significantly improves the separation efficiency of low-concentration hexafluoroethane (C2F6) from tetrafluoromethane (CF4). This approach involves the selective shielding of open metal sites and the modulation of channel geometry within an electron-deficient ligand-based pore environment, thereby facilitating a C2F6 dense-packing accommodation mode while weakening the CF4 affinity due to the reduced host-guest interactions. Simultaneously enhanced C2F6 adsorption and reduced CF4 adsorption are achieved, resulting in record-high low-pressure C2F6 uptake and C2F6/CF4 selectivity. Comprehensive insights into the unique separation mechanism are illustrated through a combination of solid-state MAS nuclear magnetic resonance (SSNMR), molecular simulations, and meticulously designed comparative experiments. As a result, benchmark C2F6/CF4 separation performance is achieved, as demonstrated by the unprecedented electronic-grade (over 99.999%) CF4 productivity (401 L kg-1) obtained from an industrially relevant C2F6/CF4 (3:97) mixture, as well as the excellent water/air/heat stability and recyclability.
Collapse
Affiliation(s)
- Guihong Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang UniversityHangzhou310027China
| | - Tian Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang UniversityHangzhou310027China
| | - Rongrong Fan
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang UniversityHangzhou310027China
| | - Kaiyuan Tan
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang UniversityHangzhou310027China
| | - Wenjun Zhang
- Institute of Zhejiang University‐QuzhouQuzhou324000China
| | - Baogen Su
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang UniversityHangzhou310027China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang UniversityHangzhou310027China
- Institute of Zhejiang University‐QuzhouQuzhou324000China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang UniversityHangzhou310027China
- Institute of Zhejiang University‐QuzhouQuzhou324000China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang UniversityHangzhou310027China
- Institute of Zhejiang University‐QuzhouQuzhou324000China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological Engineering, Zhejiang UniversityHangzhou310027China
- Institute of Zhejiang University‐QuzhouQuzhou324000China
| |
Collapse
|
10
|
Jin Y, Ke T, Xu G, Li J, Jiang Z, Fan R, Zhang Z, Bao Z, Ren Q, Yang Q. Ultra-High Purity and Productivity Separation of CO 2 and C 2H 2 from CH 4 in Rigid Layered Ultramicroporous Material. ACS CENTRAL SCIENCE 2024; 10:1885-1893. [PMID: 39463839 PMCID: PMC11503503 DOI: 10.1021/acscentsci.4c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/29/2024]
Abstract
Efficiently obtaining both high-purity gas-phase and adsorbed-phase products in a single physisorption process presents the challenge of simultaneously achieving high selectivity and uptake and rapid diffusion in adsorbents. With a focus on natural gas purification and high-purity acetylene production, we report for the first time that the synergistic ligand/anion binding mode and multiple diffusion pathways in a robust 2D layered ultramicroporous framework (ZUL-100) enable unprecedented carbon dioxide/methane and acetylene/methane separation performance. Taking advantage of its rich anion, functional ligand ,and rigid 3D interpenetrated ultramicroporous channels, ZUL-100 achieved record IAST selectivities for equimolar carbon dioxide/methane (3.2 × 105) and acetylene/methane (1.7 × 1010) mixtures, accompanied by record dynamic uptakes of carbon dioxide (3.10 mmol/g) and acetylene (4.79 mmol/g), respectively. The strong affinity and fast mass transfer of carbon dioxide and acetylene on ZUL-100 were systematically elucidated by a combination of in situ FTIR, single-crystal XRD, kinetic tests, and DFT-D adsorption/diffusion modeling. In particular, high-purity (≥99.999%) methane and carbon dioxide (acetylene) can both be obtained on ZUL-100 through a single adsorption-desorption cycle, with exceptional productivity (2.81-4.22 mmol/g of methane, 2.96 mmol/g of carbon dioxide, and 4.31 mmol/g of acetylene) and high yield (95.5% for carbon dioxide and 90.0% for acetylene).
Collapse
Affiliation(s)
- Yuanyuan Jin
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Tian Ke
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Guihong Xu
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Jinjian Li
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Zhixin Jiang
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Rongrong Fan
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
| | - Zhiguo Zhang
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute
of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Zongbi Bao
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute
of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qilong Ren
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute
of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| | - Qiwei Yang
- Key
Laboratory of Biomass Chemical Engineering of Ministry of Education,
College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, Zhejiang, China
- Institute
of Zhejiang University-Quzhou, 324000 Quzhou, Zhejiang, China
| |
Collapse
|
11
|
Zhu X, Ke T, Han P, Zhang Z, Bao Z, Yang Y, Ren Q, Yang Q. Pore Chemistry and Architecture Control in Anionic Functional Ultramicroporous Materials for Record Dense Packing of Xenon. J Am Chem Soc 2024; 146:24956-24965. [PMID: 39102644 DOI: 10.1021/jacs.4c06354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Adsorptive separation of Xe and Kr is an industrially promising but challenging process because of their identical shape and similar physicochemical properties. Herein, we demonstrate a strategy through rationally designing the linkers of anionic functional ultramicroporous materials (FUMs) to finely regulate the pore chemistry and architecture, which creates unique stepped channels incorporating dense polar nanotraps to generate a larger effective pore space and enables dense packing of Xe. A new hydrolytically stable FUM (ZUL-530) was prepared, which for the first time achieves a Xe packing density exceeding the liquid Xe density at atmospheric conditions in metal-organic frameworks (MOFs) (based on experimental data), resulting in both excellent Xe uptake (2.55 mmol g-1 at 0.2 bar) and high IAST selectivity (20.5). GCMC and DFT-D calculations reveal the essential role of the stepped traps in the dense packing of Xe. Breakthrough experiments demonstrate remarkable productivities of both high-purity Kr (6.70 mmol g-1) and Xe (1.78 mmol g-1) for the Xe/Kr (20:80) mixture. In a model nuclear industry exhaust gas, ZUL-530 exhibits a top-class Xe dynamic capacity (28.8 mmol kg-1) for trace Xe, which proves it is one of the best candidates for Xe/Kr separation.
