1
|
Hu QQ, Geng ZX, Bai X, Chen J, Zhou L. Lewis Acid Catalyzed Divergent Reaction of Bicyclo[1.1.0]Butanes With Quinones for the Synthesis of Diverse Polycyclic Molecules. Angew Chem Int Ed Engl 2025:e202506228. [PMID: 40263107 DOI: 10.1002/anie.202506228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Bicyclo[1.1.0]butanes (BCBs) are highly strained hydrocarbons with unique structural properties and intrinsic reactivity, making them valuable building blocks for constructing complex molecular architectures. Herein, we report the Lewis acid-catalyzed divergent reactions of BCBs with quinones, yielding a diverse array of polycyclic molecules. Using Sc(OTf)₃ as a catalyst, pyrazole-substituted BCBs efficiently undergo formal (3 + 2) cycloaddition reactions with quinones, producing highly substituted bicyclo[2.1.1]hexanes featuring a caged framework. Monosubstituted BCB ketones undergo a sequential cascade involving Alder-ene reaction, 4π electrocyclic ring-opening, and [4 + 2] cycloaddition reaction, yielding fused benzoxepines efficiently. Disubstituted BCB esters, ketones, and amides undergo a tandem isomerization and (3 + 2) cycloaddition process, stereoselectively yielding tetrahydrocyclobuta[b]benzofuran products. Notably, strong Lewis acids such as SnCl₄ and BiBr₃ directly participate in the ring-opening reactions of monosubstituted BCB ketones, generating halogenated cyclobutane derivatives. Additionally, the synthetic potential of these approaches has been further highlighted through scale-up experiments and a range of transformations. This study demonstrates the tunability of reaction pathways based on the diverse substitution patterns of BCBs, providing efficient methods for the synthesis of a range of polycyclic compounds.
Collapse
Affiliation(s)
- Qian-Qian Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Ze-Xiang Geng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Xue Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P.R. China
| |
Collapse
|
2
|
Chen SS, Zheng Y, Xing ZX, Huang HM. Borylated strain rings synthesis via photorearrangements enabled by energy transfer catalysis. Nat Commun 2025; 16:3724. [PMID: 40253362 PMCID: PMC12009410 DOI: 10.1038/s41467-025-58353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/20/2025] [Indexed: 04/21/2025] Open
Abstract
Borylated carbocycles occupy a pivotal position as essential components in synthetic chemistry, drug discovery, and materials science. Herein, we present a photorearrangement that uniquely involves a boron atom enabled by energy transfer catalysis under visible light conditions. The boron functional group could be translocated through energy transfer mechanism and valuable borylated cyclopropane scaffolds could be generated smoothly. Furthermore, we showcase a 1,5-HAT (hydrogen atom transfer)/cyclization reaction, which is also enhanced by energy transfer catalysis excited by visible light. This method enables the synthesis of borylated cyclobutane frameworks. These boron-involved photorearrangement and cyclization reactions represent two techniques for synthesizing highly desirable borylated strained ring structures, which offering avenues for the synthesis of complex organic molecules with medicinal and material science applications.
Collapse
Affiliation(s)
- Shu-Sheng Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhi-Xi Xing
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
3
|
Graziano E, Colella M, Baumann M, Luisi R. Generation and Use of Bicyclo[1.1.0]butyllithium under Continuous Flow Conditions. Org Lett 2025; 27:3344-3348. [PMID: 40110989 PMCID: PMC11976866 DOI: 10.1021/acs.orglett.5c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
The bicyclo[1.1.0]butyl scaffold has emerged as a valuable bioisostere in drug discovery programs. Here, we present a streamlined approach for the generation of bicyclo[1.1.0]butyllithium and its functionalization with various classes of electrophiles in a one-flow process, eliminating the need for intermediate isolation. In comparison to traditional batch processes, the flow method allows the use of a single organolithium reagent instead of two and operates at significantly higher temperatures (0 °C versus -78 °C), enhancing both practicality and scalability.
