1
|
Mu N, Luo Z, Shan W, Huang H, Tang H. Rational design of N-heterocyclic COF-based photocatalysts: synergistic metal-ligand coordination for efficient H 2O 2 production. Chem Commun (Camb) 2025; 61:8707-8710. [PMID: 40384419 DOI: 10.1039/d5cc01867f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
This study successfully constructed a Cd-COF with an N-Cd coordination structure via a one-step solvothermal method and demonstrated its application in photocatalytic H2O2 production. The N-Cd coordination structure not only exhibits exceptional adsorption capacity for oxygen molecules, but also acts as an active center to provide electrons for the reduction reaction, thereby significantly accelerating the efficient generation of H2O2. Experimental results reveal that the N-Cd coordination structure optimizes the electronic structure and regulates the local microenvironment, leading to high-efficiency utilization of photogenerated electrons.
Collapse
Affiliation(s)
- Nuonan Mu
- School of Environment and Geography, Qingdao University, Qingdao, 266071, P. R. China.
| | - Ze Luo
- School of Material Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Wei Shan
- School of Environment and Geography, Qingdao University, Qingdao, 266071, P. R. China.
| | - Haibo Huang
- School of Environment and Geography, Qingdao University, Qingdao, 266071, P. R. China.
| | - Hua Tang
- School of Environment and Geography, Qingdao University, Qingdao, 266071, P. R. China.
| |
Collapse
|
2
|
Qiu YZ, Liu XM, Li W, Li J, Xiao H. Transient Dangling Active Sites of Fe(III)-N-C Single-Atom Catalyst for Efficient Electrochemical CO 2 Reduction Reaction. Angew Chem Int Ed Engl 2025; 64:e202424150. [PMID: 39900539 DOI: 10.1002/anie.202424150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
The Fe single-atom catalyst (SAC) with an oxidation state of III anchored on the N-doped carbon substrate (Fe(III)-N-C) delivers superior activity for catalyzing the electrochemical CO2 reduction reaction (eCO2RR) to produce CO, but its mechanism remains contentious and the commonly adopted FeN4-C model is not a conformant model for Fe(III)-N-C but for Fe(II)-N-C. Herein, employing the grand-canonical ensemble modeling with the density functional theory method benchmarked against the high-level wavefunction theory method, we first identify the conformant model for Fe(III)-N-C to be FeN1C3-C, and we then unveil that the Fe(III)N1C3-C SAC generates a novel type of dangling active site transiently under working conditions, in which the Fe single-atom leaves from the anchoring site by breaking all the Fe-C bonds but retains a stable binding to the substrate by the Fe-N bond. Thus, we further elucidate that this flexible dangling active site of Fe(III)-N-C renders a convoluted reaction network with facile CO2 activation, which delivers superior activity for eCO2RR. Our findings provide a novel understanding of the structure-activity relationship for Fe-N-C and concrete insights into the design of highly active SACs.
Collapse
Affiliation(s)
- Yun-Ze Qiu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiao-Meng Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenying Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Shi Q, Zhang B, Wu Z, Yang D, Wu H, Shi J, Jiang Z. Cascade Catalytic Systems for Converting CO 2 into C 2+ Products. CHEMSUSCHEM 2025; 18:e202401916. [PMID: 39564785 DOI: 10.1002/cssc.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The excessive emission and continuous accumulation of CO2 have precipitated serious social and environmental issues. However, CO2 can also serve as an abundant, inexpensive, and non-toxic renewable C1 carbon source for synthetic reactions. To achieve carbon neutrality and recycling, it is crucial to convert CO2 into value-added products through chemical pathways. Multi-carbon (C2+) products, compared to C1 products, offer a broader range of applications and higher economic returns. Despite this, converting CO2 into C2+ products is difficult due to its stability and the high energy required for C-C coupling. Cascade catalytic reactions offer a solution by coordinating active components, promoting intermediate transfers, and facilitating further transformations. This method lowers energy consumption. Recent advancements in cascade catalytic systems have allowed for significant progress in synthesizing C2+ products from CO2. This review highlights the features and advantages of cascade catalysis strategies, explores the synergistic effects among active sites, and examines the mechanisms within these systems. It also outlines future prospects for CO2 cascade catalytic synthesis, offering a framework for efficient CO2 utilization and the development of next-generation catalytic systems.