Collapse
Affiliation(s)
- Xiaoqian Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Tian Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Pei Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000 Zhejiang, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000 Zhejiang, China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000 Zhejiang, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000 Zhejiang, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000 Zhejiang, China
| |
Collapse
|
12
|
Yang Y, Liu Y, Shen F, Hai G, Liu B, Zhang Z, Yang Q, Ren Q, Bao Z. Isoreticular Metal-Organic Frameworks with Aromatic Pores and Dimethylammonium Cations Enable Separation of Light Hydrocarbons and Xenon/Krypton. Inorg Chem 2024; 63:16807-16814. [PMID: 39189338 DOI: 10.1021/acs.inorgchem.4c02538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The separation of C2-C3 hydrocarbons from methane in natural gas and xenon/krypton purification are crucial yet challenging industrial processes. Herein, we report two isoreticular metal-organic frameworks, ZJU-89 and ZJU-90, featuring aromatic pore environments and dimethylammonium cations, that synergistically enhance the separation of these industrially relevant gas mixtures. ZJU-90 exhibits an exceptional separation performance, achieving C3H8/CH4 and C2H6/CH4 ideal adsorbed solution theory (IAST) selectivities of 1065 and 48, respectively, at ambient conditions, outperforming most reported adsorbent materials. Remarkably, ZJU-90 enables the recovery of >99.95% purity methane from a C3H8/C2H6/CH4 mixture in a single adsorption step. The material also demonstrates the efficient separation of xenon from krypton, even at low concentrations. The superior performance stems from the aromatic rings decorating the pore walls and the free dimethylammonium cations in the channels, which provide an ideal chemical environment for the selective binding of C2H6, C3H8, and Xe through multiple C-H···π interactions and van der Waals forces, as elucidated by theoretical calculations. This work highlights the power of reticular chemistry in designing materials with synergistic pore environments for efficient separations.
Collapse
Affiliation(s)
- Yisi Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Ying Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
| | - Fuxing Shen
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Guangtong Hai
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Baojian Liu
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| |
Collapse
|
13
|
Wang X, Liu H, Sun M, Gao F, Feng X, Xu M, Chen H, Yao K, Fan W, Sun D. Asymmetrical Modification of Cyclopentadienyl Cobalt in Eu-MOF for C 2H 2/CO 2 Separation. Inorg Chem 2024; 63:16605-16609. [PMID: 39193927 DOI: 10.1021/acs.inorgchem.4c03202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The development of novel adsorption materials is of significance for the efficient and low-energy purification of acetylene (C2H2). Emerging metal-organic framework (MOF) adsorbents demonstrate great application prospects in the field of gas adsorption and separation. Herein, we synthesized a Eu-MOF asymmetrically modified with cyclopentadienyl cobalt exhibiting two different types of cages, denoted as UPC-119. Adsorption isotherms and dynamic breakthrough curves confirm its potential in C2H2/CO2 separation, which is further evidenced by theoretical simulations. The high adsorption capacity and low adsorption enthalpy render UPC-119 as a promising adsorbent for C2H2/CO2 separation with ease of regeneration.
Collapse
Affiliation(s)
- Xiaokang Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hongyan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Meng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Fei Gao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xueying Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Mingming Xu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hui Chen
- Guangdong Advanced Carbon Materials Co., Ltd, Zhuhai, Guangdong 519000, China
| | - Kun Yao
- Guangdong Advanced Carbon Materials Co., Ltd, Zhuhai, Guangdong 519000, China
| | - Weidong Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
14
|
Li D, Gao MY, Deng CH, Li GB, Qin SJ, Yang QY, Song BQ. Cross-Linking CdSO 4-Type Nets with Hexafluorosilicate Anions to Form an Ultramicroporous Material for Efficient C 2H 2/CO 2 and C 2H 2/C 2H 4 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402523. [PMID: 38747010 DOI: 10.1002/smll.202402523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Indexed: 10/04/2024]
Abstract
A 44.610.8 topology hybrid ultramicroporous material (HUM), {[Cu1.5F(SiF6)(L)2.5]·G}n, (L = 4,4'-bisimidazolylbiphenyl, G = guest molecules), 1, formed by cross-linking interpenetrated 3D four-connected CdSO4-type nets with hexafluorosilicate anions is synthesized and evaluated in the context of gas sorption and separation herein. 1 is the first HUM functionalized with two different types of fluorinated sites (SiF6 2- and F- anions) lining along the pore surface. The optimal pore size (≈5 Å) combining mixed and high-density electronegative fluorinated sites enable 1 to preferentially adsorb C2H2 over CO2 and C2H4 by hydrogen bonding interactions with a high C2H2 isosteric heat of adsorption (Qst) of ≈42.3 kJ mol-1 at zero loading. The pronounced discriminatory sorption behaviors lead to excellent separation performance for C2H2/CO2 and C2H2/C2H4 that surpasses many well-known sorbents. Dynamic breakthrough experiments are conducted to confirm the practical separation capability of 1, which reveal an impressive separation factor of 6.1 for equimolar C2H2/CO2 mixture. Furthermore, molecular simulation and density functional theory (DFT) calculations validate the strong binding of C2H2 stems from the chelating fix of C2H2 between SiF6 2- anion and coordinated F- anion.