Collapse
Affiliation(s)
- Elena Graziano
- FLAME-Lab,
Flow Chemistry and Microreactor Technology Laboratory, Department
of Pharmacy-Drug Sciences, University of
Bari “A. Moro”, Via Edoardo Orabona 4, 70125 Bari, Italy
- School
of Chemistry, University College Dublin, O’Brien Centre for Science, Belfield, Dublin 4, Ireland
| | - Marco Colella
- FLAME-Lab,
Flow Chemistry and Microreactor Technology Laboratory, Department
of Pharmacy-Drug Sciences, University of
Bari “A. Moro”, Via Edoardo Orabona 4, 70125 Bari, Italy
| | - Marcus Baumann
- School
of Chemistry, University College Dublin, O’Brien Centre for Science, Belfield, Dublin 4, Ireland
| | - Renzo Luisi
- FLAME-Lab,
Flow Chemistry and Microreactor Technology Laboratory, Department
of Pharmacy-Drug Sciences, University of
Bari “A. Moro”, Via Edoardo Orabona 4, 70125 Bari, Italy
| |
Collapse
|
4
|
Zhang X, Tian T, Liao P, Liu Z, Murali K, Bi X. Copper-Catalyzed Cross-Coupling of Bicyclobutanes with Triftosylhydrazone Leading to Skipped Dienes. Org Lett 2025; 27:2300-2304. [PMID: 40040367 DOI: 10.1021/acs.orglett.4c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Here, we report a protocol for the synthesis of skipped dienes through the cross-coupling of bicyclo[1.1.0]butanes with trifluoromethyl triftosylhydrazones. The reaction is run using TpBr3Cu(NCMe) as a catalyst to give access to a library of trifluoromethylated skipped dienes (32 examples, ≤98% yield) with excellent E/Z selectivity under mild and operationally safe conditions. The presented methods proved to be compatible with various functionalized bicyclo[1.1.0]butanes and triftosylhydrazones.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tian Tian
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Peiqiu Liao
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Karunanidhi Murali
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Liu Y, Tranin S, Chang YC, Piper EB, Fessard T, Van Hoveln R, Salome C, Brown MK. Facile Synthesis of Housanes by an Unexpected Strategy. J Am Chem Soc 2025; 147:6318-6325. [PMID: 39962893 DOI: 10.1021/jacs.4c13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Rigid bicyclic hydrocarbons have emerged as important building blocks in the drug discovery industry. Despite progress in this general area, bicyclo[2.1.0]pentanes (housanes) are an understudied class of molecules. Herein we report an unconventional synthesis of borylated housanes. Our method features a broad scope and high diastereoselectivities in the synthesis of versatile intermediates. The route involves a strain-release diboration of bicyclo[1.1.0]butane and intramolecular deborylative alkylation. The versatility of the bridgehead boronic ester was demonstrated in several functionalizations. Lastly, the mechanism of the reaction was investigated, and an unusual stereospecific and diastereoselective ring expansion was uncovered.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Somanea Tranin
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yu-Che Chang
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Evan B Piper
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | | - Ryan Van Hoveln
- Department of Chemistry and Physics, Indiana State University, 600 Chestnut Street, Terre Haute, Indiana 47809, United States
| | | | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
6
|
Yu T, Zhao X, Nie Z, Qin L, Ding Z, Xu L, Li P. Diverse Synthesis of Arene-Fused [n.1.1]-Bridged Molecules via Catalytic Cycloaddition and Rearrangement Reactions. Angew Chem Int Ed Engl 2025; 64:e202420831. [PMID: 39714393 DOI: 10.1002/anie.202420831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Although great advancement has been made in synthesis of 3D bridged bicyclic[n.1.1]-bioisosteres, facile construction of 2D/3D merged molecules incorporating bridged rings, as novel chemical space in drug discovery, remains a significant challenge. Herein a collective, selective, and diversity-oriented approach for up to 6 types of 2D/3D polycyclic scaffolds featuring bicyclo[n.1.1] substructure is reported. A boronyl radical-catalyzed [2σ+2π] cycloaddition between bicyclo[1.1.0]butanes and ortho-quinone methides afforded spirocyclic compounds containing a bicyclo[2.1.1]hexanes unit, which were used as intermediates for synthesis of three types of 2D/3D scaffolds via judiciously controlled Lewis acid-catalyzed rearrangements. The reaction and rearrangement of para-quinone methides worked analogously and provided another two polycyclic scaffolds.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xue Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Zaicheng Nie
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Lulu Qin
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhengwei Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Zhang F, Dutta S, Petti A, Rana D, Daniliuc CG, Glorius F. Solvent-Dependent Divergent Cyclization of Bicyclo[1.1.0]butanes. Angew Chem Int Ed Engl 2025; 64:e202418239. [PMID: 39688002 DOI: 10.1002/anie.202418239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
Bicyclo[1.1.0]butanes (BCBs) have recently garnered significant research interest as versatile precursors for synthesizing potential [n.1.1] bioisosteres and multi-functionalized cyclobutanes in a straightforward and atom-economical manner. Here, we report a solvent-dependent divergent cyclization of BCBs that provides highly diastereospecific decorated cyclobutanes and oxygen-containing bicyclo[3.1.1]heptanes (BCHeps), which serve as bioisosteres of meta-substituted arenes. Additionally, an unprecedented 1,2-difunctionalization reaction mode for BCBs was explored, thus expanding the chemical space of arene bioisosteres and highly functionalized cyclobutanes.
