1
|
Wen C, Huang Z, Zhang SY, Li Z, Chai B, Huang Z, Kang QK. Deracemization of C(sp 3)-H Arylated Carbonyl Compounds via Asymmetric Ion-Pairing Photoredox Catalysis. J Am Chem Soc 2025; 147:14625-14634. [PMID: 40245480 DOI: 10.1021/jacs.5c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Deracemization of C(sp3)-H arylated carbonyl compounds faces limitations in terms of substrate scope. Through the photoactivation of the aryl group and the stereocontrol of the generated arene radical cation via asymmetric ion-pairing catalysis, we are able to achieve deracemization of carbonyl compounds arylated at both enolizable and unenolizable stereocenters. A diverse range of α-, β-, and γ-aryl ketones and esters, including natural products and medicinal derivatives, can be effectively converted into their enantiomers with high enantioselectivity. Mechanistic investigations through combined experimental and computational studies suggest that the reaction involves single-electron oxidation of electron-rich aryl groups, followed by a kinetic resolution of the resulting radical cation intermediates by the chiral phosphate anion. Deprotonation is identified as the stereodetermining step, while stereoselective back electron transfer and triplet-state quenching of 3 Mes-Acr1+* may also affect the enantioselectivity at the photostationary state.
Collapse
Affiliation(s)
- Chenxi Wen
- School of Chemistry and Materials Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhengke Huang
- School of Chemistry and Materials Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sheng-Ye Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhimin Li
- School of Chemistry and Materials Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Bolong Chai
- School of Chemistry and Materials Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zheng Huang
- School of Chemistry and Materials Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qi-Kai Kang
- School of Chemistry and Materials Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Soika J, Onneken C, Morack T, Gilmour R. Enantioselective Photocatalysis Using a Privileged Al-Salen Complex. Acc Chem Res 2025. [PMID: 40304405 DOI: 10.1021/acs.accounts.5c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
ConspectusEnantioselective catalysts that exhibit broad generality are disruptive innovators in contemporary synthesis and are considered to be "privileged" on account of their expansive reactivity/selectivity profiles. Operating in the ground state, these species simultaneously regulate reactivity and orchestrate the translation of chiral information with exquisite efficiency: achieving parity in higher-energy (excited-state) scenarios remains a frontier in contemporary catalysis. Advancing this field will require new structure-activation guidelines to be delineated that reflect the energetic realities of achieving chiral induction in non-ground-state environments, thereby expediting the discovery of privileged photocatalysts. Earth-abundant aluminum-salen (Al-salen) complexes, which have a venerable history in ground-state enantioselective catalysis, show great promise in reconciling this disparity on account of their well-defined photophysical properties. In this Account, the potential of these catalysts in engaging various substrates via discrete activation modes to furnish optically enriched products with high levels of reliability is discussed. The deployment of commercial Al-salen complexes in the single electron transfer (SET)-enabled deracemization of cyclopropyl ketones is an exemplar. Irradiation of a commercial Al-salen complex augments the function of the catalyst to enable efficient deracemization (up to 98:2 e.r.), thereby eliminating the need for directing units. In stark contrast to conventional deracemization approaches that are predicated on C(sp3)-H deprotonation/reprotonation sequences, the transformation is characterized by a key C(sp3)-C(sp3) bond cleavage/cyclization process. Subsequent downstream manipulations of the enantioenriched products demonstrate the synthetic utility of the methodology. To illustrate mechanistic diversity using the same Al-salen complex, an enantioselective photocyclization under the auspices of energy transfer (EnT) catalysis is described. The photocyclization of acrylanilides under operationally simple conditions facilitates access to a diverse group of heterocyclic products (up to quantitative yield and 96:4 e.r.) using an Al-salen as the sole chiral operator. Collectively, these mechanistically distinct scenarios illustrate that light activation is a powerful strategy to augment the reactivity arsenal of a ubiquitous small molecule catalyst that is considered to be privileged in the ground state. The mechanistic foundations of reaction development are surveyed (combined experimental and computational approach), together with a perspective on the impact of this enabling technology in chiral functional molecule discovery. This Account serves to emphasize the synthetic utility of leveraging photochemical activation to mitigate intrinsic constraints of processes that might be considered to be thermochemically challenging.