Collapse
Affiliation(s)
- Dan Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Mei-Yan Gao
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland
| | - Cheng-Hua Deng
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland
| | - Guo-Bi Li
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048, P. R. China
| | - Shao-Jie Qin
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Qing-Yuan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bai-Qiao Song
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| |
Collapse
|
15
|
Liu X, Wang H, Liu C, Chen J, Zhou Z, Deng S, Wang J. Recent Advances of Multidentate Ligand-Based Anion-Pillared MOFs for Enhanced Separation and Purification Processes. CHEM & BIO ENGINEERING 2024; 1:469-487. [PMID: 39974605 PMCID: PMC11835165 DOI: 10.1021/cbe.3c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 02/21/2025]
Abstract
As an important subclass of metal-organic frameworks (MOFs), anion-pillars MOFs (APMOFs) have recently exhibited exceptional performances in separation and purification processes. The adjustment of pore sizes and environments of APMOFs can be finely tuned through judicious combination of organic ligands, anion pillars, and metal ions. Compared to widely investigated anion pillars, organic ligands are more crucial as they allow for a broader range of pore sizes and environments at the nanometer scale. Furthermore, different from the bidentate ligand-based APMOFs that typically form three-dimensional (3D) frameworks with pcu topology, APMOFs constructed using multidentate nitrogen(N)-containing ligands (with a coordination number ≥ 3) offer opportunities to create APMOFs with diverse topologies. The larger dimensions and possible distortion of multidentate N-containing ligands prove advantageous for addressing multi-component hydrocarbon separations encompassing a broad spectrum of dynamic diameters. Therefore, this Review summarizes the structural characteristics of multidentate ligand-based APMOFs and their enhanced performances for gas separation and purification processes. Additionally, it discusses current challenges and prospects associated with constructing multidentate ligand-based APMOFs while providing prospects. This critical review will provide valuable insights and guides for designing and developing advanced multidentate ligand-based APMOF adsorbents.
Collapse
Affiliation(s)
- Xing Liu
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Hao Wang
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Cheng Liu
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Jingwen Chen
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Zhenyu Zhou
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Shuguang Deng
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Jun Wang
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
16
|
Xiong H, Peng Y, Liu X, Wang P, Zhang P, Yang L, Liu J, Shuai H, Wang L, Deng Z, Chen S, Chen J, Zhou Z, Deng S, Wang J. Topology Reconfiguration of Anion-Pillared Metal-Organic Framework from Flexibility to Rigidity for Enhanced Acetylene Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401693. [PMID: 38733317 DOI: 10.1002/adma.202401693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/13/2024] [Indexed: 05/13/2024]
Abstract
Flexible metal-organic framework (MOF) adsorbents commonly encounter limitations in removing trace impurities below gate-opening threshold pressures. Topology reconfiguration can fundamentally eliminate intrinsic structural flexibility, yet remains a formidable challenge and is rarely achieved in practical applications. Herein, a solvent-mediated approach is presented to regulate the flexible CuSnF6-dpds-sql (dpds = 4,4''-dipyridyldisulfide) with sql topology into rigid CuSnF6-dpds-cds with cds topology. Notably, the cds topology is unprecedented and first obtained in anion-pillared MOF materials. As a result, rigid CuSnF6-dpds-cds exhibits enhanced C2H2 adsorption capacity of 48.61 cm3 g-1 at 0.01 bar compared to flexible CuSnF6-dpds-sql (21.06 cm3 g-1). The topology transformation also facilitates the adsorption kinetics for C2H2, exhibiting a 6.5-fold enhanced diffusion time constant (D/r2) of 1.71 × 10-3 s-1 on CuSnF6-dpds-cds than that of CuSnF6-dpds-sql (2.64 × 10-4 s-1). Multiple computational simulations reveal the structural transformations and guest-host interactions in both adsorbents. Furthermore, dynamic breakthrough experiments demonstrate that high-purity C2H4 (>99.996%) effluent with a productivity of 93.9 mmol g-1 can be directly collected from C2H2/C2H4 (1/99, v/v) gas-mixture in a single CuSnF6-dpds-cds column.