Collapse
Affiliation(s)
- Fuhao Zhang
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Alessia Petti
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Debanjan Rana
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
8
|
Xiao C, Shan JR, Liu WD, Gao X, Dai J, Wang Z, Wang W, Houk KN, Zhao J. Stereoselective Radical Acylfluoroalkylation of Bicyclobutanes via N-Heterocyclic Carbene Catalysis. Angew Chem Int Ed Engl 2025; 64:e202416781. [PMID: 39539209 DOI: 10.1002/anie.202416781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Cyclobutanes are prominent structural components in natural products and drug molecules. With the advent of strain-release-driven synthesis, ring-opening reactions of bicyclo[1.1.0]butanes (BCBs) provide an attractive pathway to construct these three-dimensional structures. However, the stereoselective difunctionalization of the central C-C σ-bonds remains challenging. Reported herein is a covalent-based organocatalytic strategy that exploits radical NHC catalysis to achieve diastereoselective acylfluoroalkylation of BCBs under mild conditions. The Breslow enolate acts as a single electron donor and provides an NHC-bound ketyl radical with appropriate steric hindrance, which effectively distinguishes between the two faces of transient cyclobutyl radicals. This operationally simple method tolerates various fluoroalkyl reagents and common functional groups, providing a straightforward access to polysubstituted cyclobutanes (75 examples, up to >19 : 1 d.r.). The combined experimental and theoretical investigations of this organocatalytic system confirm the formation of the NHC-derived radical and provide an understanding of how stereoselective radical-radical coupling occurs.
Collapse
Affiliation(s)
- Chuyu Xiao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jing-Ran Shan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wen-Deng Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xingyuan Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingwei Dai
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zuwei Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wentao Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
9
|
He HX, Wu F, Zhang X, Feng JJ. Ring Expansion toward Fused Diazabicyclo[3.1.1]heptanes through Lewis Acid Catalyzed Highly Selective C-C/C-N Bond Cross-Exchange Reaction between Bicyclobutanes and Diaziridines. Angew Chem Int Ed Engl 2025; 64:e202416741. [PMID: 39532666 DOI: 10.1002/anie.202416741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
The synthesis of bicyclic scaffolds has garnered considerable interest in drug discovery because of their ability to mimic benzene bioisosteres. Herein, we introduce a new approach that utilizes a Lewis acid (Sc(OTf)3)-catalyzed σ-bond cross-exchange reaction between the C-C bond of bicyclobutanes and the C-N bond of diaziridines to produce multifunctionalized and medicinally interesting azabicyclo[3.1.1]heptane derivatives. The reaction proceeds well with different bicyclobutanes and a broad range of aryl- as well as alkenyl-, but also alkyl-substituted diaziridines (up to 98 % yield). Conducting a scale-up experiment and exploring the synthetic transformations of the cycloadducts emphasized the practical application of the synthesis. Furthermore, a zinc-based chiral Lewis acid catalytic system was developed for the enantioselective version of this reaction (up to 96 % ee).
Collapse
Affiliation(s)
- Heng-Xian He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, 225002, Yangzhou, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| |
Collapse
|
10
|
Sun YW, Zhao JH, Yan XY, Ji CL, Feng H, Gao DW. Asymmetric synthesis of atropisomers featuring cyclobutane boronic esters facilitated by ring-strained B-ate complexes. Nat Commun 2024; 15:10810. [PMID: 39738011 DOI: 10.1038/s41467-024-55161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
The strain-release-driven reactions of bicyclo[1.1.0]butanes (BCBs) have received significant attention from chemists. Notably, 1,2-migratory reactions enabled by BCB-derived B-ate complexes effectively complement the reactions initiated by common BCBs. The desired products are particularly valuable for late-stage transformations due to the presence of the C-B bond. However, asymmetric reactions mediated by BCB-derived boronate complexes have progressed slowly. In this study, we develop an asymmetric synthesis of atropisomers featuring cis-cyclobutane boronic esters facilitated by 1,2-carbon or boron migration of ring-strained B-ate complexes, achieving high enantioselectivity. The reaction is compatible with various aryl, alkenyl, alkyl boronic esters and B2pin2, and shows good compatibility with natural product derivatives. Mechanistic studies are conducted to understand stereoselective control in the dynamic kinetic asymmetric transformations (DYKATs). The target products can undergo a series of transformations, further demonstrating the practicality of this methodology.