Collapse
Affiliation(s)
- Julia Soika
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Carina Onneken
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Tobias Morack
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
3
|
Li M, Zhang Y, Fu K, Deng Z, Yuan Z, Luo Z, Rao Y. Light-Driven Deracemization by a Designed Photoenzyme. J Am Chem Soc 2025; 147:13190-13199. [PMID: 40219972 DOI: 10.1021/jacs.4c16521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
The creation of enzymes with abiological abilities offers exciting opportunities to access new-to-nature biocatalysis beyond that found in nature. Here, we repurpose a novel protein scaffold, CTB10, as an artificial photoenzyme through genetic code expansion. It enables catalytic deracemization of cyclopropane, a process that remains inaccessible to traditional biocatalysis due to its thermodynamically unfavorable nature. Following structural optimization through directed evolution, a broad substrate scope with high enantioselectivities is achieved. Furthermore, the crystal structure of the CTB10-based photoenzyme-substrate complex well demonstrates how the catalytic chiral cavity is sculpted to promote efficient and selective light-enabled deracemization. Therefore, this study unlocks the potential for achieving challenging deracemization through biocatalysis.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Kai Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
4
|
Iglhaut M, Bach T. Stereochemical Editing at sp 3-Hybridized Carbon Centers by Reversible, Photochemically Triggered Hydrogen Atom Transfer. Acc Chem Res 2025; 58:777-786. [PMID: 39969052 PMCID: PMC11883745 DOI: 10.1021/acs.accounts.4c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
ConspectusMillions of chiral compounds contain a stereogenic sp3-hybridized carbon center with a hydrogen atom as one of the four different substituents. The stereogenic center can be edited in an increasing number of cases by selective hydrogen atom transfer (HAT) to and from a photocatalyst. This Account describes the development of photochemical deracemization reactions using chiral oxazole-annulated benzophenones with a bonding motif that allows them to recognize chiral lactam substrates by two-point hydrogen bonding. The backbone of the catalysts consists of a chiral azabicyclo[3.3.1]nonan-2-one with a U-shaped geometry, which enables substrate recognition to occur parallel to the benzoxazole part of the aromatic ketones. The photocatalysts facilitate a catalytic photochemical deracemization of several compound classes including hydantoins, N-carboxyanhydrides, oxindoles, 2,5-diketopiperazines, and 4,7-diaza-1-isoindolinones. In addition, if more than one stereogenic center is present, the editing delivers a distinct diastereoisomer upon the appropriate selection of the respective photocatalyst enantiomer. The chiral photocatalysts operate via the benzophenone triplet that selectively abstracts a properly positioned hydrogen atom in exclusively one of the two substrate enantiomers. The photochemical step creates a planar carbon-centered radical and erases the absolute configuration at this position. While returning HAT to the same position would likely recreate the stereogenic center with the same absolute configuration, spectroscopic and quantum chemical studies suggest that the hydrogen atom is delivered from the photocatalyst to a heteroatom that is in conjugation to the radical center. Two scenarios can be distinguished for the hydrogen atom shuttling process. For hydantoins, N-carboxyanhydrides, and 4,7-diaza-1-isoindolinones, the back HAT occurs to a carbonyl oxygen atom or an imine-type nitrogen atom which is not involved in binding to the catalyst. For oxindoles and 2,5-diketopiperazines, a single lactam carbonyl group in the substrate is available to accept the hydrogen atom. It is currently assumed that back HAT occurs to this group, although the carbonyl oxygen atom is involved in hydrogen bonding to the catalyst. In comparison to the former reaction pathway, the latter process appears to be less efficient and more prone to side reactions. For both cases, an achiral enol or enamine is formed, which delivers upon dissociation from the catalyst statistically either one of the two stereoisomers of the substrate. Since only one substrate enantiomer (or diastereoisomer) is processed, a high enantioselectivity (or diastereoselectivity) results. Even though the editing is a contra-thermodynamic process, the described decoupling of a photochemical and a thermal step allows the usage of a single catalyst in loadings that vary between 2.5 and 10 mol % depending on the specific mode of action.
Collapse
Affiliation(s)
- Maximilian Iglhaut
- Department of Chemistry and
Catalysis Research Center (CRC), Technical
University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Thorsten Bach
- Department of Chemistry and
Catalysis Research Center (CRC), Technical
University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
5
|
Yin Y, You M, Li X, Jiang Z. Catalytic asymmetric photocycloaddition reactions mediated by enantioselective radical approaches. Chem Soc Rev 2025; 54:2246-2274. [PMID: 39869068 DOI: 10.1039/d5cs00019j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The use of olefins in the construction of cyclic compounds represents a powerful strategy for advancing the pharmaceutical industry. Photocycloaddition has attracted significant interest from chemists due to its ability to exploit simple and readily available olefins along with their reaction patterns under mild conditions. Moreover, the sustainable and versatile pathways for generating highly reactive intermediates can greatly enrich both substrate diversity and reaction patterns. As a result, numerous photocycloaddition reactions have been successfully developed, particularly asymmetric [2+2], [3+2], and [4+2] photocycloadditions mediated by enantioselective radical approaches, achieving remarkable enantioselectivities. This review offers a comprehensive overview of this rapidly evolving field, organizing the discussion into three distinct reaction types that facilitate the construction of enantioenriched derivatives of cyclobutanes, cyclopentanes, and cyclohexanes. Emphasis is placed on analyzing and summarizing established strategies aimed at circumventing the challenges posed by racemic background transformations. Additionally, the exploration of asymmetric [3+2] and [4+2] photocycloaddition reactions will be interwoven with a detailed discussion of the various substrate types involved. This systematic framework seeks to enhance understanding of the strategies employed to manage the high reactivity of radicals while achieving high enantioselectivity. Importantly, it aims to guide readers in identifying uncharted radical-based cycloaddition pathways, which possess significant potential to broaden the diversity of complex cyclic molecules.
Collapse
Affiliation(s)
- Yanli Yin
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, P. R. China.