Collapse
Affiliation(s)
- Qiaochu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Boyu Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenhua Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Dong Yang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiafu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Wang Y, Zhang D, Sun B, Jia X, Zhang L, Cheng H, Fan J, Li H. Divergent Activity Shifts of Tin-Based Catalysts for Electrochemical CO 2 Reduction: pH-Dependent Behavior of Single-Atom Versus Polyatomic Structures. Angew Chem Int Ed Engl 2025; 64:e202418228. [PMID: 39607070 PMCID: PMC11833285 DOI: 10.1002/anie.202418228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 11/29/2024]
Abstract
Tin (Sn)-based catalysts have been widely studied for electrochemical CO2 reduction reaction (CO2RR) to produce formic acid, but the intricate influence of the structural sensitivity in single-atom Sn (e.g., Sn-N-C) and polyatomic Sn (e.g., SnOx and SnSx; x=1,2) on their pH-dependent performance remains enigmatic. Herein, we integrate large-scale data mining (with >2,300 CO2RR catalysts from available experimental literature during the past decade), ab initio computations, machine learning force field accelerated molecular dynamic simulations, and pH-field coupled modelling to unravel their pH dependence. We reveal a fascinating contrast: the electric field response of the binding strength of *OCHO on Sn-N4-C and polyatomic Sn exhibits opposite behaviors due to their differing dipole moment changes upon *OCHO formation. Such response leads to an intriguing opposite pH-dependent volcano evolution for Sn-N4-C and polyatomic Sn. Subsequent experimental validations of turnover frequency and current density under both neutral and alkaline conditions well aligned with our theoretical predictions. Most importantly, our analysis suggests the necessity of distinct optimization strategies for *OCHO binding energy on different types of Sn-based catalysts.
Collapse
Affiliation(s)
- Yuhang Wang
- Advanced Institute for Materials Research (WPI-AIMR)Tohoku UniversitySendai980-8577Japan
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077China
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR)Tohoku UniversitySendai980-8577Japan
| | - Bin Sun
- State Key Laboratory of Crystal MaterialsInstitute of Crystal MaterialsShandong UniversityJinan250100China
| | - Xue Jia
- Advanced Institute for Materials Research (WPI-AIMR)Tohoku UniversitySendai980-8577Japan
| | - Linda Zhang
- Advanced Institute for Materials Research (WPI-AIMR)Tohoku UniversitySendai980-8577Japan
| | - Hefeng Cheng
- State Key Laboratory of Crystal MaterialsInstitute of Crystal MaterialsShandong UniversityJinan250100China
| | - Jun Fan
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077China
- Center for Advance Nuclear Safety and Sustainable DevelopmentCity University of Hong KongHong Kong999077China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR)Tohoku UniversitySendai980-8577Japan
| |
Collapse
|
5
|
Xu G, Wang T. Practical Applications of Grand-canonical Electronic Structure Calculations in Electrochemical Simulation. J Phys Chem Lett 2025; 16:1470-1477. [PMID: 39895225 DOI: 10.1021/acs.jpclett.4c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Modeling electrified interfaces has long been a great challenge in electrochemistry. In recent years, the grand-canonical treatment for electrons has gradually been developed, and its combination with density functional theory has been widely used to simulate electrochemical processes on an atomistic scale. In this Perspective, we aim to discuss several practical applications of this powerful technique after a short review of necessary fundamentals. We will begin with capacitor-based parametrization method of grand-canonical calculated results. If considering the electrodes under different applied potentials as different materials, the parametrization can be viewed as a kind of "quadratic scaling relation", which might reduce the overall computational costs by data postanalysis rather than algorithm development. Following an example of the abnormal potential-independent energetic curve within the bandgap area, we turn the topic to the semiconducting electrodes. Meanwhile, the specific behaviors of the bandgap also indicate that besides the reaction thermodynamics and kinetics, the detailed electronic structure of the system can also be well described by the grand-canonical treatment on electrons. Several possibilities for further applications are proposed correspondingly and summarized at the end of paper. We believe that the grand-canonical treatment for electronic structure calculations can greatly enrich our understanding of the fundamental mechanisms under electrochemical environments.