Collapse
Affiliation(s)
- Yu-Wen Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jia-Hui Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xin-Yu Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chong-Lei Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - De-Wei Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
11
|
Yang C, Hu M, Hu C, Mi X, Luo S. Visible Light Promoted de Mayo Type Reaction of Bicyclo[1.1.0]butanes. Chemistry 2024; 30:e202402965. [PMID: 39174490 DOI: 10.1002/chem.202402965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
We reported herein a visible light mediated de Mayo-type reaction between 1,3-diketones and BCB. The reaction proceeds through a [2π+2σ] cycloaddition and retro-aldol sequence, producing cis-difunctionalized cyclobutanes in high yields with good regio- and diastereoselectivity.
Collapse
Affiliation(s)
- Chunming Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Minmin Hu
- College of Chemistry, Beijing Normal University, Beijing, 1000875, China
| | - Chaoqin Hu
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xueling Mi
- College of Chemistry, Beijing Normal University, Beijing, 1000875, China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Yang XC, Wu F, Wu WB, Zhang X, Feng JJ. Enantioselective dearomative formal (3+3) cycloadditions of bicyclobutanes with aromatic azomethine imines: access to fused 2,3-diazabicyclo[3.1.1]heptanes. Chem Sci 2024; 15:19488-19495. [PMID: 39568897 PMCID: PMC11575549 DOI: 10.1039/d4sc06334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
Although cycloadditions of bicyclobutanes (BCBs) have emerged as a reliable approach for producing bicyclo[n.1.1]alkanes such as azabicyclo[3.1.1]heptanes (aza-BCHeps), serving as saturated bioisosteres of arenes, the catalytic asymmetric variant remains underdeveloped and presents challenges. Herein, we developed several Lewis acid-catalyzed systems for the challenging dearomative (3+3) cycloaddition of BCBs and aromatic azomethine imines. This resulted in fused 2,3-diazabicyclo[3.1.1]heptanes, introducing a novel chemical space for the caged hydrocarbons. Moreover, an asymmetric Lewis acid catalysis strategy was devised for the (3+3) cycloadditions of BCBs and N-iminoisoquinolinium ylides, forming chiral diaza-BCHeps with up to 99% yield and 97% ee. This study showcases a unique instance of asymmetric (3+3) cycloaddition facilitated by the creation of a chiral environment via the activation of BCBs.
Collapse
Affiliation(s)
- Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University Yangzhou 225002 P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
13
|
Wu F, Wu WB, Xiao Y, Li Z, Tang L, He HX, Yang XC, Wang JJ, Cai Y, Xu TT, Tao JH, Wang G, Feng JJ. Zinc-Catalyzed Enantioselective Formal (3+2) Cycloadditions of Bicyclobutanes with Imines: Catalytic Asymmetric Synthesis of Azabicyclo[2.1.1]hexanes. Angew Chem Int Ed Engl 2024; 63:e202406548. [PMID: 39218783 DOI: 10.1002/anie.202406548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
The cycloaddition reaction involving bicyclo[1.1.0]butanes (BCBs) offers a versatile and efficient synthetic platform for producing C(sp3)-rich rigid bridged ring scaffolds, which act as phenyl bioisosteres. However, there is a scarcity of catalytic asymmetric cycloadditions of BCBs to fulfill the need for enantioenriched saturated bicycles in drug design and development. In this study, an efficient synthesis of valuable azabicyclo[2.1.1]hexanes (aza-BCHs) by an enantioselective zinc-catalyzed (3+2) cycloadditions of BCBs with imines is reported. The reaction proceeds effectively with a novel type of BCB that incorporates a 2-acyl imidazole group and a diverse array of alkynyl- and aryl-substituted imines. The target aza-BCHs, which consist of α-chiral amine fragments and two quaternary carbon centers, are efficiently synthesized with up to 94 % and 96.5:3.5 er under mild conditions. Experimental and computational studies reveal that the reaction follows a concerted nucleophilic ring-opening mechanism of BCBs with imines. This mechanism is distinct from previous studies on Lewis acid-catalyzed cycloadditions of BCBs.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, 410205, P. R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhenxing Li
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Heng-Xian He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Ji-Jie Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yuanlin Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jia-Hao Tao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
14
|
Shen HC, Aggarwal VK. Merging Organocatalysis with 1,2-Boronate Rearrangement: A Lewis Base-Catalyzed Asymmetric Multicomponent Reaction. J Am Chem Soc 2024; 146:27305-27311. [PMID: 39316456 PMCID: PMC11467900 DOI: 10.1021/jacs.4c11113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Catalytic asymmetric multicomponent 1,2-boronate rearrangements provide a practical approach for synthesizing highly valuable enantioenriched boronic esters. When applied to alkenyl or heteroaryl boronates, these reactions have relied mainly on transition-metal catalysis. Herein, we present an organocatalytic, Lewis base-catalyzed asymmetric multicomponent 1,2-boronate rearrangement, involving indoles, boronic esters, and Morita-Baylis-Hillman carbonates, leading to enantioenriched, highly substituted indole and indoline derivatives. Using cinchona alkaloid-based catalysts, high selectivity has been achieved, enabling expansion of the chemical space around pharmaceutically relevant indole and indoline derivatives.
