1
|
Seshadri K, Abad AND, Nagasawa KK, Yost KM, Johnson CW, Dror MJ, Tang Y. Synthetic Biology in Natural Product Biosynthesis. Chem Rev 2025; 125:3814-3931. [PMID: 40116601 DOI: 10.1021/acs.chemrev.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synthetic biology has played an important role in the renaissance of natural products research during the post-genomics era. The development and integration of new tools have transformed the workflow of natural product discovery and engineering, generating multidisciplinary interest in the field. In this review, we summarize recent developments in natural product biosynthesis from three different aspects. First, advances in bioinformatics, experimental, and analytical tools to identify natural products associated with predicted biosynthetic gene clusters (BGCs) will be covered. This will be followed by an extensive review on the heterologous expression of natural products in bacterial, fungal and plant organisms. The native host-independent paradigm to natural product identification, pathway characterization, and enzyme discovery is where synthetic biology has played the most prominent role. Lastly, strategies to engineer biosynthetic pathways for structural diversification and complexity generation will be discussed, including recent advances in assembly-line megasynthase engineering, precursor-directed structural modification, and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Abner N D Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Kyle K Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Karl M Yost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Colin W Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Moriel J Dror
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Seeman JI. Going Beyond Woodward and Hoffmann's Electrocyclizations and Cycloadditions: Sigmatropic Rearrangements. CHEM REC 2024; 24:e202400050. [PMID: 39535477 DOI: 10.1002/tcr.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/06/2024] [Indexed: 11/16/2024]
Abstract
On June 1, 1965, R. B. Woodward and Roald Hoffmann published their third communication in the Journal of the American Chemical Society in which they applied orbital symmetry control to explain the mechanism of a wide variety of valence isomerizations that they termed "sigmatropic reactions." This publication reveals the research trajectory taken by Hoffmann from which this portion of the no-mechanism problem was solved. Hoffmann used five different quantum chemical tools, all based on either extended Hückel theoretical calculations or frontier molecular orbital theory, in his research. Hoffmann's laboratory notebooks and his three draft manuscripts along with Woodward's four subsequent drafts have survived the past 59 years and provide an excellent window into the thinking and manuscript-writing processes used by these Nobel laureates in February-April 1965.
Collapse
Affiliation(s)
- Jeffrey I Seeman
- Department of Chemistry, University of Richmond, Richmond, Virginia, 23173, USA
| |
Collapse
|
3
|
Zhang B, Ge HM. Recent progresses in the cyclization and oxidation of polyketide biosynthesis. Curr Opin Chem Biol 2024; 81:102507. [PMID: 39098210 DOI: 10.1016/j.cbpa.2024.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024]
Abstract
Polyketides represent an important class of natural products, renowned for their intricate structures and diverse biological activities. In contrast to common fatty acids, polyketides possess relatively more rigid carbon skeletons, more complex ring systems, and chiral centers. These structural features are primarily achieved through distinctive enzymatic cyclizations and oxidations as tailoring steps. In this opinion, we discuss the recent progress in deciphering the mechanisms of cyclization and oxidation within polyketide biosynthesis. By shedding light on these enzymatic processes, this article seeks to motivate the community to unravel the remaining mysteries surrounding cyclase and oxidase functionalities and to explore novel polyketide natural products through genome mining.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023 China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023 China.
| |
Collapse
|
4
|
Liu J, Hu Y. Discovery and evolution of [4 + 2] cyclases. Curr Opin Chem Biol 2024; 81:102504. [PMID: 39068821 DOI: 10.1016/j.cbpa.2024.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
[4 + 2] Cyclases are potent biocatalysts that have been bestowed upon microorganisms and plants by nature, equipping them with the powerful tools to utilize and implement the [4 + 2] cycloaddition reaction for constructing the cyclohexene core in synthesizing valuable molecules. Over the past two years, eleven new enzymes have joined this pericyclase club and undergone extensive investigation. In this review, we present a comprehensive overview of recent advancements in characterizing [4 + 2] cyclases with regard to their catalytic mechanism and stereoselectivity. We particularly focus on insights gained from enzyme co-crystal structures, cofactors, as well as the effects of glycosylation. Advancements in understanding the mechanisms of natural [4 + 2] cyclases offer the potential to mimic evolutionary processes and engineer artificial enzymes for the development of valuable and practical biocatalysts.
Collapse
Affiliation(s)
- Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
5
|
Zhou Q, Kukier G, Gordiy I, Hoffmann R, Seeman JI, Houk KN. A 21st Century View of Allowed and Forbidden Electrocyclic Reactions. J Org Chem 2024; 89:1018-1034. [PMID: 38153322 PMCID: PMC10804416 DOI: 10.1021/acs.joc.3c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023]
Abstract
In 1965, Woodward and Hoffmann proposed a theory to predict the stereochemistry of electrocyclic reactions, which, after expansion and generalization, became known as the Woodward-Hoffmann Rules. Subsequently, Longuet-Higgins and Abrahamson used correlation diagrams to propose that the stereoselectivity of electrocyclizations could be explained by the correlation of reactant and product orbitals with the same symmetry. Immediately thereafter, Hoffmann and Woodward applied correlation diagrams to explain the mechanism of cycloadditions. We describe these discoveries and their evolution. We now report an investigation of various electrocyclic reactions using DFT and CASSCF. We track the frontier molecular orbitals along the intrinsic reaction coordinate and modeled trajectories and examine the correlation between HOMO and LUMO for thermally forbidden systems. We also investigate the electrocyclizations of several highly polarized systems for which the Houk group had predicted that donor-acceptor substitution can induce zwitterionic character, thereby providing low-energy pathways for formally forbidden reactions. We conclude with perspectives on the field of pericyclic reactions, including a refinement as the meaning of Woodward and Hoffmann's "Violations. There are none!" Lastly, we comment on the burgeoning influence of computations on all fields of chemistry.
Collapse
Affiliation(s)
- Qingyang Zhou
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095, United States
| | - Garrett Kukier
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095, United States
| | - Igor Gordiy
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095, United States
| | - Roald Hoffmann
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York14850, United States
| | - Jeffrey I. Seeman
- Department
of Chemistry, University of Richmond, Richmond, Virginia 23173United States
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California90095-1569. United States
| |
Collapse
|
6
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2023; 40:1298-1302. [PMID: 37503707 DOI: 10.1039/d3np90037a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A personal selection of 32 recent papers is presented, covering various aspects of current developments in bioorganic chemistry and novel natural products, such as clavirolide L from Clavularia viridis.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|