Collapse
Affiliation(s)
- Hanting Xiong
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yong Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xing Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Pengxiang Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Peixin Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Longsheng Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Junhui Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Hua Shuai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Lingmin Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhenning Deng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shixia Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jingwen Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhenyu Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, 551 E. Tyler Mall, Tempe, AZ, 85287, USA
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
17
|
Zhang Y, Han Y, Luan B, Wang L, Yang W, Jiang Y, Ben T, He Y, Chen B. Metal-Organic Framework with Space-Partition Pores by Fluorinated Anions for Benchmark C 2H 2/CO 2 Separation. J Am Chem Soc 2024; 146:17220-17229. [PMID: 38861589 DOI: 10.1021/jacs.4c03442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The efficient separation of C2H2 from C2H2/CO2 or C2H2/CO2/CH4 mixtures is crucial for achieving high-purity C2H2 (>99%), essential in producing contemporary commodity chemicals. In this report, we present ZNU-12, a metal-organic framework with space-partitioned pores formed by inorganic fluorinated anions, for highly efficient C2H2/CO2 and C2H2/CO2/CH4 separation. The framework, partitioned by fluorinated SiF62- anions into three distinct cages, enables both a high C2H2 capacity (176.5 cm3/g at 298 K and 1.0 bar) and outstanding C2H2 selectivity over CO2 (13.4) and CH4 (233.5) simultaneously. Notably, we achieve a record-high C2H2 productivity (132.7, 105.9, 98.8, and 80.0 L/kg with 99.5% purity) from C2H2/CO2 (v/v = 50/50) and C2H2/CO2/CH4 (v/v = 1/1/1, 1/1/2, or 1/1/8) mixtures through a cycle of adsorption-desorption breakthrough experiments with high recovery rates. Theoretical calculations suggest the presence of potent "2 + 2" collaborative hydrogen bonds between C2H2 and two hexafluorosilicate (SiF62-) anions in the confined cavities.
Collapse
Affiliation(s)
- Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Yan Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Binquan Luan
- IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, United States
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Wenlei Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Yunjia Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Teng Ben
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P.R. China
| |
Collapse
|
18
|
Zhou J, Wen K, Ke T, Li J, Jin Y, Li J, Zhang Z, Bao Z, Ren Q, Yang Q. Nonlinear 3D Ligand-Based Metal-Organic Framework for Thermodynamic-Kinetic Synergistic Splitting of Mono-/Dibranched Hexane Isomers. J Am Chem Soc 2024. [PMID: 38859682 DOI: 10.1021/jacs.4c05095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The selective splitting of hexane isomers without the use of energy-intensive phase-change processes is essential for the low-carbon production of clean fuels and also very challenging. Here, we demonstrate a strategy to achieve a complete splitting of the high-RON dibranched isomer from the monobranched and linear isomers, by using a nonlinear 3D ligand to form pillar-layered MOFs with delicate pore architecture and chemistry. Compared with its isoreticular MOFs with the same ted pillar but different linear 3D or linear 2D in-layer ligands, the new MOF constructed in this work, Cu(bhdc)(ted)0.5 (ZUL-C5), exhibited an interesting "channel switch" effect which creates pore space with reduced window size and channel dimensionality together with unevenly distributed alkyl-rich adsorption sites, contributing to a greatly enhanced ability to discriminate between mono- and dibranched isomers. Evidenced by a series of studies including adsorption equilibrium/kinetics/breakthrough tests, guest-loaded single-crystal/powder XRD measurement, and DFT-D modeling, a thermodynamic-kinetic synergistic mechanism in the separation was proposed, resulting in a record production time for high-purity 2,2-dimethylbutane along with a high yield.
Collapse
Affiliation(s)
- Jingyi Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Kuishan Wen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Tian Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jinjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yuanyuan Jin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| |
Collapse
|
19
|
Zhang L, Lang F, Xi XJ, Yin S, Pang J, Zheng W, Bu XH. A Highly Stable Microporous Calcium-Based MOF for C 2H 2/CO 2 Separation with Low Regenerative Energy. Inorg Chem 2024; 63:8329-8335. [PMID: 38648287 DOI: 10.1021/acs.inorgchem.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Most of the porous materials used for acetylene/carbon dioxide separation have the problems of poor stability and high energy requirements for regeneration, which significantly hinder their practical application in industries. Here, we report a novel calcium-based metal-organic framework (NKM-123) with excellent chemical stability against water, acids, and bases. Additionally, it has exceptional thermal stability, retaining its structural integrity at temperatures up to 300 °C. This material exhibits promising potential for separating C2H2 and CO2 gases. Furthermore, it demonstrates an adsorption heat of 29.3 kJ mol-1 for C2H2, which is lower than that observed in the majority of MOFs used for C2H2/CO2 separations. The preferential adsorption of C2H2 over that of CO2 is confirmed by dispersion-corrected density functional theory (DFT-D) calculations. In addition, the potential of industrial feasibility of NKM-123 for C2H2/CO2 separation is confirmed by transient breakthrough tests. The robust cycle performance and structural stability of NKM-123 during multiple breakthrough tests show great potential in the industrial separation of light hydrocarbons.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Feifan Lang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| | - Xiao-Juan Xi
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shunxian Yin
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| | - Wenjun Zheng
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xian-He Bu
- College of Chemistry, Nankai University, Tianjin 300071, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| |
Collapse
|
20
|
