1
|
Millward F, Zysman-Colman E. Mechanometallaphotoredox Catalysis: Utilizing Increased Throughput Mechanochemistry to Develop Solvent-Minimized Aryl Amination and C(sp2)-C(sp3) Cross-Coupling Reactions with Increased Tolerance to Aerobic Conditions. J Am Chem Soc 2025. [PMID: 40401648 DOI: 10.1021/jacs.5c05503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Photocatalysis as a tool used in organic synthesis has predominantly relied on the use of solvents, be it under homogeneous or heterogeneous conditions. In particular, metallaphotoredox catalysis reactions commonly use toxic organic solvents such as DMA and DMF. Herein, we demonstrate how mechanophotocatalysis, the synergistic union of mechanochemistry and photocatalysis, is compatible with this class of dual catalysis reactions involving both photocatalyst and nickel(II) cocatalysts. Using ball milling, these mechanistically complex reactions can be conducted in the absence of a bulk solvent and under air, affording high-yielding aryl aminations and C(sp2)-C(sp3) cross-couplings with alkyl carboxylic acids, alkyl trifluoroborate salts, and alkyl bromides. These advances are facilitated by the introduction of a novel reaction vessel design for conducting four mechanophotocatalysis reactions simultaneously. This work highlights the promise of solvent-minimized photocatalysis reactions, demonstrating that in these examples bulk solvent is redundant, thus significantly reducing this waste stream. Through time-resolved photoluminescence studies, we observed that the excited states of five different photocatalysts were quenched by oxygen more significantly in solution than in the solid state, providing evidence for the origin of the increased tolerance to aerobic conditions that these mechanophotocatalysis reactions experience.
Collapse
Affiliation(s)
- Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K
| |
Collapse
|
2
|
Wang RJ, Wu YL, Li YK, Chen WC, Lian ZX, Zheng PY, Shen KJ, Zhou L, Wang Z, Liu XL, Bi H, Wang Y, Huo Y. Competitive Spatial Donor/Acceptor Interaction toward Efficient Blue Thermally Activated Delayed Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40390376 DOI: 10.1021/acsami.5c04911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Through-space charge-transfer (TSCT) thermally activated delayed fluorescence (TADF) emitters show great promise for blue organic light-emitting diodes (OLEDs) but face challenges such as low efficiency and limited color purity. In this study, we designed and synthesized three asymmetric TSCT-TADF materials─CzTPT-PA, CzTPT-CIA, and CzTPT-IA─based on a dual donor/acceptor (D1/A/D2) architecture. The molecular design strategically leverages dominant donor-acceptor interactions and auxiliary coupling effects within a unique sandwich-like π-stacked structure, enabling precise control over excited-state properties. This design achieves blue-shifted emission while maintaining high photoluminescence quantum yields, addressing efficiency loss and concentration quenching through spatially confined interactions and locked molecular conformations. The resulting OLEDs exhibited blue electroluminescence with color coordinates of (0.16, 0.27), (0.15, 0.18), and (0.15, 0.09) for CzTPT-PA, CzTPT-CIA, and CzTPT-IA, respectively, alongside maximum external quantum efficiencies of 25.0%, 15.5%, and 9.9%. Notably, the CzTPT-IA-based device achieved deep-blue emission with high color purity, representing a significant advancement in the field. This work introduces an effective design strategy for TSCT-TADF emitters, paving the way for high-performance, blue OLEDs with enhanced efficiency and color precision.
Collapse
Affiliation(s)
- Ru-Jia Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yu-Lan Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yu-Kang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Jihua Laboratory, 28 Huandao South Road, Foshan 528200, P. R. China
| | - Wen-Cheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zi-Xian Lian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Pei-Yan Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Kai-Jun Shen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Lu Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhiheng Wang
- Jihua Laboratory, 28 Huandao South Road, Foshan 528200, P. R. China
| | - Xiao-Long Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Hai Bi
- Jihua Laboratory, 28 Huandao South Road, Foshan 528200, P. R. China
| | - Yue Wang
- Jihua Laboratory, 28 Huandao South Road, Foshan 528200, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Analytical & Testing Center, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
3
|
Banerjee D, Chibh S, Tiwari OS, Mirón GD, Monti M, Yakir HR, Pawar S, Fixler D, Shimon LJW, Gazit E, Hassanali A. Crystallization of L-Cysteine in Heavy Water Induces Intrinsic Fluorescence. Angew Chem Int Ed Engl 2025:e202505331. [PMID: 40366012 DOI: 10.1002/anie.202505331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/15/2025]
Abstract
Developing noninvasive techniques that can probe how solvents modulate the nucleation pathways of bioorganic molecules in solution remains an active and open area of research. Herein, we investigate the crystallization of the amino acid L-Cysteine and show that both the structure of the crystal and its intrinsic fluorescence can be drastically altered by the solvent. Crystals formed in heavy water exhibit markedly different intermolecular packing as well as strikingly different monomer conformations compared to those in light water. Remarkably, these differences in the supramolecular packing result in significantly elevated intrinsic fluorescence in the crystal that is formed in heavy water. Using a combination of experimental techniques and advanced electronic structure approaches, we elucidate the molecular interactions within the crystals that govern both the electronic origins and the intensity of their emission. These findings demonstrate how tuning the solvent by changing its isotope leads to the emergence of design principles for new intrinsic fluorophores that could serve as novel sensing probes for biomedical applications.
