1
|
Tomlinson ACA, Knox JE, Brunsveld L, Ottmann C, Yano JK. The "three body solution": Structural insights into molecular glues. Curr Opin Struct Biol 2025; 91:103007. [PMID: 40014904 DOI: 10.1016/j.sbi.2025.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Molecular glues are small molecules that nucleate novel or stabilize natural, protein-protein interactions resulting in a ternary complex. Their success in targeting difficult to drug proteins of interest has led to ever-increasing interest in their use as therapeutics and research tools. While molecular glues and their targets vary in structure, inspection of diverse ternary complexes reveals commonalities. Whether of high or low molecular weight, molecular glues are often rigid and form direct hydrophobic interactions with their target protein. There is growing evidence that these hotspots can accommodate multiple ternary complex binding modes and enable targeting of traditionally undruggable targets. Advances in screening from the molecular glue degrader literature and insights in structure-based drug design, especially from the non-degrading tri-complex work, are likely intersectional.
Collapse
Affiliation(s)
| | | | - Luc Brunsveld
- Eindhoven University of Technology, Eindhoven, Netherlands
| | | | | |
Collapse
|
2
|
Yin L, Niu T, Li L, Yu W, Han B, Rehman A, Zeng K. Research advancements in molecular glues derived from natural product scaffolds: Chemistry, targets, and molecular mechanisms. CHINESE HERBAL MEDICINES 2025; 17:235-245. [PMID: 40256709 PMCID: PMC12009069 DOI: 10.1016/j.chmed.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/30/2024] [Accepted: 01/03/2025] [Indexed: 04/22/2025] Open
Abstract
The mechanism of action of traditional Chinese medicine (TCM) remains unclear. Historically, research on TCM has mainly focused on exploring the mechanisms of active components acting on single targets. However, it is insufficient to explain the complex mechanisms by which these active components in TCM treat diseases. In recent years, the emergence of molecular glues (MGs) theory has provided new strategies to address this issue. MGs are small molecules that can promote interactions between proteins at their interface. The characteristic of MGs is to establish connections between diverse protein structures, thereby enabling a chemically-mediated proximity effect that triggers a wide spectrum of biological functions. Natural products are the result of billions of years of evolutionary processes in the natural environment. Thus, the extensive structural diversity of natural products renders them a rich source of MGs, including polyketides, terpenoids, steroids, lignans, organic acids, alkaloids and other classes. Currently, several well-known natural MGs, including the immunosuppressants cyclosporin A (CsA) and tacrolimus (FK506), as well as the anticancer agent taxol, have been incorporated into clinical practice. Meanwhile, the advancement of new technologies is propelling the discovery of novel MGs from natural products. Thus, we primarily summarize a growing variety of MGs from natural origins reported in recent years and categorize them based on the chemical structural types. Moreover, the main sources of TCM are natural products. The discovery of natural MGs promises to provide a new perspective for the elucidation of the molecular mechanism behind the efficiency of TCM. In summary, this review aims to provide insights from the perspective of natural products that could potentially influence TCM and modern drug development.
Collapse
Affiliation(s)
- Lina Yin
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Tingting Niu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Ling Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Yu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Bo Han
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
| | - Asma Rehman
- National Institute for Biotechnology & Genetic Engineering College Pakistan Institute of Engineering & Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Kewu Zeng
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Shihezi University, Shihezi 832003, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Wu Q, van den Wildenberg SAH, Brzoskowski JCR, van den Oetelaar MCM, Verhoef CJA, Genet SAAM, Ottmann C, Markvoort AJ, Brunsveld L, Cossar PJ. Proximity-enhanced cysteine-histidine crosslinking for elucidating intrinsically disordered and other protein complexes. Chem Sci 2025; 16:3523-3535. [PMID: 39850253 PMCID: PMC11752056 DOI: 10.1039/d4sc07419j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025] Open
Abstract
Disordered proteins and domains are ubiquitous throughout the proteome of human cell types, yet the biomolecular sciences lack effective tool compounds and chemical strategies to study this class of proteins. In this context, we introduce a novel covalent tool compound approach that combines proximity-enhanced crosslinking with histidine trapping. Utilizing a maleimide-cyclohexenone crosslinker for efficient cysteine-histidine crosslinking, we elucidated the mechanism of this dual-reactive tool compound class. This tool compound concept was then applied to profile the full-length complex of 14-3-3 and hyperphosphorylated Tau (hpTau), relevant to Alzheimer's. This approach identified a cryptic binding interaction between 14-3-3 and hpTau via its phosphorylated Ser356, overlooked by the majority of 14-3-3/Tau literature. Utilizing a mutational study and an equilibrium model, this cryptic binding interaction is revealed to play a prominent biomolecular role at cellularly relevant concentrations. This finding necessitates a re-evaluation of the mechanism of the 14-3-3/Tau interaction. The histidine-trap crosslinker approach reported here not only advances our understanding of the 14-3-3/Tau interaction but also demonstrates the potential of dual-covalent tool compounds in studying complex interactions involving IDPs and IDDs.