Collapse
Affiliation(s)
- Hong-Cheng Shen
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
| |
Collapse
|
15
|
Wu WB, Xu B, Yang XC, Wu F, He HX, Zhang X, Feng JJ. Enantioselective formal (3 + 3) cycloaddition of bicyclobutanes with nitrones enabled by asymmetric Lewis acid catalysis. Nat Commun 2024; 15:8005. [PMID: 39266575 PMCID: PMC11393060 DOI: 10.1038/s41467-024-52419-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
The absence of catalytic asymmetric methods for synthesizing chiral (hetero)bicyclo[n.1.1]alkanes has hindered their application in new drug discovery. Here we demonstrate the achievability of an asymmetric polar cycloaddition of bicyclo[1.1.0]butane using a chiral Lewis acid catalyst and a bidentate chelating bicyclo[1.1.0]butane substrate, as exemplified by the current enantioselective formal (3 + 3) cycloaddition of bicyclo[1.1.0]butanes with nitrones. In addition to the diverse bicyclo[1.1.0]butanes incorporating an acyl imidazole group or an acyl pyrazole moiety, a wide array of nitrones are compatible with this Lewis acid catalysis, successfully assembling two congested quaternary carbon centers and a chiral aza-trisubstituted carbon center in the pharmaceutically important hetero-bicyclo[3.1.1]heptane product with up to 99% yield and >99% ee.
Collapse
Affiliation(s)
- Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, P. R. China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, P. R. China
| | - Bing Xu
- Department of Chemistry, Fudan University, Shanghai, P.R. China
| | - Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Heng-Xian He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China.
| |
Collapse
|
16
|
Tran MK, Ready JM. Chemoselective and Stereoselective Allylation of Bis(alkenyl)boronates. Angew Chem Int Ed Engl 2024; 63:e202407824. [PMID: 38781007 PMCID: PMC11347121 DOI: 10.1002/anie.202407824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Bis(alkenyl)boronates react with optically active Ir(π-allyl) species in a process that involves allylation of the more substituted olefin and 1,2-metalate shift of the less substituted olefin. The method constructs valuable enantioenriched tertiary allylic boronic esters with high chemoselectivity, enantioselectivity and diastereoselectivity. Allylic functionalization reactions transform the 1,3-stereodiad to 1,5- and 1,6-stereochemical relationships.
Collapse
Affiliation(s)
- Minh-Khoa Tran
- Department of Biochemistry, Division of Chemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, TX 75390-0938 (USA)
| | - Joseph M. Ready
- Department of Biochemistry, Division of Chemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, TX 75390-0938 (USA)
| |
Collapse
|
17
|
Zhou JL, Xiao Y, He L, Gao XY, Yang XC, Wu WB, Wang G, Zhang J, Feng JJ. Palladium-Catalyzed Ligand-Controlled Switchable Hetero-(5 + 3)/Enantioselective [2σ+2σ] Cycloadditions of Bicyclobutanes with Vinyl Oxiranes. J Am Chem Soc 2024; 146:19621-19628. [PMID: 38739092 DOI: 10.1021/jacs.4c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
For nearly 60 years, significant research efforts have been focused on developing strategies for the cycloaddition of bicyclobutanes (BCBs). However, higher-order cycloaddition and catalytic asymmetric cycloaddition of BCBs have been long-standing formidable challenges. Here, we report Pd-catalyzed ligand-controlled, tunable cycloadditions for the divergent synthesis of bridged bicyclic frameworks. The dppb ligand facilitates the formal (5+3) cycloaddition of BCBs and vinyl oxiranes, yielding valuable eight-membered ethers with bridged bicyclic scaffolds in 100% regioselectivity. The Cy-DPEphos ligand promotes selective hetero-[2σ+2σ] cycloadditions to access pharmacologically important 2-oxabicyclo[3.1.1]heptane (O-BCHeps). Furthermore, the corresponding catalytic asymmetric synthesis of O-BCHeps with 94-99% ee has been achieved using chiral (S)-DTBM-Segphos, representing the first catalytic asymmetric cross-dimerization of two strained rings. The obtained O-BCHeps are promising bioisosteres for ortho-substituted benzenes.