Zhu J, Ke T, Yang L, Bao Z, Zhang Z, Su B, Ren Q, Yang Q. Optimizing Trace Acetylene Removal from Acetylene/Ethylene Mixture in a Flexible Metal-Organic Framework by Crystal Downsizing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22455-22464. [PMID: 38642370 DOI: 10.1021/acsami.4c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Improving the gas separation performance of metal-organic frameworks (MOFs) by crystal downsizing is an important but often overlooked issue. Here, we report three different-sized flexible ZUL-520 MOFs (according to the crystal size from large to small, the three samples are, respectively, named ZUL-520-0, ZUL-520-1, and ZUL-520-2) with the same chemical structure for optimizing trace acetylene (C2H2) removal from acetylene/ethylene (C2H2/C2H4) mixture. The three differently sized activated ZUL-520 (denoted as ZUL-520a) exhibited almost identical C2H2 uptake of 4.8 mmol/g at 100 kPa, while the C2H2 uptake at 1 kPa increased with a downsizing crystal. The C2H2 uptake of activated ZUL-520-2 (denoted as ZUL-520-2a) at 1 kPa was ∼55% higher than that of activated ZUL-520-0 (denoted as ZUL-520-0a). The adsorption isotherms and adsorption kinetics validated that gas adsorptive separation is governed not only by adsorption thermodynamics but also by adsorption kinetics. In addition, all three different-sized ZUL-520a MOFs showed high C2H2/C2H4 selectivity. Grand canonical Monte Carlo (GCMC) simulations and dispersion-corrected density functional theory (DFT-D) computations illustrated a plausible mechanism of C2H2 adsorption in MOFs. Importantly, breakthrough experiments demonstrated that ZUL-520a can effectively separate the C2H2/C2H4 (1/99, v/v) mixture and the C2H4 productivity obtained by ZUL-520-2a was much higher than that by ZUL-520-0a. Our work may provide an easy but powerful strategy for upgrading the performance of gas adsorptive separation in MOFs.
Collapse
Affiliation(s)
- Jianyao Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tian Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liu Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Baogen Su
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
21
|
Sung YH, Senthil Raja D, Huang JH, Tsai DH. Microfluidic-Aerosol Hyphenated Synthesis of Metal-Organic Framework-Derived Hybrid Catalysts for CO 2 Utilization. SMALL METHODS 2024; 8:e2301435. [PMID: 38161255 DOI: 10.1002/smtd.202301435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Indexed: 01/03/2024]
Abstract
A new and efficient technique is developed by combining the hyphenated microfluidic- and aerosol-based synthesis with the coupled differential mobility analysis for the effective and continuous synthesis and simultaneous analysis of metal-organic frameworks (MOFs)-derived hybrid nanostructured products. HKUST-1, a copper-based MOF, is chosen as the representative to fabricate Cu-based hybrid catalysts for reverse water-gas shift (RWGS) reaction, an effective route for CO2 utilization. The effect of precursor concentration and carrier selection on the properties of the resulting products, including mobility size distribution, crystallization degree, surface area, and metal dispersion are investigated, as well as the correlation between the material properties of the synthesized catalysts and their catalytic performance in RWGS reaction in terms of conversion ratio/rate, selectivity, and operational stability. The results indicate that the continuous microfluidic droplet system can successfully synthesize MOF colloids, followed by the continuous production of MOF-derived hybrid materials through the tandem aerosol spray-drying-reaction system. High catalytic activity and low initiate temperature toward RWGS (turnover frequency = 0.0074 s-1; 450 °C) are achievable. The work facilitates the production and the designed concept of relevant MOF-derived hybrid nanostructured catalysts in the continuous synthesis system and the enhancement of applications in CO2 capture and utilization.
Collapse
Affiliation(s)
- Yi-Hsuan Sung
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City, Taiwan, 300044, Republic of China
| | - Duraisamy Senthil Raja
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City, Taiwan, 300044, Republic of China
| | - Jen-Huang Huang
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City, Taiwan, 300044, Republic of China
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City, Taiwan, 300044, Republic of China
| |
Collapse
|
22
|
Yang SQ, Xing B, Wang LL, Zhou L, Zhang FY, Li YL, Hu TL. Boosting Acetylene Packing Density within an Isoreticular Metal-Organic Framework for Efficient C 2H 2/CO 2 Separation. CHEM & BIO ENGINEERING 2024; 1:245-251. [PMID: 39974205 PMCID: PMC11835139 DOI: 10.1021/cbe.3c00073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/21/2025]
Abstract
Porous solid adsorbents for C2H2/CO2 separation are generally confronted with poor stability, high cost, or high regeneration energy, which largely inhibit their industrial implementation. A desired adsorbent material for practical implementation should exhibit a good balance between low cost, high stability, scale-up production feasibility, and good separation performance. An effective strategy is herein explored based on reticular chemistry through embedding methyl groups in a prototype microporous metal-organic framework (MOF) featuring low cost and high stability to effectively separate an C2H2/CO2 mixture. The anchored methyl groups on the pore surfaces could strongly boost the C2H2 packing density and specifically enhance the C2H2/CO2 separation performance, as distinctly established by single-component gas sorption isotherms. The CAU-10-CH3 material exhibits an excellent C2H2 packing density of 486 g L-1 and high adsorption differences between C2H2 and CO2 uptake (147%), outperforming the prototype benchmark material CAU-10-H (392 g L-1 and 53%). The highly selective adsorption of C2H2 over CO2 was achieved by a lower C2H2 adsorption enthalpy (25.18 kJ mol-1) compared to that with unfunctionalized CAU-10-H. In addition, dynamic column breakthrough experiments further confirm CAU-10-CH3's efficient separation performance for the C2H2/CO2 mixture. CAU-10-CH3 accomplishes the benchmark balance between cost, stability, scale-up, and separation performance for C2H2/CO2 separation, establishing its promise for industrial implementation. This approach could further facilitate the development of advanced MOF adsorbents to address challenging separation processes. Thus, this study paves the route for the practical implementations of MOF materials in the gas adsorption and separation field.