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, Henan, P. R. China
| | - Mengdi You
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, P. R. China.
| | - Xiangtao Li
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, P. R. China.
| | - Zhiyong Jiang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, P. R. China.
| |
Collapse
|
6
|
Pan T, Jiang X, Huang M, Zhang L, Luo S. Visible Light-Promoted Deracemization of α-Amino Aldehyde by Synergistic Chiral Primary Amine and Hypervalent Iodine Catalysis. J Am Chem Soc 2025; 147:6280-6287. [PMID: 39915280 DOI: 10.1021/jacs.4c18407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
α-Amino aldehydes, as versatile chiral synthons, are easily racemized under normal acid or base conditions, seriously limiting their synthetic potentials. We report herein an effective deracemization of α-amino aldehydes by a synergistic chiral primary amine and hypervalent iodine catalysis under visible light. The developed catalytic system allows for the on-demand production of α-Boc- or Cbz-protected amino aldehydes with high enantioselectivity. Mechanistic studies verified a photochemical Z-E isomerization mechanism that drives the deracemization process.
Collapse
Affiliation(s)
- Tianrun Pan
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xieyang Jiang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mouxin Huang
- Department of Medicinal Chemistry, Third Military of Medical University, Chongqing 400038, China
| | - Long Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Iglhaut M, Freund P, Bach T. Photochemical Deracemization of N-Carboxyanhydrides En Route to Chiral α-Amino Acid Derivatives. Angew Chem Int Ed Engl 2025; 64:e202418873. [PMID: 39412185 DOI: 10.1002/anie.202418873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Indexed: 11/14/2024]
Abstract
Readily accessible, racemic N-carboxyanhydrides (NCAs) of α-amino acids underwent a deracemization reaction upon irradiation at λ=366 nm in the presence of a chiral benzophenone catalyst. The enantioenriched NCAs (up to 98 % ee) serve as activated α-amino acid surrogates and, due to their instability, they were directly converted into consecutive products. N-Protected α-amino acid esters were obtained after reaction with MeOH and N-benzoylation (14 examples, 70 %-quant., 82-96 % ee). Other consecutive reactions included amide (ten examples, 65 %-quant., 90-98 % ee) and peptide (three examples, 75-89 %, d. r.=97/3 to 94/6) bond formation. Limitations of the method relate for some NCAs to issues with solubility, photooxidation, and high configurational lability.
Collapse
Affiliation(s)
- Maximilian Iglhaut
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Philip Freund
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Thorsten Bach
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
8
|
Freund P, Pauls M, Babushkina D, Pickl T, Bannwarth C, Bach T. Photochemical Deracemization of 4,7-Diaza-1-isoindolinones by Unidirectional Hydrogen Atom Shuttling. J Am Chem Soc 2025; 147:1434-1439. [PMID: 39752316 PMCID: PMC11744763 DOI: 10.1021/jacs.4c16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
By coupling a photochemical and a thermal step, a single chiral catalyst can establish a photostationary state in which the enantiopure form of a chiral compound is favored over its racemate. Following this strategy, 3-substituted 4,7-diaza-1-isoindolones were successfully deracemized (74-98% yield, 86-99% ee) employing 2.5 mol % of a photocatalyst. Key to the success of the reaction is the fact that a chiral benzophenone recruits selectively one enantiomer of the substrate for a photoinduced hydrogen atom transfer. A combination of computational and experimental studies suggests that the hydrogen atom is shuttled via the oxygen atom of the catalyst to the 4-nitrogen atom of the substrate.
Collapse
Affiliation(s)
- Philip Freund
- School
of Natural Sciences, Department Chemie, and Catalysis Research Center
(CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Mike Pauls
- Institut
für Physikalische Chemie, RWTH Aachen
University, 52074 Aachen, Germany
| | - Daria Babushkina
- Institut
für Physikalische Chemie, RWTH Aachen
University, 52074 Aachen, Germany
| | - Thomas Pickl
- School
of Natural Sciences, Department Chemie, and Catalysis Research Center
(CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Christoph Bannwarth
- Institut
für Physikalische Chemie, RWTH Aachen
University, 52074 Aachen, Germany
| | - Thorsten Bach
- School
of Natural Sciences, Department Chemie, and Catalysis Research Center
(CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
9
|
Yan X, Pang Y, Zhou Y, Chang R, Ye J. Photochemical Deracemization of Lactams with Deuteration Enabled by Dual Hydrogen Atom Transfer. J Am Chem Soc 2025; 147:1186-1196. [PMID: 39692147 DOI: 10.1021/jacs.4c14934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Photochemical deracemization has emerged as one of the most straightforward approaches to access highly enantioenriched compounds in recent years. While excited-state events such as energy transfer, single electron transfer, and ligand-to-metal charge transfer have been leveraged to promote stereoablation, approaches relying on hydrogen atom transfer, which circumvent the limitations imposed by the triplet energy and redox potential of racemic substrates, remain underexplored. Conceptually, the most attractive method for tertiary stereocenter deracemization might be hydrogen atom abstraction followed by hydrogen atom donation. However, implementing such a strategy poses significant challenges, primarily because the enantioenriched products are also reactive if the chiral catalyst is unable to differentiate between the two enantiomers. Herein we report a distinct dual hydrogen atom transfer strategy for photochemical deracemization of δ- and γ-lactams, achieving high enantioenrichment and deuterium incorporation despite the inherent reactivity of the products. Mechanistic studies reveal that benzophenone enables nonselective hydrogen atom abstraction while a tetrapeptide-derived thiol dictates the enantioselectivity of the hydrogen atom donation step. More importantly, a pyridine-based alcohol was found to play crucial roles in facilitating the hydrogen atom abstraction as well as enhancing the enantioselectivity of the hydrogen atom donation step.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yutong Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Gieling J, Wéry G, Lopes C, de Meester J, Brandel C, Cartigny Y, Leyssens T, Baier DM. Mechanochemical Deracemization: A Sustainable Approach to Enantiopurity. Chemistry 2025:e202404120. [PMID: 39749642 DOI: 10.1002/chem.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
We introduce mechanochemical deracemization (MCDR) as a novel strategy for obtaining enantiopure compounds. This study demonstrates the successful transposition of six archetypical deracemization reactions from a solvent-based to a solvent-minimized ball milling environment. The scope includes a ketone, isoindolinones, imines, an ester, and an inorganic compound, all of which deracemized successfully. Key parameters such as milling material, ball number and size, the use of a bulk material and liquid-assisted grinding (LAG) were systematically investigated, revealing their crucial role. Quantitative enantiomeric excesses (ee) were achieved, while reaction times were reduced by up to 97 % and solvent consumption by as much as 100 %. This work establishes MCDR as a versatile, sustainable pathway to enantiopure compounds. By highlighting the generalizability of this approach and its huge potential for minimizing waste, this study provides the foundation for future advancements in mechanochemical deracemization.