Collapse
Affiliation(s)
- Debarshi Banerjee
- Molecular and Statistical Biophysics, Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, Trieste, 34136, Italy
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste, 34151, Italy
| | - Sonika Chibh
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gonzalo Díaz Mirón
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste, 34151, Italy
| | - Marta Monti
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste, 34151, Italy
| | - Hadar R Yakir
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Shweta Pawar
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ali Hassanali
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste, 34151, Italy
| |
Collapse
|
4
|
Wu J, Guo F, Yi C, Yang R, Lei X, Xia Z. Photosensitized Gold-Catalyzed Cross-Couplings of Aryl Bromides. J Am Chem Soc 2025; 147:5839-5850. [PMID: 39916546 DOI: 10.1021/jacs.4c14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Recently, ligand-promoted Au(I)/Au(III)-catalyzed cross-coupling reactions with aryl iodides have garnered considerable attention. Here, we report the first visible-light-driven gold-catalyzed cross-couplings of challenging aryl bromides. In the presence of a (P, N)-gold(I) catalyst and an acridinium photocatalyst under blue LED irradiation, C-O coupling of aryl bromides with carboxylic acids was achieved, and soon it was found that this photoinduced gold-catalyzed cross-coupling of aryl bromides was appliable for other C-C, C-N, and C-S bond formation. Experimental and computational studies suggest that this visible-light-driven gold-catalyzed cross-couplings of aryl bromides involves two discrete photoinduced energy transfer (EnT) events: first, energy transfer (EnT) from a photosensitizer produces an excited-state gold(I) complex that allows the bottleneck oxidative addition of aryl bromides to form an aryl Au(III) complex and second, the reductive elimination of aryl-Au(III) complex to regenerate Au(I). Collectively, the new synergistic catalytic method developed here highlights the tremendous potential of photochemical gold catalysis via excited-state organogold complexes, as well as its potential to facilitate drug discovery due to the biocompatibility and mildness of the reaction conditions.
Collapse
Affiliation(s)
- Jiawen Wu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering; Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518017, China
| | - Rongjie Yang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering; Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhonghua Xia
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Feng C, Liu Y, Xiang Z, Cheng X, Wei S, Liu X, Deng Q, Fu Q, Zhang Z. An Organic EnT Photocatalyst 4CzMeBN and the Application in the Synthesis of cis-Fused Azetidines. Chemistry 2025; 31:e202403881. [PMID: 39628344 DOI: 10.1002/chem.202403881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Indexed: 12/12/2024]
Abstract
A powerful EnT photocatalyst 4CzMeBN has been developed and utilized in the synthesis of cis-fused azetidines via dearomative [2+2] cycloaddition under visible light. The photocatalyst 4CzMeBN is a donor-acceptor cyanoarene and features high triplet state energy and long lifetime of triplet state, which would be an alternative to widely used EnT photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6. The photochemical [2+2] cycloaddition provides a facile method to synthesize valuable dihydroisoquinolone-fused azetidines with high efficiency.
Collapse
Affiliation(s)
- Chuan Feng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yilei Liu
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhihui Xiang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiong Cheng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Siping Wei
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Xinran Liu
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qinmin Deng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qiang Fu
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhijie Zhang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646000, China
| |
Collapse
|
6
|
Liu Z, Meng L, Jiang Y, Li C, Gu H, Zhao K, Zhang J, Meng H, Ren Y. Hyperconjugation Engineering of π-Extended Azaphosphinines for Designing Tunable Thermally Activated Delayed Fluorescence Emitters. J Am Chem Soc 2025; 147:3650-3661. [PMID: 39833130 DOI: 10.1021/jacs.4c15651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Implanting heteroatoms into organic π-conjugated molecules (OCMS) offered a great opportunity to fine-tune the chemical structures and optoelectronic properties. This work describes a new family of 1,4-azaphosphinines with extended σ-π hyperconjugations. The photophysical studies revealed that azaphosphinines exhibited narrow-band thermally activated delayed fluorescence (TADF) ( full width at half-maximum: 26-40 nm). According to the orbital localization analysis and natural bond orbital analysis, the effective σ*-π* hyperconjugation is believed to induce the multiple-resonance (MR) TADF, which is distinct from the p-π conjugation-induced MR-TADF in BN systems. Although having the large ΔES1-T1s (>3.0 ev), the study suggested that σ*-π hyperconjugation endowed the system with the structural vibration favorable for the spin-vibronic-assisted RISC. Having the tunable p-centers (lp, O, S, Se, and Me+), azaphosphinines showed a fine-tuned TADF. Generally, azaphosphinines with strong σ*-π* hyperconjugations showed small ΔES1-T1s, efficient RISCs, and high PLQYs. Leveraging on the efficient hyperconjugations, TADF emission of the system spanned from UV-blue to green. Particularly, extended azaphosphinines exhibited the high photoluminescence quantum yields (74% in toluene and 92% in the 10% doped PMMA). As a proof of concept, two azaphosphinines with a PO center were applied as the light-emitting materials in organic lighting-emitting diodes. The devices showed the narrow-band UV- and deep-blue emission with EQE as high as 10.3%. The current study offered us a new strategy, namely, σ-π hyperconjugation-induced MR-TADF, for designing OCMs with tunable light-emitting properties.