Collapse
Affiliation(s)
- Shan-Qing Yang
- School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Bo Xing
- School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lu-Lu Wang
- School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lei Zhou
- School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Fei-Yang Zhang
- School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yi-Long Li
- School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Tong-Liang Hu
- School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
23
|
Gao YX, Yi XN, Tang ZC, Yang H, Wang W, Xu M, Gu ZY. Continuously Tunable MOFs Enable Precise Mass Transfer for High-Performance Isomer Separation. Anal Chem 2024; 96:6476-6482. [PMID: 38606798 DOI: 10.1021/acs.analchem.4c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Modulating mass transfer is crucial for optimizing the catalytic and separation performances of porous materials. Here, we systematically developed a series of continuously tunable MOFs (CTMOFs) that exhibit incessantly increased mass transfer. This was achieved through the strategic blending of ligands with different lengths and ratios in MOFs featuring the fcu topology. By employing a proportional mixture of two ligands in the synthesis of UiO-66, the micropores expanded, facilitating faster mass transfer. The mass transfer rate was evaluated by dye adsorption, dark-field microscopy, and gas chromatography (GC). The GC performance proved that both too-fast and too-slow mass transfer led to low separation performance. The optimized mass transfer in CTMOFs resulted in an exceptionally high separation resolution (5.96) in separating p-xylene and o-xylene. Moreover, this study represents the first successful use of MOFs for high-performance separation of propylene and propane by GC. This strategy provides new inspiration in regulating mass transfer in porous materials.
Collapse
Affiliation(s)
- Yuan-Xiao Gao
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Function-al Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuan-Nuo Yi
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhe-Chen Tang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Function-al Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Han Yang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Function-al Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Function-al Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Function-al Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
24
|
Li J, Wu JX, Wei ML, Yang C, Dong Q, Yin Z, Kurmoo M, Zeng MH. Supramolecular Interactions Induce Dynamics in Metal-Organic Layers to Selectively Separate Acetylene from Carbon Dioxide. Inorg Chem 2024; 63:6033-6041. [PMID: 38500387 DOI: 10.1021/acs.inorgchem.4c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
We report the synthesis and structural characterization of a 2D metal-organic framework with AB-packing layers, [Co2(pybz)2(CH3COO)2]·DMF (Co2, pybz= 4-(4-pyridyl)benzoate), containing a stable (4,4)-grid network fabricated by paddle-wheel nodes, ditopic pybz, and acetate ligands. After removal of the guest, the layer structure is retained but reorganized into an ABCD packing mode in the activated phase (Co2a). Consequently, the intralayer square windows (7.2 × 5.0 Å2) close, while the interlayer separation is decreased slightly from 3.69 to 3.45 Å, leaving a narrow gap. Importantly, the dangling methyl group of the acetate with H-bonds to the adjacent layers and also the well-distributed π-π interactions between the aromatic rings of neighboring layers facilitate the structural stability. These weak supramolecular interactions further allow for favorable dynamic exfoliation of the layers, which promotes efficient adsorption of C2H2 (41.6 cm3 g-1) over CO2 with an adsorption ratio of 6.3 (0.5 bar, 298 K). The effective separation performance of equimolar C2H2/CO2 was verified by cycling breakthrough experiments and was even tolerable to moisture (R.H = 52%). DFT calculations, in situ PXRD, and PDF characterization reveal that the favorable retention of C2H2 rather than that of CO2 is due to its H-bond formation with the paddle-wheel oxygen atoms that triggers the increase in interlayer separation during C2H2 adsorption.
Collapse
Affiliation(s)
- Jian Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jia-Xin Wu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Mei-Ling Wei
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Chuang Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Qiubing Dong
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Zheng Yin
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Mohamedally Kurmoo
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
- Institut de Chimie de Strasbourg, CNRS-UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67008 Strasbourg Cedex, France
| | - Ming-Hua Zeng
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
25
|
Zhang L, Xiao T, Zeng X, You J, He Z, Chen CX, Wang Q, Nafady A, Al-Enizi AM, Ma S. Isoreticular Contraction of Cage-like Metal-Organic Frameworks with Optimized Pore Space for Enhanced C 2H 2/CO 2 and C 2H 2/C 2H 4 Separations. J Am Chem Soc 2024; 146:7341-7351. [PMID: 38442250 DOI: 10.1021/jacs.3c12032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The C2H2 separation from CO2 and C2H4 is of great importance yet highly challenging in the petrochemical industry, owing to their similar physical and chemical properties. Herein, the pore nanospace engineering of cage-like mixed-ligand MFOF-1 has been accomplished via contracting the size of the pyridine- and carboxylic acid-functionalized linkers and introducing a fluoride- and sulfate-bridging cobalt cluster, based on a reticular chemistry strategy. Compared with the prototypical MFOF-1, the constructed FJUT-1 with the same topology presents significantly improved C2H2 adsorption capacity, and selective C2H2 separation performance due to the reduced cage cavity size, functionalized pore surface, and appropriate pore volume. The introduction of fluoride- and sulfate-bridging cubane-type tetranuclear cobalt clusters bestows FJUT-1 with exceptional chemical stability under harsh conditions while providing multiple potential C2H2 binding sites, thus rendering the adequate ability for practical C2H2 separation application as confirmed by the dynamic breakthrough experiments under dry and humid conditions. Additionally, the distinct binding mechanism is suggested by theoretical calculations in which the multiple supramolecular interactions involving C-H···O, C-H···F, and other van der Waals forces play a critical role in the selective C2H2 separation.