Collapse
Affiliation(s)
- Job Gieling
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| | - Guillaume Wéry
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| | - Chrystal Lopes
- Laboratoire SMS, UR 3233, University of Rouen Normandy, F-76000, Rouen, France
| | - Joséphine de Meester
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| | - Clément Brandel
- Laboratoire SMS, UR 3233, University of Rouen Normandy, F-76000, Rouen, France
| | - Yohann Cartigny
- Laboratoire SMS, UR 3233, University of Rouen Normandy, F-76000, Rouen, France
| | - Tom Leyssens
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| | - Daniel M Baier
- Department of Molecular Chemistry, Materials and Catalysis, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur, 1 bte L4.01.06, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
11
|
Liu Y, Chu M, Li X, Cao Z, Zhao X, Yin Y, Jiang Z. Photoredox Catalytic Deracemization Enabled Enantioselective and Modular Access to Axially Chiral N-Arylquinazolinones. Angew Chem Int Ed Engl 2024; 63:e202411236. [PMID: 39045910 DOI: 10.1002/anie.202411236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
Visible light-driven photocatalytic deracemization is highly esteemed as an ideal tool for organic synthesis due to its exceptional atom economy and synthetic efficiency. Consequently, successful instances of deracemization of allenes have been established, where the activated energy of photosensitizer should surpass that of the substrates, representing an intrinsic requirement. Accordingly, this method is not applicable for axially chiral molecules with significantly high triplet energies. In this study, we present a photoredox catalytic deracemization approach that enables the efficient synthesis of valuable yet challenging-to-access axially chiral 2-azaarene-functionalized quinazolinones. The substrate scope is extensive, allowing for both 3-axis and unmet 1-axis assembly through facile oxidation of diverse central chiral 2,3-dihydroquinazolin-4(1H)-ones that can be easily prepared and achieve enantiomer enrichment via deracemization. Mechanistic studies reveal the importance of photosensitizer selection in attaining excellent chemoselectivity and highlight the indispensability of a chiral Brønsted acid in enabling highly enantioselective protonation to accomplish efficient deracemization.
Collapse
Affiliation(s)
- Yilin Liu
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Mengqi Chu
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Xiangtao Li
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Zheng Cao
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Xiaowei Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, P. R. China, 475004
| | - Yanli Yin
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, Henan, P. R., China, 451001
| | - Zhiyong Jiang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, P. R. China, 475004
| |
Collapse
|
12
|
Draper F, DiLuzio S, Sayre HJ, Pham LN, Coote ML, Doeven EH, Francis PS, Connell TU. Maximizing Photon-to-Electron Conversion for Atom Efficient Photoredox Catalysis. J Am Chem Soc 2024; 146:26830-26843. [PMID: 39302225 DOI: 10.1021/jacs.4c07396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Photoredox catalysis is a powerful tool to access challenging and diverse syntheses. Absorption of visible light forms the excited state catalyst (*PC) but photons may be wasted if one of several unproductive pathways occur. Facile dissociation of the charge-separated encounter complex [PC•-:D•+], also known as (solvent) cage escape, is required for productive chemistry and directly governs availability of the critical PC•- intermediate. Competitive charge recombination, either inside or outside the solvent cage, may limit the overall efficiency of a photochemical reaction or internal quantum yield (defined as the moles of product formed per mole of photons absorbed by PC). Measuring the cage escape efficiency (ϕCE) typically requires time-resolved spectroscopy; however, we demonstrate how to estimate ϕCE using steady-state techniques that measure the efficiency of PC•- formation (ϕPC). Our results show that choice of electron donor critically impacts ϕPC, which directly correlates to improved synthetic and internal quantum yields. Furthermore, we demonstrate how modest structural differences between photocatalysts may afford a sizable effect on reactivity due to changes in ϕPC, and by extension ϕCE. Optimizing experimental conditions for cage escape provides photochemical reactions with improved atom economy and energy input, paving the way for sustainable design of photocatalytic systems.