Collapse
Affiliation(s)
- Zhaoxin Liu
- School of physical science and technology, ShanghaiTech University, Shanghai 201210, China
| | - Lingqiang Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Yanrong Jiang
- School of physical science and technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao Li
- School of physical science and technology, ShanghaiTech University, Shanghai 201210, China
| | - Huanchao Gu
- School of physical science and technology, ShanghaiTech University, Shanghai 201210, China
| | - Kexuan Zhao
- School of physical science and technology, ShanghaiTech University, Shanghai 201210, China
| | - Ji Zhang
- School of physical science and technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Yi Ren
- School of physical science and technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Li X, Wei SY, Zhang DH, Hu JX, Hou CL, Lin TT, Chen XL, Lu CZ. Silver(I)-iodine cluster with efficient thermally activated delayed fluorescence and suppressed concentration quenching. Dalton Trans 2025; 54:1703-1709. [PMID: 39635844 DOI: 10.1039/d4dt02855d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Reports on highly efficient silver(I)-based thermally activated delayed fluorescence (TADF) materials are scarce due to challenges in molecular design, although these materials show great potential for photoluminescent and electroluminescent applications. Herein, a silver(I)-iodine cluster, namely Ag2I2(dppb-Ac)2, is synthesized by employing a donor-acceptor (D-A) type bisphosphine ligand. Due to the introduction of electron-donating iodine ligands, Ag2I2(dppb-Ac)2 exhibits an emissive singlet state characterized by (metal + iodine)-to-ligand charge transfer and intra-ligand charge transfer transitions, as well as a small singlet-triplet energy gap. Additionally, its non-planar, highly distorted D-A structure efficiently separates adjacent molecules in aggregated state. As a result, Ag2I2(dppb-Ac)2 exhibits efficient TADF and suppressed luminescence concentration quenching in thin films. For instance, the 10 wt%-doped PMMA film and neat film of Ag2I2(dppb-Ac)2 display bright bluish-green and green emission, peaking at 506 and 532 nm, with photoluminescence quantum yields (PLQYs) of 70% and 52%, and lifetimes of 18.9 and 7.9 μs, respectively. The high PLQYs and efficiently suppressed emission concentration quenching of Ag2I2(dppb-Ac)2 in films are outstanding among reported Ag(I)-based TADF emitters.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- Fujian Normal University, Fuzhou City, Fujian Province 350007, China
| | - Shan-Yue Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen 361021, PR China
| | - Dong-Hai Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Jia-Xuan Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Chen-Lu Hou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- Fujian Normal University, Fuzhou City, Fujian Province 350007, China
| | - Ting-Ting Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Xu-Lin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Fujian Normal University, Fuzhou City, Fujian Province 350007, China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- Fujian Normal University, Fuzhou City, Fujian Province 350007, China
| |
Collapse
|
8
|
Düker J, Philipp M, Lentner T, Cadge JA, Lavarda JE, Gschwind RM, Sigman MS, Ghosh I, König B. Cross-Coupling Reactions with Nickel, Visible Light, and tert-Butylamine as a Bifunctional Additive. ACS Catal 2025; 15:817-827. [PMID: 39839851 PMCID: PMC11744660 DOI: 10.1021/acscatal.4c07185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Transition metal catalysis is crucial for the synthesis of complex molecules, with ligands and bases playing a pivotal role in optimizing cross-coupling reactions. Despite advancements in ligand design and base selection, achieving effective synergy between these components remains challenging. We present here a general approach to nickel-catalyzed photoredox reactions employing tert-butylamine as a cost-effective bifunctional additive, acting as the base and ligand. This method proves effective for C-O and C-N bond-forming reactions with a diverse array of nucleophiles, including phenols, aliphatic alcohols, anilines, sulfonamides, sulfoximines, and imines. Notably, the protocol demonstrates significant applicability in biomolecule derivatization and facilitates sequential one-pot functionalizations. Spectroscopic investigations revealed the robustness of the dynamic catalytic system, while elucidation of structure-reactivity relationships demonstrated how computed molecular properties of both the nucleophile and electrophile correlated to reaction performance, providing a foundation for effective reaction outcome prediction.
Collapse
Affiliation(s)
- Jonas Düker
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Maximilian Philipp
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Thomas Lentner
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Jamie A. Cadge
- Department
of Chemistry, University of Utah, 315 1400 E, Salt Lake City 84112, Utah, United States
| | - João E.