Collapse
Affiliation(s)
- Gaomou Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Zhejiang Baima Lake Laboratory, Division of Solar Energy Conversion and Catalysis, Westlake University, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
6
|
Wang Z, Xiao H. Fleeting-Active-Site-Thrust Oxygen Evolution Reaction by Iron Cations from the Electrolyte. J Am Chem Soc 2024; 146:29540-29550. [PMID: 39411826 DOI: 10.1021/jacs.4c09585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Oxygen evolution reaction (OER) is key to sustainable energy and environmental engineering, thus necessitating rational design of high-performing electrocatalysts that requires understanding the structure-performance relationship with a possible dynamic nature under working conditions. Herein, we uncover a novel type of OER mechanisms thrust by the fleeting active sites (FASs) dynamically formed on Ni-based layered double hydroxides (Ni-LDHs) by Fe cations from the electrolyte under OER potentials. We employ grand-canonical ensemble methods and microkinetic modeling to elucidate the potential-dependent structures of FASs on Ni-LDHs and demonstrate that the fleeting-active-site-thrust (FAST) mechanism delivers superior OER activity via the FAST intramolecular oxygen coupling pathway, which also suppresses the lattice oxygen mechanism, leading to improved operando stability of Ni-LDHs. We further reveal that introducing only trace-level loadings (10-100 ppm) of FASs on Ni-LDHs can significantly boost and govern the catalytic performance for OER. This underscores the crucial importance of considering the novel FAST mechanism in OER and also suggests the electrolyte as a key part of the structure-performance relationship as well as an effective design strategy via engineering the electrolyte.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Hu X, Li X, Su NQ. Exploring Nitrogen Reduction Reaction Mechanisms with Graphyne-Confined Single-Atom Catalysts: A Computational Study Incorporating Electrode Potential and pH. J Phys Chem Lett 2024; 15:9692-9705. [PMID: 39284129 DOI: 10.1021/acs.jpclett.4c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This study reconciles discrepancies between practical electrochemical conditions and theoretical density functional theory (DFT) frameworks, evaluating three graphyne-confined single-atom catalysts (Mo-TEB, Mo@GY, and Mo@GDY). Using both constant charge models in vacuum and constant potential models with continuum implicit solvation, we closely mimic real-world electrochemical environments. Our findings highlight the crucial role of explicitly incorporating electrode potential and pH in the constant potential model, providing enhanced insights into the nitrogen reduction reaction (NRR) mechanisms. Notably, the superior NRR performance of Mo-TEB is attributed to the d-band center's proximity to the Fermi level and enhanced magnetic moments at the atomic center. This research advances our understanding of graphyne-confined single-atom catalysts as effective NRR platforms and underscores the significance of the constant potential model for accurate DFT studies of electrochemical reactions.
Collapse
Affiliation(s)
- Xiuli Hu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Li
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Neil Qiang Su
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Department of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Liu T, Xu T, Li T, Jing Y. Selective CO 2 Reduction over γ-Graphyne Supported Single-Atom Catalysts: Crucial Role of Strain Regulation. J Am Chem Soc 2024; 146:24133-24140. [PMID: 39140784 DOI: 10.1021/jacs.4c08677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The two-electron CO2 reduction reaction (2e-CO2RR) is the most promising process for realizing industrial utilization of CO2, but it is hindered by the competitive hydrogen evolution reaction (HER) because of the comparable equilibrium potential. Strategies to enhance 2e-CO2RR activity and selectivity by suppressing HER are highly demanded. Inspired by the low in-plane Young's modulus of the recently synthesized γ-graphyne (GY), we propose tensile-strain regulation as an effective method to improve the selectivity of the CO2RR against HER. By means of constant-potential calculations and constrained ab initio molecular dynamics simulations, we demonstrate the good stability and high CO2RR activity of GY-supported Co (Co-GY) single-atom catalysts (SACs). The change in potential of zero charges of *COOH is revealed to be more sensitive to tensile strain than that of *H species on Co-GY SACs, resulting in a slower change of its adsorption energy than that of *H species under working potentials and consequently enhanced CO2RR selectivity toward CO production. Besides, the strain-dependent regulation mechanism also applies to other M-GY SACs, demonstrating strain regulation as an effective strategy for designing and manipulating SACs for the selective 2e-CO2RR.