Collapse
Affiliation(s)
- Felicity Draper
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Stephen DiLuzio
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hannah J Sayre
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Le Nhan Pham
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Egan H Doeven
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Paul S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Timothy U Connell
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
13
|
Hu T, Zhang Y, Wang W, Li Q, Huang L, Gao J, Kuang Y, Zhao C, Zhou S, Gao L, Su Z, Song Z. Lewis Base-Catalyzed Dynamic Kinetic Asymmetric Transformation of Racemic Chlorosilanes en Route to Si-Stereogenic Silylethers. J Am Chem Soc 2024; 146:23092-23102. [PMID: 39108025 DOI: 10.1021/jacs.4c04390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Enantiopure Si-stereogenic organosilanes are highly valued in the fields of organic synthesis, development of advanced materials, and drug discovery. However, they are not naturally occurring, and their synthesis has been largely confined to resolution of racemic silanes or desymmetrization of symmetric silanes. In contrast, the dynamic kinetic asymmetric transformation (DYKAT) of racemic organosilanes offers a mechanistically distinct approach and would broaden the accessibility of Si-stereogenic silanes in an enantioconvergent manner. In this study, we report a Lewis base-catalyzed DYKAT of racemic chlorosilanes. The chiral isothiourea catalyst, (S)-benzotetramisole, facilitates silyletherification with phenols, yielding (R)-silylethers in good yields with high enantioselectivity (27 examples, up to 86% yield, up to 98:2 er). Kinetic analysis, control experiments, and DFT calculations suggest that a two-catalyst-bound pentacoordinate silicate is responsible for the Si-configurational epimerization of the ion-paired tetracoordinated silicon intermediates.
Collapse
Affiliation(s)
- Tianbao Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Qin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liying Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiahui Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuzhong Kuang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Song Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Zhang Z, Dai L. Construction of axially chiral molecules enabled by photoinduced enantioselective reactions. Chem Sci 2024; 15:12636-12643. [PMID: 39148771 PMCID: PMC11323314 DOI: 10.1039/d4sc03766a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Axially chiral molecular scaffolds are widely found in pharmaceutical molecules, functionalized materials, and chiral ligands. The synthesis of these compounds has garnered considerable interest from both academia and industry. The construction of such molecules, enabled by transition metal catalysis and organocatalysis under thermodynamic conditions, has been extensively studied and well-reviewed. In recent years, photoinduced enantioselective reactions have emerged as powerful methods for the catalytic construction of axial chirality. In this review, we provide an overview of various synthetic strategies for the photoinduced construction of axial chirality, with a specific focus on reaction design and catalytic mechanisms. Additionally, we discuss the limitations of current methods and highlight future directions in this field.
Collapse
Affiliation(s)
- Zhaofei Zhang
- Department of Chemistry, Purdue University West Lafayette Indiana 47907 USA
| | - Lei Dai
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| |
Collapse
|
15
|
Wang J, Fu Q, Cao S, Lv X, Yin Y, Ban X, Zhao X, Jiang Z. Enantioselective [2 + 2] Photocycloreversion Enables De Novo Deracemization Synthesis of Cyclobutanes. J Am Chem Soc 2024; 146:22840-22849. [PMID: 39094097 DOI: 10.1021/jacs.4c08290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
While photochemical deracemization significantly enhances atom economy by eliminating the necessity for additional oxidants or reductants, the laborious presynthesis of substrates from feedstock chemicals is often required, thereby compromising the practicality of this method. In this study, we propose a novel approach known as de novo deracemization synthesis, which involves direct utilization of simple substrates undergoing both photochemical transformation and reversible photochemical transformation. The efficient enantiocontrol of chiral catalysts in the latter process establishes an effective platform for deracemization. This alternative and practical approach to address the challenges of asymmetric photocatalysis has been successfully demonstrated in the photosensitized de novo deracemization synthesis of azaarene-functionalized cyclobutanes featuring three stereocenters, including an all-carbon quaternary center. By exclusively employing a suitable chiral catalyst to enable kinetically controlled [2 + 2] photocycloreversion, we pave a creative path toward achieving more cost-effective photochemical deracemization.
Collapse
Affiliation(s)
- Jiahao Wang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Qianqian Fu
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Shanshan Cao
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xinxin Lv
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yanli Yin
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xu Ban
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xiaowei Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, PR China
| | - Zhiyong Jiang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, PR China
| |
Collapse
|
16
|
Carder HM, Occhialini G, Bistoni G, Riplinger C, Kwan EE, Wendlandt AE. The sugar cube: Network control and emergence in stereoediting reactions. Science 2024; 385:456-463. [PMID: 39052778 PMCID: PMC11774262 DOI: 10.1126/science.adp2447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
Stereochemical editing strategies have recently enabled the transformation of readily accessible substrates into rare and valuable products. Typically, site selectivity is achieved by minimizing kinetic complexity by using protecting groups to suppress reactivity at undesired sites (substrate control) or by using catalysts with tailored shapes to drive reactivity at the desired site (catalyst control). We propose "network control," a contrasting paradigm that exploits hidden interactions between rate constants to greatly amplify modest intrinsic biases and enable precise multisite editing. When network control is applied to the photochemical isomerization of hexoses, six of the eight possible diastereomers can be selectively obtained. The amplification effect can be viewed as a mesoscale phenomenon between the limiting regimes of kinetic control in simple chemical systems and metabolic regulation in complex biological systems.