A. Lavarda
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Ruth M. Gschwind
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Matthew S. Sigman
- Department
of Chemistry, University of Utah, 315 1400 E, Salt Lake City 84112, Utah, United States
| | - Indrajit Ghosh
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VSB - Technical University of Ostrava, Ostrava-Poruba 708 00, Czech Republic
| | - Burkhard König
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| |
Collapse
|
9
|
Zhu X, Zhang Y, Miao J, Liu J, Wang L. Individually Tunable Energy Levels of Oligomers Based on N-B←N Units. Angew Chem Int Ed Engl 2024; 63:e202411023. [PMID: 39166374 DOI: 10.1002/anie.202411023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/22/2024]
Abstract
Opto-electronic properties and device performance of organic semiconductors are mainly determined by energy levels of their frontier molecular orbitals, e.g. lowest unoccupied molecular orbital (ELUMO) and highest occupied molecular orbital (EHOMO) in the ground state, first singlet state (ES1) and first triplet state (ET1) in the excited state. These energy levels are always intricately intertwined. Herein, we report a series of monodisperse oligomers based on double B←N bridged bipyridine (BNBP) units. With the increasing number of repeating units, the oligomers exhibit gradually downshifted ELUMO and nearly unchanged EHOMO due to the different distribution of the frontier molecular orbitals of the oligomers. Moreover, the oligomers exhibit gradually decreasing ES1 and nearly unchanged ET1 because of the different contributions of the charge transfer component in the excited state. This work provides new insight into energy level tuning of organic semiconductors, which is important for high-performance organic opto-electronic devices.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yingze Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
10
|
Hiscock LK, Gogoulis AT, Diamantopoulos M, Patel VS, Dawe LN, Hudson ZM, Maly KE. Reversible Nucleophilic Ring-Opening of Tetraoxapentacene Derivatives: Accessing New Materials for Thermally Activated Delayed Fluorescence. J Org Chem 2024; 89:15598-15606. [PMID: 39441742 DOI: 10.1021/acs.joc.4c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
We report the unexpected nucleophilic ring-opening reaction of electron deficient dioxins in the presence of carbazole under basic conditions. This nucleophilic ring-opening reaction is reversible under basic conditions in the absence of nucleophiles. Further, we demonstrate that this unexpected reactivity can be used to prepare novel donor-acceptor compounds that are emissive in solution and as thin films and exhibit thermally activated delayed fluorescence (TADF).
Collapse
Affiliation(s)
- Lana K Hiscock
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Athan T Gogoulis
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Madison Diamantopoulos
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Vishvam S Patel
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Louise N Dawe
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kenneth E Maly
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| |
Collapse
|
11
|
Zhang Q, Gong J, He L, Peng H, Xiao H, Fang D, Lu X, Dang X, Deng S, Zeng Z. Ketonized Carbonitride Assembled Face Mask with Long-Term Light Triggered Antimicrobial Ability for Bioprotective Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53822-53832. [PMID: 39316712 DOI: 10.1021/acsami.4c11175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The worldwide transmission of infectious respiratory pathogens has caused innumerable deaths and suffering, while wearing a face mask is still the most effective way to terminate the respiratory infections spread. However, the frequent mask replacement as a result of the lack of pathogen sterilization ability not only increases the cross-contamination risk but also, even worse, produces a large amount of medical waste. In this work, we report on a ketonized carbonitride functionalized bioprotective face mask with pathogen sterilization activity that can effectively produce biocidal singlet oxygen triggered by light irradiation. Ketonized carbonitride loading on the outer layer of the mask is found to be capable of generating singlet oxygen, enabling the mask with antibacterial ability. Thanks to its high pathogen inactivation activity, the as-prepared mask exhibits long-term light triggered health protection performance, which, in return, reduces medical waste production as a result of the decreased mask replacement frequency. The synthesis of a fascinating bioprotective mask provides a new viewpoint into the development of personal bioprotective devices for health protection.
Collapse
Affiliation(s)
- Qi Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Chengdu 611130, China
| | - Junran Gong
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Chengdu 611130, China
| | - Liangjie He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Chengdu 611130, China
| | - Hong Peng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Dexin Fang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Chengdu 611130, China
| | - Xiaohui Lu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Chengdu 611130, China
| | - Xueming Dang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shihuai Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Chengdu 611130, China
| | - Zhenxing Zeng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
- Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Chengdu 611130, China
| |
Collapse
|
12
|
He Z, Huang Z, Li T, Song J, Wu J, Ma X. Achieving Tunable Monomeric TADF and Aggregated RTP via Molecular Stacking. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54742-54750. [PMID: 39324810 DOI: 10.1021/acsami.4c14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Organic emitters with both thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) have attracted widespread interest for their intriguing luminescent properties. Herein, a series of triphenylamine-substituted isoquinoline derivatives possessing monomeric TADF and aggregated RTP properties are reported. As the molecules exhibited various forms of π-π and charge transfer (CT) stacking with different intensities, inter/intramolecular CT can be meticulously modulated to achieve tunable TADF-RTP. Aggregated phosphorescence originates from intermolecular CT initiated by CT dimers, whereas monomeric TADF is facilitated by intramolecular CT enhanced by π-π dimers. Leveraging the properties of these molecules, luminescent materials with tunable TADF-RTP properties in multistates are obtained by molecular substitution position alignment, dealing with different solvents, grinding, adjusting concentration, changing polymer matrix, photoactivation, and heat treatment. This work is critical for a deeper understanding of construction and regulation of the TADF-RTP dual-channel emission, enabling the development of advanced optoelectronic devices with tailored emission properties.