Collapse
Affiliation(s)
- Qi Wu
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Sebastian A H van den Wildenberg
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Jeroen C R Brzoskowski
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Maxime C M van den Oetelaar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Carlo J A Verhoef
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Sylvia A A M Genet
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Albert J Markvoort
- Synthetic Biology Group, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Netherlands
| |
Collapse
|
4
|
Tian Y, Li L, Wu L, Xu Q, Li Y, Pan H, Bing T, Bai X, Finko AV, Li Z, Bian J. Recent Developments in 14-3-3 Stabilizers for Regulating Protein-Protein Interactions: An Update. J Med Chem 2025; 68:2124-2146. [PMID: 39902774 DOI: 10.1021/acs.jmedchem.4c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
14-3-3 proteins play a crucial role in the regulation of protein-protein interactions, impacting various cellular processes and disease mechanisms. Recent advancements have led to the development of stabilizers that enhance the binding of 14-3-3 proteins to clients, presenting promising therapeutic potentials. This perspective provides an updated overview of the latest developments in the field of 14-3-3 stabilizers, with a focus on their design, synthesis, and biological evaluation. We discuss the structural basis for the interaction between 14-3-3 proteins and their ligands, highlighting key modifications that enhance binding affinity and selectivity. Additionally, we explore the therapeutic applications of 14-3-3 stabilizers across major therapeutic areas such as cancer, metabolic disorders, and neurodegenerative diseases. By summarizing recent research findings and technological advancements, this perspective aims to shed light on the current state of 14-3-3 stabilizer developments and outline future directions for optimizing these compounds as effective therapeutic agents.
Collapse
Affiliation(s)
- Yucheng Tian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Longjing Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liuyi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qianqian Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yaojie Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huawei Pan
- ICE Bioscience, Bldg 15, Yd 18, Kechuang 13th St, Etown, Tongzhou Dist, Beijing 100176, China
| | - Tiejun Bing
- ICE Bioscience, Bldg 15, Yd 18, Kechuang 13th St, Etown, Tongzhou Dist, Beijing 100176, China
| | - Xiumei Bai
- Department of Chemistry, Lomonosov Moscow State University (MSU), Moscow 119991, Russia
| | - Alexander V Finko
- Department of Chemistry, Lomonosov Moscow State University (MSU), Moscow 119991, Russia
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Holvey RS, Erlanson DA, de Esch IJP, Farkaš B, Jahnke W, Nishiyama T, Woodhead AJ. Fragment-to-Lead Medicinal Chemistry Publications in 2023. J Med Chem 2025; 68:986-1001. [PMID: 39761118 DOI: 10.1021/acs.jmedchem.4c02593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
This Perspective summarizes successful fragment-to-lead (F2L) studies that were published in 2023 and is the ninth installment in an annual series. A tabulated summary of the relevant articles published in 2023 is provided (17 entries from 16 articles), and a comparison of the target classes, screening methods, and overall fragment or lead property trends for 2023 examples and for the combined entries over the years 2015-2023 is discussed. In addition, we identify several trends and innovations in the 2023 literature that promise to further increase the success of fragment-based drug discovery (FBDD), particularly in the areas of NMR and virtual screening, fragment library design, and fragment linking.
Collapse
Affiliation(s)
- Rhian S Holvey
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Daniel A Erlanson
- Frontier Medicines, 151 Oyster Point Blvd., South San Francisco, California 94080, United States of America
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Barbara Farkaš
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Wolfgang Jahnke
- Novartis Biomedical Research, Discovery Sciences, 4002 Basel, Switzerland
| | - Tsuyoshi Nishiyama
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Andrew J Woodhead
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
6
|
London N. Covalent Proximity Inducers. Chem Rev 2025; 125:326-368. [PMID: 39692621 PMCID: PMC11719315 DOI: 10.1021/acs.chemrev.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Molecules that are able to induce proximity between two proteins are finding ever increasing applications in chemical biology and drug discovery. The ability to introduce an electrophile and make such proximity inducers covalent can offer improved properties such as selectivity, potency, duration of action, and reduced molecular size. This concept has been heavily explored in the context of targeted degradation in particular for bivalent molecules, but recently, additional applications are reported in other contexts, as well as for monovalent molecular glues. This is a comprehensive review of reported covalent proximity inducers, aiming to identify common trends and current gaps in their discovery and application.