Collapse
Affiliation(s)
- Hayden M. Carder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gino Occhialini
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Bistoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | | | | | - Alison E. Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Song C, Bai X, Li B, Dang Y, Yu S. Photoexcited Palladium-Catalyzed Deracemization of Allenes. J Am Chem Soc 2024. [PMID: 39024194 DOI: 10.1021/jacs.4c07126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The different enantiomers of specific chiral molecules frequently exhibit disparate biological, physiological, or pharmacological properties. Therefore, the efficient synthesis of single enantiomers is of particular importance not only to the pharmaceutical sector but also to other industrial sectors, such as agrochemical and fine chemical industries. Deracemization, a process during which a racemic mixture is converted into a nonracemic product with 100% atom economy and theoretical yield, is the most straightforward method to access enantioenriched molecules but a challenging task due to a decrease in entropy and microscopic reversibility. Axially chiral allenes bear a distinctive structure of two orthogonal cumulative π-systems and are acknowledged as synthetically versatile synthons in organic synthesis. The selective creation of axially chiral allenes with high optical purity under mild reaction conditions has always been a very popular and hot topic in organic synthesis but remains challenging. Herein, a photoexcited palladium-catalyzed deracemization of nonprefunctionalized disubstituted allenes is disclosed. This method provides an efficient and economical strategy to accommodate a broad scope of allenes with good enantioselectivities and yields (53 examples, up to 96% yield and 95% ee). The use of a suitable chiral palladium complex with visible light irradiation is an essential factor in achieving this transformation. A metal-to-ligand charge transfer mechanism was proposed based on control experiments and density functional theory calculations. Quantum mechanical studies implicate dual modes of asymmetric induction behind our new protocol: (1) sterically controlled stereoselective binding of one allene enantiomer under the ground-state and (2) facile, noncovalent interaction-driven excited-state isomerization toward the opposite enantiomer. The success of this newly established photochemical deracemization strategy should provide inspiration for expansion to other multisubstituted allenes and will open up a new mode for enantioselective excited-state palladium catalysis.
Collapse
Affiliation(s)
- Changhua Song
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangbin Bai
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Doyle MGJ, Bsharat O, Sib A, Derdau V, Lundgren RJ. Enantioselective Carbon Isotope Exchange. J Am Chem Soc 2024; 146:18804-18810. [PMID: 38968381 DOI: 10.1021/jacs.4c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
The synthesis of isotopically labeled organic molecules is vital for drug and agrochemical discovery and development. Carbon isotope exchange is emerging as a leading method to generate carbon-labeled targets, which are sought over hydrogen-based labels due to their enhanced stability in biological systems. While many bioactive small molecules bear carbon-containing stereocenters, direct enantioselective carbon isotope exchange reactions have not been established. We describe the first example of an enantioselective carbon isotope exchange reaction, where (radio)labeled α-amino acids can be generated from their unlabeled precursors using a stoichiometric chiral aldehyde receptor with isotopically labeled CO2 followed by imine hydrolysis. Many proteinogenic and non-natural derivatives undergo enantioselective labeling, including the late-stage radiolabeling of complex drug targets.
Collapse
Affiliation(s)
- Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Odey Bsharat
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Anna Sib
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Volker Derdau
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
19
|
Lin A, Lee S, Knowles RR. Organic Synthesis Away from Equilibrium: Contrathermodynamic Transformations Enabled by Excited-State Electron Transfer. Acc Chem Res 2024; 57:1827-1838. [PMID: 38905487 PMCID: PMC11831427 DOI: 10.1021/acs.accounts.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
ConspectusChemists have long been inspired by biological photosynthesis, wherein a series of excited-state electron transfer (ET) events facilitate the conversion of low energy starting materials such as H2O and CO2 into higher energy products in the form of carbohydrates and O2. While this model for utilizing light-driven charge transfer to drive catalytic reactions thermodynamically "uphill" has been extensively adapted for small molecule activation, molecular machines, photoswitches, and solar fuel chemistry, its application in organic synthesis has been less systematically developed. However, the potential benefits of these approaches are significant, both in enabling transformations that cannot be readily achieved using conventional thermal chemistry and in accessing distinct selectivity regimes that are uniquely enabled by excited-state mechanisms. In this Account, we present work from our group that highlights the ability of visible light photoredox catalysis to drive useful organic transformations away from their equilibrium positions, addressing a number of long-standing synthetic challenges.We first discuss how excited-state ET enabled the first general methods for the catalytic anti-Markovnikov hydroamination of unactivated alkenes with alkyl amines. In these reactions, an excited-state iridium(III) photocatalyst reversibly oxidizes secondary amine substrates to their corresponding aminium radical cations (ARCs). These electrophilic N-centered radicals can then react with olefins to furnish valuable tertiary amine products with complete anti-Markovnikov regioselectivity. Notably, some of these products are less thermodynamically stable than their corresponding amine and alkene starting materials. We next present a strategy for light-driven C-C bond cleavage within various aliphatic alcohols mediated by homolytic activation of alcohol O-H bonds by excited-state proton-coupled electron transfer (PCET). The resulting alkoxy radical intermediates then undergo C-C β-scission to ultimately provide isomeric linear carbonyl products that are often higher in energy than their cyclic alcohol precursors. Applications of this chemistry for the light-driven depolymerization of lignin biomass, commercial phenoxy resin, hydroxylated polyolefin derivatives, and thermoset polymers are presented as well. We then describe a method for the contrathermodynamic positional isomerization of highly substituted olefins by means of cooperative photoredox and chromium(II) catalysis. In this work, generation of an allylchromium(III) species that can undergo highly regioselective in situ protodemetalation enables access to a less substituted and thermodynamically less stable positional isomer. Product selectivity in this reaction is determined by the large differential in oxidation potentials between differently substituted olefin isomers. Lastly, we discuss a light-driven deracemization reaction developed in collaboration with the Miller group, wherein a racemic urea substrate undergoes spontaneous optical enrichment upon visible light irradiation in the presence of an iridium(III) chromophore, a chiral Brønsted base, and a chiral peptide thiol. Excellent levels of enantioselectivity are achieved via sequential and synergistic proton transfer (PT) and H atom transfer (HAT) steps. Taken together, these examples highlight the ability of excited-state ET events to enable access to nonequilibrium product distributions across a wide range of catalytic, redox-neutral transformations in which photons are the only stoichiometric reagents.