Collapse
Affiliation(s)
- Lei Zhang
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Taotao Xiao
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Xiayun Zeng
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Jianjun You
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Ziyu He
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Cheng-Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qianting Wang
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
26
|
Liu J, Shuai H, Chen J, Chen S, Zhou Z, Wang J, Deng S. Sulfate-Pillared Adsorbent for Efficient Acetylene Separation from Carbon Dioxide and Ethylene. CHEM & BIO ENGINEERING 2024; 1:83-90. [PMID: 39973968 PMCID: PMC11835176 DOI: 10.1021/cbe.3c00094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/21/2025]
Abstract
The effective separation of acetylene (C2H2) from carbon dioxide (CO2) and ethylene (C2H4) presents considerable challenges in the petrochemical industry. In this work, we report a novel sulfate-pillared (SO4 2-) ultra-microporous material, denoted as SOFOUR-DPDS-Ni (SOFOUR = SO4 2-, 4-DPDS = 4,4'-dipyridyldisulfide), for efficient C2H2 capture from both CO2 and C2H4. The sulfate pillars play a crucial role in inducing robust negative electrostatic potentials within the intralayer cavities and interlayer channels, thereby facilitating the selective recognition of C2H2. As a result, SOFOUR-DPDS-Ni demonstrates a remarkable C2H2 adsorption capacity of 1.60 mmol g-1 at 0.01 bar, an exceptional selectivity of 174 for the 50/50 C2H2/CO2 mixture, and a high selectivity of 65 for the 1/99 C2H2/C2H4 mixture. These impressive metrics position SOFOUR-DPDS-Ni as a promising adsorbent for benchmark C2H2 separations. Dynamic breakthrough experiments validate its outstanding performance in separating C2H2 from both the CO2 and C2H4 mixtures. Computational simulations reveal the strong interactions between C2H2 and sulfate pillars, shedding light on the underlying mechanisms driving the adsorption process.
Collapse
Affiliation(s)
- Junhui Liu
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Hua Shuai
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Jingwen Chen
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Shixia Chen
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Zhenyu Zhou
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Jun Wang
- Chemistry
and Chemical Engineering School, Nanchang
University, Nanchang, Jiangxi 330031, China
| | - Shuguang Deng
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
27
|
Wang X, Liu H, Sun M, Wang H, Feng X, Chen W, Feng X, Fan W, Sun D. Thiadiazole-Functionalized Th/Zr-UiO-66 for Efficient C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7819-7825. [PMID: 38300743 DOI: 10.1021/acsami.3c17622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Adsorptive separation technology provides an effective approach for separating gases with similar physicochemical properties, such as the purification of acetylene (C2H2) from carbon dioxide (CO2). The high designability and tunability of metal-organic framework (MOF) adsorbents make them ideal design platforms for this challenging separation. Herein, we employ an isoreticular functionalization strategy to fine-tune the pore environment of Zr- and Th-based UiO-66 by the immobilization of the benzothiadiazole group via bottom-up synthesis. The functionalized UPC-120 exhibits an enhanced C2H2/CO2 separation performance, which is confirmed by adsorption isotherms, dynamic breakthrough curves, and theoretical simulations. The synergy of ligand functionalization and metal ion fine-tuning guided by isoreticular chemistry provides a new perspective for the design and development of adsorbents for challenging gas separation processes.
Collapse
Affiliation(s)
- Xiaokang Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hongyan Liu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Meng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Haoyang Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xueying Feng
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Wenmiao Chen
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Weidong Fan
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Daofeng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
28
|
Zhang J, Lei H, Li Z, Jiang F, Chen L, Hong M. Halogen-Modulated 2D Coordination Polymers for Efficient Hydrogen Peroxide Photosynthesis under Air and Pure Water Conditions. Angew Chem Int Ed Engl 2024; 63:e202316998. [PMID: 38017354 DOI: 10.1002/anie.202316998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
H2 O2 is a widely used eco-friendly oxidant and a potential energy carrier. Photocatalytic H2 O2 production from water and O2 is an ideal approach with the potential to address the current energy crisis and environmental issues. Three zig-zag two-dimensional coordination polymers (2D CPs), named CuX-dptz, were synthesized by a rapid and facile method at room temperature, showing preeminent H2 O2 photoproduction performance under pure water and open air without any additives. CuBr-dptz exhibits a H2 O2 production rate high up to 1874 μmol g-1 h-1 , exceeding most reported photocatalysts under this condition, even comparable to those supported by sacrificial agents and O2 . The coordination environment of Cu can be modulated by halogen atoms (X=Cl, Br, I), which in turn affects the electron transfer process and finally determines the reaction activity. This is the first time that 2D CPs have been used for photocatalytic H2 O2 production in such challenging conditions, which provides a new pathway for the development of portable in situ H2 O2 photosynthesis devices.