Collapse
Affiliation(s)
- Zhenyi He
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Zizhao Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Tao Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Jinming Song
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Junfeng Wu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| |
Collapse
|
13
|
Xu J, Liu BX, Liu XY, Rao W, Wang SY. Light-Induced 1,3-Thiosulfonylation of β,γ-Unsaturated Ketones with Thiosulfonates. Org Lett 2024; 26:6798-6802. [PMID: 39109986 DOI: 10.1021/acs.orglett.4c01925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Sulfur-containing compounds exhibit potent significance in drug molecules. Thiosulfonates as 1,3-thiosulfonylation reactants to olefins have yet to be investigated. Herein, we report photoinduced 1,3-difunctionalization of β,γ-unsaturated ketones with thiosulfonates, which undergo a radical 1,2-acyl shift. The protocol features mild conditions, high regioselectivity, and 100% atom economy.
Collapse
Affiliation(s)
- Jiuwen Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Öner S, Kuila S, Stavrou K, Danos A, Fox MA, Monkman AP, Bryce MR. Exciplex, Not Heavy-Atom Effect, Controls the Triplet Dynamics of a Series of Sulfur-Containing Thermally Activated Delayed Fluorescence Molecules. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:7135-7150. [PMID: 39156711 PMCID: PMC11325549 DOI: 10.1021/acs.chemmater.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
The efficiency of thermally activated delayed fluorescence (TADF) in organic materials relies on rapid intersystem crossing rates and fast conversion of triplet (T) excitons into a singlet (S) state. Heavy atoms such as sulfur or selenium are now frequently incorporated into TADF molecular structures to enhance these properties by increased spin-orbit coupling [spin orbit coupling (SOC)] between the T and S states. Here a series of donor-acceptor (D-A) molecules based on 12H-benzo[4,5]thieno[2,3-a]carbazole and dicyanopyridine is compared with their nonsulfur control molecules designed to probe such SOC effects. We reveal that unexpected intermolecular interactions of the D-A molecules with carbazole-containing host materials instead serve as the dominant pathway for triplet decay kinetics in these materials. In-depth photophysical and computational studies combined with organic light emitting diode measurements demonstrate that the anticipated heavy-atom effect from sulfur is overshadowed by exciplex formation. Indeed, even the unsubstituted acceptor fragments exhibit pronounced TADF exciplex emission in appropriate carbazole hosts. The intermolecular charge transfer and TADF in these systems are further confirmed by detailed time-dependent density functional theory studies. This work demonstrates that anticipated heavy-atom effects in TADF emitters do not always control or even impact the photophysical and electroluminescence properties.
Collapse
Affiliation(s)
- Saliha Öner
- Department
of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Suman Kuila
- Department
of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K.
- Department
of Physics, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Kleitos Stavrou
- Department
of Physics, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Andrew Danos
- Department
of Physics, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Mark A. Fox
- Department
of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Andrew P. Monkman
- Department
of Physics, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| |
Collapse
|
15
|
Pei W, Hou L, Wang Z, Tian J, Liu Y, Tu Y, Zhao J, Zhou S. Unraveling the Photocatalytic Mechanism of N 2 Fixation on Single Ruthenium Sites. J Phys Chem Lett 2024; 15:7708-7715. [PMID: 39041828 DOI: 10.1021/acs.jpclett.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Photocatalytic N2 fixation offers promise for ammonia synthesis, yet traditional photocatalysts encounter challenges such as low efficiency and short carrier lifetimes. Atomically precise ligand-metal nanoclusters emerge as a solution to address these issues, but the photophysical mechanism remains elusive. Inspired by the synthesis of Au4Ru2 NCs, we investigate the mechanism behind N2 activation on Au4Ru2, focusing on photoactivity and carrier dynamics. Our results reveal that vibration of the Ru-N bond in the low-frequency domain suppresses the deactivation process leading to a long lifetime of the excited N2. By the strategy of isoelectronic substitution, we identify the single Ru sites as the active sites for N2 activation. Furthermore, these ligand-protected M4Ru2 (M = Au, Ag, Cu) NCs show robust thermal stability in explicit solvation and decent photochemical activity for N2 activation and NH3 production. These findings have significant implications for the optimization of catalysts for sustainable ammonia synthesis.
Collapse
Affiliation(s)
- Wei Pei
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Lei Hou
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Zi Wang
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Jiaqi Tian
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Yongfeng Liu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Yusong Tu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Jijun Zhao
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Si Zhou
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
16
|
Bhattacharyya A, Vadde V, Sarmah MP, Muthukumar M, Mathur A, Tester R. Organic Photoredox-Catalyzed S-Trifluoromethylation of Aromatic and Heteroaromatic Thiols. Org Lett 2024; 26:5370-5374. [PMID: 38888594 DOI: 10.1021/acs.orglett.4c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
A visible-light-mediated trifluoromethylation protocol was developed for the conversion of (hetero)aromatic thiols to their respective S-trifluoromethylated derivatives employing trifluoromethanesulfonyl chloride (CF3SO2Cl) as a cost-effective source of trifluoromethyl radical (CF3·) and a highly reducing organophotocatalyst, 3DPA2FBN. The developed methodology is operationally simple, providing access to a diverse range of products in up to 92% yield. A plausible mechanism has been postulated based on preliminary mechanistic studies, including irradiation on/off, UV-vis studies, and radical trapping experiments.