Collapse
Affiliation(s)
- Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Linke He
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin-Yu Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, Shanghai 200438, P.R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
18
|
Hanania N, Eghbarieh N, Masarwa A. PolyBorylated Alkenes as Energy-Transfer Reactive Groups: Access to Multi-Borylated Cyclobutanes Combined with Hydrogen Atom Transfer Event. Angew Chem Int Ed Engl 2024; 63:e202405898. [PMID: 38603554 DOI: 10.1002/anie.202405898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
While polyborylated alkenes are being recognized for their elevated status as highly valuable reagents in modern organic synthesis, allowing efficient access to a diverse array of transformations, including the formation of C-C and C-heteroatom bonds, their potential as energy-transfer reactive groups has remained unexplored. Yet, this potential holds the key to generating elusive polyborylated biradical species, which can be captured by olefins, thereby leading to the construction of new highly-borylated scaffolds. Herein, we report a designed energy-transfer strategy for photosensitized [2+2]-cycloadditions of poly-borylated alkenes with various olefins enabling the regioselective synthesis of diverse poly-borylated cyclobutane motifs, including the 1,1-di-, 1,1,2-tri-, and 1,1,2,2-tetra-borylated cyclobutanes. In fact, these compounds belong to a family that presently lacks efficient synthetic pathways. Interestingly, when α-methylstyrene was used, the reaction involves an interesting 1,5-hydrogen atom transfer (HAT). Mechanistic deuterium-labeling studies have provided insight into the outcome of 1,5-hydrogen atom transfer process. In addition, the polyborylated cyclobutanes are then demonstrated to be useful in selective oxidation processes resulting in the formation of cyclobutanones and γ-lactones.
Collapse
Affiliation(s)
- Nicole Hanania
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Nadim Eghbarieh
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Ahmad Masarwa
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
19
|
Shen HC, Wang ZS, Noble A, Aggarwal VK. Simultaneous Stereoinvertive and Stereoselective C(sp 3)-C(sp 3) Cross-Coupling of Boronic Esters and Allylic Carbonates. J Am Chem Soc 2024; 146:13719-13726. [PMID: 38721780 PMCID: PMC11117407 DOI: 10.1021/jacs.4c03686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
With increasing interest in constructing more three-dimensional entities, there has been growing interest in cross-coupling reactions that forge C(sp3)-C(sp3) bonds, which leads to additional challenges as it is not just a more difficult bond to construct but issues of stereocontrol also arise. Herein, we report the stereocontrolled cross-coupling of enantioenriched boronic esters with racemic allylic carbonates enabled by iridium catalysis, leading to the formation of C(sp3)-C(sp3) bonds with single or vicinal stereogenic centers. The method shows broad substrate scope, enabling primary, secondary, and even tertiary boronic esters to be employed, and can be used to prepare any of the four possible stereoisomers of a coupled product with vicinal chiral centers. The new method, which combines the simultaneous enantiospecific reaction of a chiral nucleophile with the enantioselective reaction of a chiral electrophile in a single process, offers a solution for stereodivergent cross-coupling of two C(sp3) fragments.
Collapse
Affiliation(s)
| | | | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
20
|
Zhang J, Su JY, Zheng H, Li H, Deng WP. Eu(OTf) 3 -Catalyzed Formal Dipolar [4π+2σ] Cycloaddition of Bicyclo-[1.1.0]butanes with Nitrones: Access to Polysubstituted 2-Oxa-3-azabicyclo[3.1.1]heptanes. Angew Chem Int Ed Engl 2024; 63:e202318476. [PMID: 38288790 DOI: 10.1002/anie.202318476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 02/21/2024]
Abstract
Herein, we have synthesized multifunctionalized 2-oxa-3-azabicyclo[3.1.1]heptanes, which are considered potential bioisosteres for meta-substituted arenes, through Eu(OTf)3 -catalyzed formal dipolar [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes with nitrones. This methodology represents the initial instance of fabricating bicyclo[3.1.1]heptanes adorned with multiple heteroatoms. The protocol exhibits both mild reaction conditions and a good tolerance for various functional groups. Computational density functional theory calculations support that the reaction mechanism likely involves a nucleophilic addition of nitrones to bicyclo[1.1.0]butanes, succeeded by an intramolecular cyclization. The synthetic utility of this novel protocol has been demonstrated in the concise synthesis of the analogue of Rupatadine.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Jia-Yi Su
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei-Ping Deng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| |
Collapse
|
21
|
Fan JH, Yuan J, Xia PF, Zhou J, Zhong LJ, Huang PF, Liu Y, Tang KW, Li JH. Photoredox-Catalyzed Alkylarylation of N-Aryl Bicyclobutyl Amides with α-Carbonyl Alkyl Bromides: Access to 3-Spirocyclobutyl Oxindoles. Org Lett 2024; 26:2073-2078. [PMID: 38446422 DOI: 10.1021/acs.orglett.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A visible-light-induced radical alkylarylation of N-aryl bicyclobutyl amides with α-carbonyl alkyl bromides for the synthesis of functionalized 3-spirocyclobutyl oxindoles is described in which β-selective radical addition of the alkyl radical to N-aryl bicyclobutyl amides forms a key radical intermediate followed by interception with intrinsic arene functional group. This approach can be applicable to a wide range of α-carbonyl alkyl bromides, including primary, secondary, and tertiary α-bromoalkyl esters, ketones, nitriles, and nitro compounds.