Collapse
Affiliation(s)
- Tianyang Liu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianze Xu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianchun Li
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Jing
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Yang H, Zou W, Zhang C, Du A. Ab Initio Studies of Electrocatalytic CO 2 Reduction for Small Cu Cluster Supported on Polar Substrates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33688-33695. [PMID: 38900983 DOI: 10.1021/acsami.4c07445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Small Cu clusters are excellent candidates for the electrocatalytic reduction of carbon dioxide (CO2RR), and their catalytic performance is expected to be significantly influenced by the interaction between the substrate and cluster. In this study, we systematically investigate the CO2RR for a Cu3 cluster anchored on Janus MoSX (X = Se, Te) substrates using density functional theory calculations. These substrates feature a broken vertical mirror symmetry, which generates spontaneous out-of-plane polarization and offers two distinct polar surfaces to support the Cu3 cluster. Our findings reveal that the CO2RR performance on the Cu3 cluster is strongly influenced by the polarization direction and strength of the MoSX (X = Se, Te) substrates. Notably, the Cu3 cluster supported on the S-terminated MoSTe surface (Cu3(S)@MoSTe) demonstrates the highest CO2RR activity, producing methane. These results underscore the pivotal role of substrate polarization in modulating the binding strength of reactants and reaction intermediates, thereby enhancing the CO2RR efficiency.
Collapse
Affiliation(s)
- Huiru Yang
- School of Physics, Northwest University, Xi'an 710127, China
| | - Wenli Zou
- School of Physics, Northwest University, Xi'an 710127, China
| | - Chunmei Zhang
- School of Physics, Northwest University, Xi'an 710127, China
| | - Aijun Du
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
10
|
Liu T, Jing Y, Li Y. First-Principles Insights into the Selectivity of CO 2 Electroreduction over Heterogeneous Single-Atom Catalysts. J Phys Chem Lett 2024; 15:6216-6221. [PMID: 38838259 DOI: 10.1021/acs.jpclett.4c01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Heterogeneous metal-nitrogen-carbon (M-N-C) single-atom catalysts (SACs) have garnered considerable attention in the two-electron CO2 reduction reaction (2e-CO2RR). Interestingly, almost M-N-C SACs mainly produce CO, while Sb is one of the few SACs reported so far that can produce HCOOH. Nevertheless, the underlying factors for different selectivities on Sb-N-C SAC remain controversial, and the lack of in-depth understanding of limiting factors hampers further regulations. Here, by using constant-potential first-principles calculations, we revealed that the high HCOOH selectivity of Sb-N-C SAC is mainly attributed to their weak charge accumulation ability. Remarkably, considering the highly tunable geometric structure of M-N-C SACs, we provide that Sb-N-C SAC with the SbN3S1 center is a promising candidate for CO production. Our work provides the mechanism insight into 2e-CO2RR selectivity and further paves the way toward electrocatalyst regulation and design.