Collapse
Affiliation(s)
- Aditya Bhattacharyya
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore, 560 099, India
| | - Veeresh Vadde
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore, 560 099, India
| | - Manash Pratim Sarmah
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore, 560 099, India
| | - M Muthukumar
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV, Bangalore, 560 099, India
| | - Arvind Mathur
- Small Molecule Drug Discovery, Biocon Bristol Myers Squibb Research and Early Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, United States
| | - Richland Tester
- Small Molecule Drug Discovery, Biocon Bristol Myers Squibb Research and Early Development, P.O. Box 5400, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
17
|
Cagan D, Bím D, Kazmierczak NP, Hadt RG. Mechanisms of Photoredox Catalysis Featuring Nickel-Bipyridine Complexes. ACS Catal 2024; 14:9055-9076. [PMID: 38868098 PMCID: PMC11165457 DOI: 10.1021/acscatal.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Metallaphotoredox catalysis can unlock useful pathways for transforming organic reactants into desirable products, largely due to the conversion of photon energy into chemical potential to drive redox and bond transformation processes. Despite the importance of these processes for cross-coupling reactions and other transformations, their mechanistic details are only superficially understood. In this review, we have provided a detailed summary of various photoredox mechanisms that have been proposed to date for Ni-bipyridine (bpy) complexes, focusing separately on photosensitized and direct excitation reaction processes. By highlighting multiple bond transformation pathways and key findings, we depict how photoredox reaction mechanisms, which ultimately define substrate scope, are themselves defined by the ground- and excited-state geometric and electronic structures of key Ni-based intermediates. We further identify knowledge gaps to motivate future mechanistic studies and the development of synergistic research approaches spanning the physical, organic, and inorganic chemistry communities.
Collapse
Affiliation(s)
- David
A. Cagan
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Daniel Bím
- Institute
of Organic Chemistry and Biochemistry, The
Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Nathanael P. Kazmierczak
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
18
|
Mandal B, Mandal S, Halder S, Adhikari D. Photocatalytic α-arylation of cyclic ketones by a thermally activated delayed fluorescence molecule. Chem Commun (Camb) 2024; 60:5852-5855. [PMID: 38752485 DOI: 10.1039/d4cc01287a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
α-Arylation of cyclic ketones via an organophotocatalytic route has been described utilizing PXZ-TRZ, a molecule displaying thermally activated delayed fluorescence (TADF). Using this route, a plethora of cyclic ketones including cyclohexanone, cyclopentanone and even cyclooctanone can be effectively arylated with many aryl iodides or bromides under mild conditions.
Collapse
Affiliation(s)
- Baishanal Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli-140306, India.
| | - Sourav Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli-140306, India.
| | - Supriya Halder
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli-140306, India.
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli-140306, India.
| |
Collapse
|
19
|
Qiao H, Zhao K, Zhu X, Xu X, Wang S, Yang L, Wang C, Zhong L, Ma B, Yang D, Xing P, Liu G, Jiao M. Photocatalyzed C3-H Nitrosylation of Imidazo[1,2- a]pyridine under Continuous Flow and External Photocatalyst-, Oxidant-, and Additive-Free Conditions. J Org Chem 2024. [PMID: 38753574 DOI: 10.1021/acs.joc.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This study reports a protocol for the highly regioselective photocatalyzed C-H nitrosylation of imidazo[1,2-a]pyridine scaffolds at the C3 position under a combination of visible-light irradiation and continuous flow without any external photocatalyst. This protocol involves mild and safe conditions and shows good tolerance to air and water along with excellent functional group compatibility and site selectivity, generating various 3-nitrosoimidazo[1,2-a]pyridines in excellent yields under photocatalyst-, oxidant-, and additive-free conditions.Notably, the proposed nitrosylation reaction, which introduces the chromophore NO into imidazo[1,2-a]pyridine scaffolds, occurs efficiently under visible-light irradiation without any additional photocatalyst owing to the intense light-absorption characteristics of the nitrosylation products. This study could guide future studies on the development of green organic-synthesis strategies with a wide variety of potential applications.