Collapse
Affiliation(s)
- Angela Lin
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| | - Sumin Lee
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton NJ 08544 (USA)
| |
Collapse
|
20
|
Ding B, Xue Q, Wei H, Chen J, Liu ZS, Cheng HG, Cong H, Tang J, Zhou Q. Enantioconvergent synthesis of chiral fluorenols from racemic secondary alcohols via Pd(ii)/chiral norbornene cooperative catalysis. Chem Sci 2024; 15:7975-7981. [PMID: 38817591 PMCID: PMC11134410 DOI: 10.1039/d4sc01004c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
An efficient protocol for the asymmetric synthesis of fluorenols has been developed through an enantioconvergent process enabled by Pd(ii)/chiral norbornene cooperative catalysis. This approach allows facile access to diverse functionalized chiral fluorenols with constantly excellent enantioselectivities, applying readily available racemic secondary ortho-bromobenzyl alcohols and aryl iodides as the starting materials.
Collapse
Affiliation(s)
- Bo Ding
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Qilin Xue
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Han Wei
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| | - Jiangwei Chen
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Ze-Shui Liu
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Hong-Gang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Hengjiang Cong
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jianting Tang
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University Chongqing 404100 China
| | - Qianghui Zhou
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| |
Collapse
|
21
|
Pecchini P, Fochi M, Bartoccini F, Piersanti G, Bernardi L. Enantioselective organocatalytic strategies to access noncanonical α-amino acids. Chem Sci 2024; 15:5832-5868. [PMID: 38665517 PMCID: PMC11041364 DOI: 10.1039/d4sc01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Organocatalytic asymmetric synthesis has evolved over the years and continues to attract the interest of many researchers worldwide. Enantiopure noncanonical amino acids (ncAAs) are valuable building blocks in organic synthesis, medicinal chemistry, and chemical biology. They are employed in the elaboration of peptides and proteins with enhanced activities and/or improved properties compared to their natural counterparts, as chiral catalysts, in chiral ligand design, and as chiral building blocks for asymmetric syntheses of complex molecules, including natural products. The linkage of ncAA synthesis and enantioselective organocatalysis, the subject of this perspective, tries to imitate the natural biosynthetic process. Herein, we present contemporary and earlier developments in the field of organocatalytic activation of simple feedstock materials, providing potential ncAAs with diverse side chains, unique three-dimensional structures, and a high degree of functionality. These asymmetric organocatalytic strategies, useful for forging a wide range of C-C, C-H, and C-N bonds and/or combinations thereof, vary from classical name reactions, such as Ugi, Strecker, and Mannich reactions, to the most advanced concepts such as deracemisation, transamination, and carbene N-H insertion. Concurrently, we present some interesting mechanistic studies/models, providing information on the chirality transfer process. Finally, this perspective highlights, through the diversity of the amino acids (AAs) not selected by nature for protein incorporation, the most generic modes of activation, induction, and reactivity commonly used, such as chiral enamine, hydrogen bonding, Brønsted acids/bases, and phase-transfer organocatalysis, reflecting their increasingly important role in organic and applied chemistry.
Collapse
Affiliation(s)
- Pietro Pecchini
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| | - Mariafrancesca Fochi
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino PU Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino PU Italy
| | - Luca Bernardi
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| |
Collapse
|
22
|
Xu Y, Dong G. Deracemization through C-C bond manipulation. Sci Bull (Beijing) 2024; 69:285-287. [PMID: 38105162 DOI: 10.1016/j.scib.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Affiliation(s)
- Yan Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago IL 60637, USA.
| |
Collapse
|
23
|
Xu GQ, Wang WD, Xu PF. Photocatalyzed Enantioselective Functionalization of C(sp 3)-H Bonds. J Am Chem Soc 2024; 146:1209-1223. [PMID: 38170467 DOI: 10.1021/jacs.3c06169] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.
Collapse
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
24
|
Großkopf J, Bach T. Catalytic Photochemical Deracemization via Short-Lived Intermediates. Angew Chem Int Ed Engl 2023; 62:e202308241. [PMID: 37428113 DOI: 10.1002/anie.202308241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Upon irradiation in the presence of a suitable chiral catalyst, racemic compound mixtures can be converted into enantiomerically pure compounds with the same constitution. The process is called photochemical deracemization and involves the formation of short-lived intermediates. By opening different reaction channels for the forward reaction to the intermediate and for the re-constitution of the chiral molecule, the entropically disfavored process becomes feasible. Since the discovery of the first photochemical deracemization in 2018, the field has been growing rapidly. This review comprehensively covers the research performed in the area and discusses current developments. It is subdivided according to the mode of action and the respective substrate classes. The focus of this review is on the scope of the individual reactions and on a discussion of the mechanistic details underlying the presented reaction.