Collapse
Affiliation(s)
- Jieping Zhang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Hang Lei
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zhijia Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Lian Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
29
|
Jeong SM, Kim D, Park JY, Yoon JW, Lee SK, Lee JS, Jo D, Cho KH, Lee UH. Separation of High-Purity C 2H 2 from Binary C 2H 2/CO 2 Using Robust Al-Based MOFs Comprising Nitrogen-Containing Heterocyclic Dicarboxylate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1342-1350. [PMID: 38116929 DOI: 10.1021/acsami.3c16849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this study, three nitrogen-containing aluminum-based metal-organic frameworks (Al-MOFs), namely, CAU-10pydc, MOF-303, and KMF-1, were investigated for the efficient separation of a C2H2/CO2 gas mixture. Among these three Al-MOFs, KMF-1 demonstrated the highest selectivity for C2H2/CO2 separation (6.31), primarily owing to its superior C2H2 uptake (7.90 mmol g-1) and lower CO2 uptake (2.82 mmol g-1) compared to that of the other two Al-MOFs. Dynamic breakthrough experiments, using an equimolar binary C2H2/CO2 gas mixture, demonstrated that KMF-1 achieved the highest separation performance. It yielded 3.42 mmol g-1 of high-purity C2H2 (>99.95%) through a straightforward desorption process under He purging at 298 K and 1 bar. To gain insights into the distinctive characteristics of the pore surfaces of structurally similar CAU-10pydc and KMF-1, we conducted computational simulations using canonical Monte Carlo and dispersion-corrected density functional theory methods. These simulations revealed that the secondary amine (C2N-H) groups in KMF-1 played a more significant role in differentiating between C2H2 and CO2 compared to that of the N atoms in CAU-10pydc and MOF-303. Consequently, KMF-1 emerged as a promising adsorbent for the separation of high-purity C2H2 from binary C2H2/CO2 gas mixtures.
Collapse
Affiliation(s)
- Se-Min Jeong
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-Ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Donghyun Kim
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-Ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ju Yeon Park
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ji Woong Yoon
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Su-Kyung Lee
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-Ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Donghui Jo
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Kyung Ho Cho
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - U-Hwang Lee
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Gajeong-Ro 217, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
30
|
Yang H, Liu JJ, Tang WQ, Meng SS, Gao YX, Li W, Zhang H, Xu M, Gu ZY. Increasing Mass Transfer Resistance of MOFs as a Reverse Tuning Strategy to Achieve High-Resolution Gas Chromatographic Separation. Anal Chem 2023; 95:18760-18766. [PMID: 38078811 DOI: 10.1021/acs.analchem.3c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
In separation science, precise control and regulation of the MOF stationary phase are crucial for achieving a high separation performance. We supposed that increasing the mass transfer resistance of MOFs with excessive porosity to achieve a moderate mass transfer resistance of the analytes is the key to conducting the MOF stationary phase with a high resolution. Three-dimensional UiO-67 (UiO-67-3D) and two-dimensional UiO-67 (UiO-67-2D) were chosen to validate this strategy. Compared with UiO-67-3D with overfast mass transfer and low retention, the reduced porosity of UiO-67-2D increased the mass transfer resistance of analytes in reverse, resulting in improved separation performance. Kinetic diffusion experiments were conducted to verify the difference in mass transfer resistance of the analytes between UiO-67-3D and UiO-67-2D. In addition, the optimization of the UiO-67-2D thickness for separation revealed that a moderate diffusion length of the analytes is more advantageous in achieving the equilibrium of absorption and desorption.
Collapse
Affiliation(s)
- Han Yang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jia-Jia Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wen-Qi Tang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuan-Xiao Gao
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wang Li
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
31
|
Ling BK, Zeng M, Zhang T, Cao JW, Yang R, Cheng L, Zhang CY, Wang Y, Chen KJ. Inverse CO 2/C 2H 2 separation assisted by coordinated water in a dysprosium(III) metal-organic framework. Chem Commun (Camb) 2023; 59:10952-10955. [PMID: 37606637 DOI: 10.1039/d3cc03519k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
An ultramicroporous metal-organic framework (MOF) constructed from dysprosium(III) and oxalate, termed Dy-F-oxa, is carefully studied for inverse separation of CO2 from C2H2. Adsorption experiments and modeling studies reveal that the high CO2 adsorption is attributed to the preferential sites for CO2 by coordinated water. After the equimolar gas mixture breakthrough experiment, C2H2 can be directly produced as a pure effluent.
Collapse
Affiliation(s)
- Bo-Kai Ling
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Min Zeng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Tao Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Jian-Wei Cao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Rong Yang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Lu Cheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Chi-Yu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Yu Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| |
Collapse
|