Collapse
Affiliation(s)
- Huijie Qiao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Kun Zhao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Xilin Zhu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Xiaoxu Xu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Shixing Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Liting Yang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Chunyang Wang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Lulu Zhong
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Baiwei Ma
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Dehong Yang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Peizhi Xing
- Henan Bio-based material Industry Research Institute Co., LTD, Puyang 457001, P. R. China
| | - Guoqun Liu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Mingli Jiao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| |
Collapse
|
20
|
Zhang K, He G, Cai L, Fan J, Lin L, Wang CK, Li J. Role of Bridging Groups in Regulating the Luminescence and Charge Transfer Properties of Thermally Activated Delayed Fluorescence Molecules: A Theoretical Perspective. J Phys Chem A 2024; 128:3158-3169. [PMID: 38598685 DOI: 10.1021/acs.jpca.4c01174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Organic emitters with a simultaneous combination of aggregation-induced emission (AIE) and thermally activated delayed fluorescence (TADF) characteristics are in great demand due to their excellent comprehensive performances toward efficient organic light-emitting diodes (OLEDs), biomedical imaging, and the telecommunications field. However, the development of efficient AIE-TADF materials remains a substantial challenge. In this work, light-emitting properties of two AIE-TADF molecules with different bridging groups ICz-BP and ICz-DPS are theoretically investigated in the solid state with the combined quantum mechanics/molecular mechanics (QM/MM) method and the thermal vibration correlation function (TVCF) theory. The research indicates that the C═O bridging bond in ICz-BP is more favorable than the S═O bridging bond in ICz-DPS for enhancing the planarity of the acceptor, increasing conjugation, and thereby elevating the transition dipole moment density. Simultaneously, the stacking pattern of ICz-BP in the solid facilitates a reduction in energy gap between S1 and T1 (ΔEST), achieving rapid reverse intersystem crossing rate (kRISC). Furthermore, compared to toluene, the stacking patterns of ICz-BP and ICz-DPS in the solid effectively suppress the out-of-plane wagging vibration of the acceptor, thereby inhibiting the loss of nonradiative energy in the excited state and realizing aggregation-induced emission. Moreover, the charge transport properties of both electrons and holes in ICz-BP are found to be higher than the corresponding rates in ICz-DPS, attributed to the smaller internal reorganization energy of ICz-BP in the solid state. Additionally, the calculations reveal a more balanced charge transport characteristic in ICz-BP, contributing to efficient exciton recombination and emission and ultimately mitigating efficiency roll-off. Based on these computational results, we aim to unveil the relationship between molecular structure and light-emitting properties, aiding in the design and development of efficient AIE-TADF devices.
Collapse
Affiliation(s)
- Kai Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - GuangLu He
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lei Cai
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Jing Li
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
21
|
Singh M, Kumar M, Bhalla V. Strategic Insertion of Heavy Atom to Tailor TADF OLED Material for the Development of Type I Photosensitizing Catalytic Red Emissive Assemblies. Chem Asian J 2024; 19:e202400033. [PMID: 38403870 DOI: 10.1002/asia.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 02/27/2024]
Abstract
The work presented in the manuscript describes a simple strategy for transforming thermally activated delayed fluorescent organic light-emitting diodes (TADF OLEDs) compound 10-(dibenzo[a,c]phenazin-11-yl)-10H-phenoxazine (DPZ-PXZ) into type I photosensitizer 10-(dibenzo[a,c]phenazin-11-yl)-10H-phenothiazine (DPZ-PHZ) by strategically introducing sulfur atom in the photosensitizing core. The synthesized compound DPZ-PHZ exhibits aggregation-induced enhancement (AIE) and through-space charge transfer (TSCT) characteristics and generates red emissive assemblies in mixed aqueous media. The original compound DPZ-PXZ exhibits well-separated HOMO and LUMO levels and is reported to have highly efficient reverse intersystem crossing (RISC). In comparison, the incorporation of sulfur atom in the phenothiazine donor regulates the electronic communication between donor and acceptor units and promotes the intersystem crossing (ISC) in DPZ-PHZ molecules. Interestingly, compound DPZ-PHZ exhibits rapid activation of aerial oxygen for instant generation of superoxide radical anion. Backed by excellent type I photosensitizing activity, DPZ-PHZ assemblies have high catalytic potential for the synthesis of benzimidazoles, benzothiazoles and quinazolines derivatives under mild reaction conditions. The work presented in the manuscript provides an insight into the combination of heavy atom approach and TSCT for achieving adequate electronic communication between donor and acceptor units, balanced RISC/ISC, and stabilized-charge separated state for the development of efficient type I photosensitizing assemblies.
Collapse
Affiliation(s)
- Manpreet Singh
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| |
Collapse
|
22
|
Hossain MM, Shaikh AC, Kaur R, Gianetti TL. Red Light-Blue Light Chromoselective C(sp 2)-X Bond Activation by Organic Helicenium-Based Photocatalysis. J Am Chem Soc 2024; 146:7922-7930. [PMID: 38498938 DOI: 10.1021/jacs.3c13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Chromoselective bond activation has been achieved in organic helicenium (nPr-DMQA+)-based photoredox catalysis. Consequently, control over chromoselective C(sp2)-X bond activation in multihalogenated aromatics has been demonstrated. nPr-DMQA+ can only initiate the halogen atom transfer (XAT) pathway under red light irradiation to activate low-energy-accessible C(sp2)-I bonds. In contrast, blue light irradiation initiates consecutive photoinduced electron transfer (conPET) to activate more challenging C(sp2)-Br bonds. Comparative reaction outcomes have been demonstrated in the α-arylation of cyclic ketones with red and blue lights. Furthermore, red-light-mediated selective C(sp2)-I bonds have been activated in iodobromoarenes to keep the bromo functional handle untouched. Finally, the strength of the chromoselective catalysis has been highlighted with two-fold functionalization using both photo-to-transition metal and photo-to-photocatalyzed transformations.