Collapse
Affiliation(s)
- Tianyang Liu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Jing
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Sun Y, Tao L, Wu M, Dastan D, Rehman J, Li L, An B. Multi-atomic loaded C 2N 1 catalysts for CO 2 reduction to CO or formic acid. NANOSCALE 2024; 16:9791-9801. [PMID: 38700428 DOI: 10.1039/d4nr01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
In recent years, the development of highly active and selective electrocatalysts for the electrochemical reduction of CO2 to produce CO and formic acid has aroused great interest, and can reduce environmental pollution and greenhouse gas emissions. Due to the high utilization of atoms, atom-dispersed catalysts are widely used in CO2 reduction reactions (CO2RRs). Compared with single-atom catalysts (SACs), multi-atom catalysts have more flexible active sites, unique electronic structures and synergistic interatomic interactions, which have great potential in improving the catalytic performance. In this study, we established a single-layer nitrogen-graphene-supported transition metal catalyst (TM-C2N1) based on density functional theory, facilitating the reduction of CO2 to CO or HCOOH with single-atom and multi-atomic catalysts. For the first time, the TM-C2N1 monolayer was systematically screened for its catalytic activity with ab initio molecular dynamics, density of states, and charge density, confirming the stability of the TM-C2N1 catalyst structure. Furthermore, the Gibbs free energy and electronic structure analysis of 3TM-C2N1 revealed excellent catalytic performance for CO and HCOOH in the CO2RR with a lower limiting potential. Importantly, this work highlights the moderate adsorption energy of the intermediate on 3TM-C2N1. It is particularly noteworthy that 3Mo-C2N1 exhibited the best catalytic performance for CO, with a limiting potential (UL) of -0.62 V, while 3Ti-C2N1 showed the best performance for HCOOH, with a corresponding UL of -0.18 V. Additionally, 3TM-C2N1 significantly inhibited competitive hydrogen evolution reactions. We emphasize the crucial role of the d-band center in determining products, as well as the activity and selectivity of triple-atom catalysts in the CO2RR. This theoretical research not only advances our understanding of multi-atomic catalysts, but also offers new avenues for promoting sustainable CO2 conversion.
Collapse
Affiliation(s)
- Yimeng Sun
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Lin Tao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Mingjie Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Davoud Dastan
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Javed Rehman
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Lixiang Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Baigang An
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| |
Collapse
|
12
|
Meng Y, Ying L, Tao Y, Ma L, Li B, Xing Y, Liu X, Ma Y, Wen X. DFT Study on Effect of Metal Type and Coordination Environment on CO 2 ECR to C 1 Products over M-N-C Catalysts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10663-10675. [PMID: 38718299 DOI: 10.1021/acs.langmuir.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Electrocatalytic reduction (ECR) of CO2 to chemical products is an important carbon emission reduction method. This work uses DFT to study the stability of N-doped graphene-supported four metal single-atom catalysts (M-N-C) and the effects of the coordination environment and metal centers on the selectivity of CO2 ECR to C1 products. The results show that Fe, Co, Ni, and Cu have good stability. The coordination environment has a significant modulating effect on product selectivity, and the change of the number of ligand nitrogen atoms will affect the size of the potential-limiting step of each product. When the number of nitrogen ligands is the same, the different metal centers of the M-N-C catalyst have a significant effect on the selectivity of different products. In addition, the introduction of nitrogen atom ligands can adjust the electronic structure of the graphene-supported metal center, increase the d-band center of most metals, and improve the reaction activity.
Collapse
Affiliation(s)
- Yu Meng
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, P. R. China
| | - Linbin Ying
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, P. R. China
| | - Yani Tao
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, P. R. China
| | - Liang Ma
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, P. R. China
| | - Baoning Li
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, P. R. China
| | - Yan Xing
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, P. R. China
| | - Xiaoyan Liu
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, P. R. China
| | - Yajun Ma
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, P. R. China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
| |
Collapse
|
13
|
Ma J, Huang F, Xu A, Wei D, Chen X, Zhao W, Chen Z, Yin X, Zhu J, He H, Xu J. Three-Phase-Heterojunction Cu/Cu 2O-Sb 2O 3 Catalyst Enables Efficient CO 2 Electroreduction to CO and High-Performance Aqueous Zn-CO 2 Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306858. [PMID: 38414314 DOI: 10.1002/advs.202306858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Indexed: 02/29/2024]
Abstract
Zn-CO2 batteries are excellent candidates for both electrical energy output and CO2 utilization, whereas the main challenge is to design electrocatalysts for electrocatalytic CO2 reduction reactions with high selectivity and low cost. Herein, the three-phase heterojunction Cu-based electrocatalyst (Cu/Cu2O-Sb2O3-15) is synthesized and evaluated for highly selective CO2 reduction to CO, which shows the highest faradaic efficiency of 96.3% at -1.3 V versus reversible hydrogen electrode, exceeding the previously reported best values for Cu-based materials. In situ spectroscopy and theoretical analysis indicate that the Sb incorporation into the three-phase heterojunction Cu/Cu2O-Sb2O3-15 nanomaterial promotes the formation of key *COOH intermediates compared with the normal Cu/Cu2O composites. Furthermore, the rechargeable aqueous Zn-CO2 battery assembled with Cu/Cu2O-Sb2O3-15 as the cathode harvests a peak power density of 3.01 mW cm-2 as well as outstanding cycling stability of 417 cycles. This research provides fresh perspectives for designing advanced cathodic electrocatalysts for rechargeable Zn-CO2 batteries with high-efficient electricity output together with CO2 utilization.