Collapse
Affiliation(s)
- Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jing Yuan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Peng-Fei Xia
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jiao Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
22
|
Das K, Pedada A, Singha T, Hari DP. Strain-enabled radical spirocyclization cascades: rapid access to spirocyclobutyl lactones and - lactams. Chem Sci 2024; 15:3182-3191. [PMID: 38425517 PMCID: PMC10901517 DOI: 10.1039/d3sc05700c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024] Open
Abstract
Spirocyclobutane derivatives have gained significant attention in drug discovery programs due to their broad spectrum of biological activities and clinical applications. Ring-strain in organic molecules is a powerful tool to promote reactivity by releasing strain energy, allowing the construction of complex molecules selectively and efficiently. Herein, we report the first strain-enabled radical spirocyclization cascades for the synthesis of functionalized spirocyclobutyl lactones and - lactams, which are finding increasing applications in medicinal chemistry. The reaction of interelement compounds with bicyclobutane (BCB) allyl esters and - amides proceeds with high chemoselectivity under simple, catalyst-free conditions using blue light irradiation. The reaction has been successfully extended to synthesize bis-spirocycles. To introduce a more diverse set of functional groups, we have developed a dual photoredox/nickel catalytic system capable of mediating the carbosulfonylation of BCB allyl amides. The reaction shows broad applicability across various (hetero)aryl halides, aryl sulfinates, and BCB allyl amides, operates under mild conditions and demonstrates excellent functional group compatibility. The functional groups introduced during the cascade reactions served as versatile handles for further synthetic elaboration.
Collapse
Affiliation(s)
- Kousik Das
- Department of Organic Chemistry, Indian Institute of Science Bangalore India 560012
| | - Abhilash Pedada
- Department of Organic Chemistry, Indian Institute of Science Bangalore India 560012
| | - Tushar Singha
- Department of Organic Chemistry, Indian Institute of Science Bangalore India 560012
| | - Durga Prasad Hari
- Department of Organic Chemistry, Indian Institute of Science Bangalore India 560012
| |
Collapse
|
23
|
Dutta S, Lu YL, Erchinger JE, Shao H, Studer E, Schäfer F, Wang H, Rana D, Daniliuc CG, Houk KN, Glorius F. Double Strain-Release [2π+2σ]-Photocycloaddition. J Am Chem Soc 2024; 146:5232-5241. [PMID: 38350439 DOI: 10.1021/jacs.3c11563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
In pursuit of potent pharmaceutical candidates and to further improve their chemical traits, small ring systems can serve as a potential starting point. Small ring units have the additional merit of loaded strain at their core, making them suitable reactants as they can capitalize on this intrinsic driving force. With the introduction of cyclobutenone as a strained precursor to ketene, the photocycloaddition with another strained unit, bicyclo[1.1.0]butane (BCB), enables the reactivity of both π-units in the transient ketene. This double strain-release driven [2π+2σ]-photocycloaddition promotes the synthesis of diverse heterobicyclo[2.1.1]hexane units, a pharmaceutically relevant bioisostere. The effective reactivity under catalyst-free conditions with a high functional group tolerance defines its synthetic utility. Experimental mechanistic studies and density functional theory (DFT) calculations suggest that the [2π+2σ]-photocycloaddition takes place via a triplet mechanism.
Collapse
Affiliation(s)
- Subhabrata Dutta
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Yi-Lin Lu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Johannes E Erchinger
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Huiling Shao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Emanuel Studer
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Felix Schäfer
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Huamin Wang
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Debanjan Rana
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
24
|
Chen D, Zhang M, Zhang D, Zhang Z, Shao X, Xu X, Li Z, Yang WL. Iridium/Acid Dual-Catalyzed Enantioselective Aza-ene-type Allylic Alkylation of Nitro Ketene Aminals with Racemic Allylic Alcohols. Org Lett 2024. [PMID: 38179928 DOI: 10.1021/acs.orglett.3c03939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The enantioselective allylic alkylation of nitro ketene aminals with racemic allylic alcohols was realized by iridium/acid dual catalysis. An allyl group was installed on the α-position of nitro ketene aminals in a branched-selective manner in high efficiency with excellent enantioselectivities (93-99% ee). The protocol was applied to the late-stage modification of neonicotinoid insecticides, which directly furnished a novel neonicotinoid analogue with good insecticidal activity against Aphis craccivora (LC50 = 6.40 mg/L). On the basis of the control experiment, an aza-ene-type allylic alkylation reaction mechanism was proposed.