Collapse
Affiliation(s)
- Md Mubarak Hossain
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Ramandeep Kaur
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Thomas L Gianetti
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
23
|
Xue N, Zhou HY, Han Y, Li M, Lu HY, Chen CF. A general supramolecular strategy for fabricating full-color-tunable thermally activated delayed fluorescence materials. Nat Commun 2024; 15:1425. [PMID: 38365888 PMCID: PMC10873404 DOI: 10.1038/s41467-024-45717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Developing a facile and feasible strategy to fabricate thermally activated delayed fluorescence materials exhibiting full-color tunability remains an appealing yet challenging task. In this work, a general supramolecular strategy for fabricating thermally activated delayed fluorescence materials is proposed. Consequently, a series of host-guest cocrystals are prepared by electron-donating calix[3]acridan and various electron-withdrawing guests. Owing to the through-space charge transfer mediated by multiple noncovalent interactions, these cocrystals all display efficient thermally activated delayed fluorescence. Especially, by delicately modulating the electron-withdrawing ability of the guest molecules, the emission colors of these cocrystals can be continuously tuned from blue (440 nm) to red (610 nm). Meanwhile, high photoluminescence quantum yields of up to 87% is achieved. This research not only provides an alternative and general strategy for the fabrication of thermally activated delayed fluorescence materials, but also establishes a reliable supramolecular protocol toward the design of advanced luminescent materials.
Collapse
Affiliation(s)
- Nan Xue
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Meng Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hai-Yan Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chuan-Feng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
24
|
Caine JR, Choi H, Hojo R, Hudson ZM. Organic Photothermal Materials Obtained Using Thermally Activated Delayed Fluorescence Design Principles. Chemistry 2024; 30:e202302861. [PMID: 38015005 DOI: 10.1002/chem.202302861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 11/29/2023]
Abstract
Organic small molecules with high photothermal conversion efficiencies that absorb near-infrared light are desirable for photothermal therapy due to their improved biocompatibility compared to inorganic materials and their ability to absorb light in the biological transparency window (650-1350 nm). Here we report three donor-acceptor organic materials DM-ANDI, O-ANDI, and S-ANDI that show high photothermal conversion efficiencies of 46-68 % with near-infrared absorption. The design of these molecules is based on the rational modification of a thermally activated delayed fluorescence material to favour a low photoluminescence quantum yield by reducing HOMO-LUMO overlap. Encapsulating these materials into either neat nanoparticles or aggregated organic dots modulates their photothermal conversion efficiencies, and also facilitates dispersion in water.
Collapse
Affiliation(s)
- Jana R Caine
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| | - Heekyoung Choi
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| | - Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada)
| |
Collapse
|
25
|
Palkowitz MD, Emmanuel MA, Oderinde MS. A Paradigm Shift in Catalysis: Electro- and Photomediated Nickel-Catalyzed Cross-Coupling Reactions. Acc Chem Res 2023; 56:2851-2865. [PMID: 37772915 DOI: 10.1021/acs.accounts.3c00479] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
ConspectusTransition-metal catalyzed cross-coupling reactions are fundamental reactions in organic chemistry, facilitating strategic bond formations for accessing natural products, organic materials, agrochemicals, and pharmaceuticals. Redox chemistry enables access to elusive cross-coupling mechanisms through single-electron processes as an alternative to classical two-electron strategies predominated by palladium catalysis. The seminal reports of Baran, MacMillan, Doyle, Molander, Weix, Lin, Fu, Reisman, and others in merging redox perturbation (photochemical, electrochemical, and purely chemical) with catalysis are pivotal to the current resurgence and mechanistic understanding of first-row transition metal-based catalysis. The hallmark of this redox platform is the systematic modulation of transition-metal oxidation states by a photoredox catalyst or at a heterogeneous electrode surface. Electrocatalysis and photocatalysis enhance transition metal catalysis' capacity for bond formation through electron- or energy-transfer processes that promote otherwise challenging elementary steps or elusive mechanisms. Cross-coupling conditions promoted by electrocatalysis and photocatalysis are mild, and bond formation proceeds with exceptionally high chemoselectivity and wide functional group tolerance. The interfacing of abundant first-row transition-metal catalysis with electrocatalysis and photocatalysis has brought about a paradigm shift in cross-coupling technology as practitioners are quickly applying these tools in synthesizing fine chemicals and pharmaceutically relevant motifs. In particular, the merger of Ni catalysis with electro- and photochemistry ushered in a new era for carbon-carbon and carbon-heteroatom cross-couplings with expanded generality compared to their thermally driven counterparts. Over the past decade, we have developed enabling photo- and electrochemical methods throughout our combined research experience in industry (BMS, AstraZeneca) and academia (Professor Baran, Scripps Research) in cross-disciplinary collaborative environments. In this Account, we will outline recent progress from our past and present laboratories in photo- and electrochemically mediated Ni-catalyzed cross-couplings. By highlighting these cross-coupling methodologies, we will also compare mechanistic features of both electro- and photochemical strategies for forging C(sp2)-C(sp3), C(sp3)-C(sp3), C-O, C-N, and C-S bonds. Through these side-by-side comparisons, we hope to demystify the subtle differences between the two complementary tools to enact redox control over transition metal catalysis. Finally, building off the collective experience of ourselves and the rest of the community, we propose a tactical user guide to photo- and electrochemically driven cross-coupling reactions to aid the practitioner in rapidly applying such tools in their synthetic designs.
Collapse
Affiliation(s)
- Maximilian D Palkowitz
- Small Molecule Drug Discovery, Bristol Myers Squibb, 250 Water Street, Cambridge, Massachusetts 02141, United States
| | - Megan A Emmanuel
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Martins S Oderinde
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|