Collapse
Affiliation(s)
- Junjie Ma
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Fang Huang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Aihao Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Dong Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Xiangyu Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Wencan Zhao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Zhengjun Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Xucai Yin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Jinliang Zhu
- School of Resources, Environment, and Materials, Collaborative Innovation Center of Sustainable Energy Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Huibing He
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
14
|
Hou J, Xu B, Lu Q. Influence of electric double layer rigidity on CO adsorption and electroreduction rate. Nat Commun 2024; 15:1926. [PMID: 38431637 PMCID: PMC10908862 DOI: 10.1038/s41467-024-46318-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Understanding the structure of the electric double layer (EDL) is critical for designing efficient electrocatalytic processes. However, the interplay between reactant adsorbates and the concentrated ionic species within the EDL remains an aspect that has yet to be fully explored. In the present study, we employ electrochemical CO reduction on Cu as a model reaction to reveal the significant impact of EDL structure on CO adsorption. By altering the sequence of applying negative potential and elevating CO pressure, we discern two distinct EDL structures with varying cation density and CO coverage. Our findings demonstrate that the EDL comprising densely packed cations substantially hinders CO adsorption on the Cu as opposed to the EDL containing less compact cations. These two different EDL structures remained stable over the course of our experiments, despite their identical initial and final conditions, suggesting an insurmountable kinetic barrier present in between. Moreover, we show that the size and identity of cations play decisive roles in determining the properties of the EDL in CO electroreduction on Cu. This study presents a refined adaptation of the classical Gouy-Chapman-Stern model and highlights its catalytic importance, which bridges the mechanistic gap between the EDL structure and cathodic reactions.
Collapse
Affiliation(s)
- Jiajie Hou
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
15
|
Liu JC, Luo F, Li J. Electrochemical Potential-Driven Shift of Frontier Orbitals in M-N-C Single-Atom Catalysts Leading to Inverted Adsorption Energies. J Am Chem Soc 2023; 145:25264-25273. [PMID: 37939166 DOI: 10.1021/jacs.3c08697] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Electronic structure is essential to understanding the catalytic mechanism of metal single-atom catalysts (SACs), especially under electrochemical conditions. This study delves into the nuanced modulation of "frontier orbitals" in SACs on nitrogen-doped graphene (N-C) substrates by electrochemical potentials. We observe shifts in Fermi level and changes of d-orbital occupation with alterations in electrochemical potentials, emphasizing a synergy between the discretized atomic orbitals of metals and the continuous bands of the N-C based environment. Using O2 and CO2 as model adsorbates, we highlight the direct consequences of these shifts on adsorption energies, unveiling an intriguing inversion of adsorption energies on Co/N-C SAC under negative electrochemical potentials. Such insights are attributed to the role of the dxz and dz2 orbitals, pivotal for stabilizing the π* orbitals of O2. Through this exploration, our work offers insights on the interplay between electronic structures and adsorption behaviors in SACs, paving the way for enhanced catalyst design strategies in electrochemical processes.
Collapse
Affiliation(s)
- Jin-Cheng Liu
- Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Feng Luo
- Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|