Collapse
Affiliation(s)
- Johannes Großkopf
- School of Natural Sciences, Technische Universität München, Department Chemie and Catalysis Research Center (CRC), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Thorsten Bach
- School of Natural Sciences, Technische Universität München, Department Chemie and Catalysis Research Center (CRC), Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
25
|
Großkopf J, Plaza M, Kutta RJ, Nuernberger P, Bach T. Creating a Defined Chirality in Amino Acids and Cyclic Dipeptides by Photochemical Deracemization. Angew Chem Int Ed Engl 2023; 62:e202313606. [PMID: 37793026 DOI: 10.1002/anie.202313606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
2,5-Diketopiperazines are cyclic dipeptides displaying a wide range of applications. Their enantioselective preparation has now been found possible from the respective racemates by a photochemical deracemization (53 examples, 74 % to quantitative yield, 71-99 % ee). A chiral benzophenone catalyst in concert with irradiation at λ=366 nm enables to establish the configuration at the stereogenic carbon atom C6 at will. If other stereogenic centers are present in the diketopiperazines they remain unaffected and a stereochemical editing is possible at a single position. Consecutive reactions, including the conversion into N-aryl or N-alkyl amino acids or the reduction to piperazines, occur without compromising the newly created stereogenic center. Transient absorption spectroscopy revealed that the benzophenone catalyst processes one enantiomer of the 2,5-diketopiperazines preferentially and enables a reversible hydrogen atom transfer that is responsible for the deracemization process. The remarkably long lifetime of the protonated ketyl radical implies a yet unprecedented mode of action.
Collapse
Affiliation(s)
- Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| | - Manuel Plaza
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| | - Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| |
Collapse
|
26
|
Wen L, Ding J, Duan L, Wang S, An Q, Wang H, Zuo Z. Multiplicative enhancement of stereoenrichment by a single catalyst for deracemization of alcohols. Science 2023; 382:458-464. [PMID: 37883537 DOI: 10.1126/science.adj0040] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2023] [Indexed: 10/28/2023]
Abstract
Stereochemical enrichment of a racemic mixture by deracemization must overcome unfavorable entropic effects as well as the principle of microscopic reversibility; recently, photochemical reaction pathways unveiled by the energetic input of light have led to innovations toward this end, most often by ablation of a stereogenic C(sp3)-H bond. We report a photochemically driven deracemization protocol in which a single chiral catalyst effects two mechanistically different steps, C-C bond cleavage and C-C bond formation, to achieve multiplicative enhancement of stereoinduction, which leads to high levels of stereoselectivity. Ligand-to-metal charge transfer excitation of a titanium catalyst coordinated by a chiral phosphoric acid or bisoxazoline efficiently enriches racemic alcohols that feature adjacent and fully substituted stereogenic centers to enantiomeric ratios up to 99:1. Mechanistic investigations support a pathway of sequential radical-mediated bond scission and bond formation through a common prochiral intermediate and reveal that, although the overall stereoenrichment is high, the selectivity in each individual step is moderate.
Collapse
Affiliation(s)
- Lu Wen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lingfei Duan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shun Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hexiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Kim SF, Sarpong R. Interconverting mirror-image molecules. Science 2023; 382:373-374. [PMID: 37883536 DOI: 10.1126/science.adk7116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A light-driven multitasking catalyst enhances chirality in molecular mixtures.
Collapse
Affiliation(s)
- Sojung F Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
28
|
Ričko S, Bitsch RS, Kaasik M, Otevřel J, Højgaard Madsen M, Keimer A, Jørgensen KA. Enantioconvergent 6π Electrocyclization Enabled by Photoredox Racemization. J Am Chem Soc 2023; 145:20913-20926. [PMID: 37753541 DOI: 10.1021/jacs.3c06227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
This study presents a novel photoredox-enabled enantioconvergent catalytic strategy used to construct chiral 2H-1,3-benzoxazines via an unprecedented oxa-6π electrocyclization utilizing racemic α-substituted glycinates as substrates. The approach leverages a cobalt-based chiral Lewis acid catalyst, which promotes the transformation under thermal or photoredox conditions. While the thermal reaction selectively converts only the (S)-configured glycinates into enantioenriched 2H-1,3-benzoxazines (up to 96:4 e.r.), the addition of 0.5 mol % of a commercially available iridium photocatalyst under visible light irradiation transforms the reaction into an enantioconvergent process. Detailed mechanistic and time course studies of optically pure α-deuterated substrates revealed the presence of an enantiospecific kinetic isotope effect, which helped to clarify the role of both the photo- and chiral Lewis acid catalyst in the reaction sequence. In this dual catalytic system, the photocatalyst promotes a dynamic interconversion between the substrate enantiomers─a process not accessible via ground-state chemistry─while the chiral Lewis acid selectively transforms only the (S)-configured substrates. Further mechanistic evidence for the proposed mechanism is provided by linear free energy relationship analysis, which suggests that the stereodetermining step involves a 6π electrocyclization under both thermal and photoredox conditions.
Collapse
Affiliation(s)
- Sebastijan Ričko
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| | - René Slot Bitsch
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mikk Kaasik
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jan Otevřel
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Anna Keimer
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|