Collapse
Affiliation(s)
- Diancong Chen
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Man Zhang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Dongxu Zhang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Ziqi Zhang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
25
|
Jiang XM, Ji CL, Ge JF, Zhao JH, Zhu XY, Gao DW. Asymmetric Synthesis of Chiral 1,2-Bis(Boronic) Esters Featuring Acyclic, Non-Adjacent 1,3-Stereocenters. Angew Chem Int Ed Engl 2023:e202318441. [PMID: 38098269 DOI: 10.1002/anie.202318441] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 12/30/2023]
Abstract
The construction of acyclic, non-adjacent 1,3-stereogenic centers, prevalent motifs in drugs and bioactive molecules, has been a long-standing synthetic challenge due to acyclic nucleophiles being distant from the chiral environment. In this study, we successfully synthesized highly valuable 1,2-bis(boronic) esters featuring acyclic and nonadjacent 1,3-stereocenters. Notably, this reaction selectively produces migratory coupling products rather than alternative deborylative allylation or direct allylation byproducts. This approach introduces a new activation mode for selective transformations of gem-diborylmethane in asymmetric catalysis. Additionally, we found that other gem-diborylalkanes, previously challenging due to steric hindrance, also successfully participated in this reaction. The incorporation of 1,2-bis(boryl)alkenes facilitated the diversification of the alkenyl and two boron moieties in our target compounds, thereby enabling access to a broad array of versatile molecules. DFT calculations were performed to elucidate the reaction mechanism and shed light on the factors responsible for the observed excellent enantioselectivity and diastereoselectivity. These were determined to arise from ligand-substrate steric repulsions in the syn-addition transition state.
Collapse
Affiliation(s)
- Xia-Min Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Chong-Lei Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jian-Fei Ge
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jia-Hui Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xin-Yuan Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - De-Wei Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
26
|
Xiao Y, Xu TT, Zhou JL, Wu F, Tang L, Liu RY, Wu WB, Feng JJ. Photochemical α-selective radical ring-opening reactions of 1,3-disubstituted acyl bicyclobutanes with alkyl halides: modular access to functionalized cyclobutenes. Chem Sci 2023; 14:13060-13066. [PMID: 38023515 PMCID: PMC10664698 DOI: 10.1039/d3sc04457b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Although ring-opening reactions of bicyclobutanes bearing electron-withdrawing groups, typically with β-selectivity, have evolved as a powerful platform for synthesis of cyclobutanes, their application in the synthesis of cyclobutenes remains underdeveloped. Here, a novel visible light induced α-selective radical ring-opening reaction of 1,3-disubstituted acyl bicyclobutanes with alkyl radical precursors for the synthesis of functionalized cyclobutenes is described. In particular, primary, secondary, and tertiary alkyl halides are all suitable substrates for this photocatalytic transformation, providing ready access to cyclobutenes with a single all-carbon quaternary center, or with two contiguous centers under mild reaction conditions.
Collapse
Affiliation(s)
- Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Ruo-Yi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
27
|
Wang H, Erchinger JE, Lenz M, Dutta S, Daniliuc CG, Glorius F. syn-Selective Difunctionalization of Bicyclobutanes Enabled by Photoredox-Mediated C-S σ-Bond Scission. J Am Chem Soc 2023; 145:23771-23780. [PMID: 37852210 DOI: 10.1021/jacs.3c08512] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Given the importance of cyclic frameworks in molecular scaffolds and drug discovery, it is intriguing to precisely forge and manipulate ring systems in synthetic chemistry. In this field, the intermolecular synthesis of densely substituted cyclobutanes with precise diastereocontrol under simple reaction conditions remains a challenge. Herein, a photoredox strategy for the difunctionalization of bicyclo[1.1.0]butanes (BCBs) under high regio- and syn-selectivity is disclosed. C-S σ-bond cleavage of partially unsaturated sulfur-containing bifunctional reagents in an overall strain-release-driven process enables the thio-alkynylation, -alkenylation, and -allylation of BCBs under mild conditions and demonstrates the generality of this protocol. Mechanistic studies suggest that the intermediacy of cyclic distonic radical cations might be key for the efficient scission of C-S σ-bonds and the origin of diastereoselectivity.
Collapse
Affiliation(s)
- Huamin Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Johannes E Erchinger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Madina Lenz
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|