Collapse
Affiliation(s)
- Nir London
- Department
of Chemical and Structural Biology, The
Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
8
|
Schiedel M, Barbie P, Pape F, Pinto M, Unzue Lopez A, Méndez M, Hessler G, Merk D, Gehringer M, Lamers C. We are MedChem: The Frontiers in Medicinal Chemistry 2024. ChemMedChem 2024; 19:e202400543. [PMID: 39308157 DOI: 10.1002/cmdc.202400543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 12/06/2024]
Abstract
The Frontiers in Medicinal Chemistry (FiMC) is the largest international Medicinal Chemistry conference in Germany and took place from March 17th to 20th 2024 in Munich. Co-organized by the Division of Medicinal Chemistry of the German Chemical Society (Gesellschaft Deutscher Chemiker; GDCh) and the Division of Pharmaceutical and Medicinal Chemistry of the German Pharmaceutical Society (Deutsche Pharmazeutische Gesellschaft; DPhG), and supported by a local organizing committee from the Ludwigs-Maximilians-University Munich headed by Daniel Merk, the meeting brought together approximately 225 participants from 20 countries. The outstanding program of the four-day conference included 40 lectures by leading scientists from industry and academia as well as early career investigators. Moreover, 100 posters were presented in two highly interactive poster sessions.
Collapse
Affiliation(s)
- Matthias Schiedel
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Philipp Barbie
- Bayer AG, R&D, Pharmaceuticals Laboratory IV, Bldg., S106, 231, 13342, Berlin, Germany
| | - Felix Pape
- NUVISAN GmbH, Muellerstraße 178, 13353, Berlin, Germany
| | - Marta Pinto
- AbbVie Deutschland GmbH & Co. KG Computational Drug Discovery, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Andrea Unzue Lopez
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - María Méndez
- Sanofi R&D, Integrated Drug Discovery Industriepark Höchst, Bldg. G838, 65926, Frankfurt am Main, Germany
| | - Gerhard Hessler
- Sanofi R&D, Integrated Drug Discovery Industriepark Höchst, Bldg. G838, 65926, Frankfurt am Main, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Matthias Gehringer
- Institute for Biomedical Engineering, Faculty of Medicine, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Institute of Pharmaceutical Sciences, Pharmaceutical/Medicinal Chemistry Department, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Christina Lamers
- Institute of Drug Discovery, Faculty of Medicine, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| |
Collapse
|
9
|
Panda SP, Kesharwani A, Singh B, Marisetti AL, Chaitanya M, Dahiya S, Ponnusankar S, Kumar S, Singh M, Shakya PK, Prasad PD, Guru A. 14-3-3 protein and its isoforms: A common diagnostic marker for Alzheimer's disease, Parkinson's disease and glaucomatous neurodegeneration. Ageing Res Rev 2024; 102:102572. [PMID: 39489380 DOI: 10.1016/j.arr.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
There is a molecular coupling between neurodegenerative diseases, including glaucomatous neurodegeneration (GN), Alzheimer's disease (AD), and Parkinson's disease (PD). Many cells in the eye and the brain have the right amount of 14-3-3 proteins (14-3-3 s) and their isoforms, such as β, ε, γ, η, θ, π, and γ. These cells include keratocytes, endothelial cells, corneal epithelial cells, and primary conjunctival epithelial cells. 14-3-3 s regulate autophagy and mitophagy, help break down built-up proteins, and connect to other proteins to safeguard against neurodegeneration in AD, PD, GN, and glioblastoma. By interacting with these proteins, 14-3-3 s stop Bad and Bax proteins from entering mitochondria and make them less effective. These interactions inhibit neuronal apoptosis. They play many important roles in managing the breakdown of lysosomal proteins, tau, and Aβ, which is why the 14-3-3 s could be used as therapeutic targets in AD. Furthermore, researchers have discovered 14-3-3 s in Lewy bodies, which are associated with various proteins like LRRK2, ASN, and Parkin, all of which play a role in developing Parkinson's disease (PD). The 14-3-3 s influence the premature aging and natural wrinkles of human skin. Studies have shown that lowering 14-3-3 s in the brain can lead to an increase in cell-death proteins like BAX and ERK, which in turn causes excitotoxicity-induced neurodegeneration. This review aimed to clarify the role of 14-3-3 s in the neuropathology of AD, PD, and GN, as well as potential diagnostic markers for improving neuronal survival and repair.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Bhoopendra Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Mvnl Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Phagwara, Panjab 144411, India
| | - Saurabh Dahiya
- Department of Pharmaceutical Chemistry and Quality Assurance, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - S Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and ResearchOoty, Tamil Nadu 643001, India
| | - Sanjesh Kumar
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Mansi Singh
- Rakshpal Bahadur College of Pharmacy, Bareilly, Uttar Pradesh, India
| | - Praveen Kumar Shakya
- Shri Santanpal Singh Pharmacy College, Mirjapur, Shahjahanpur, Uttar Pradesh 242221, India
| | - P Dharani Prasad
- Department of Pharmacology, MB School of Pharmaceutical Sciences, Mohan Babu University, Tirupati, Andhra Pradesh, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
10
|
Winter GE. Extrapolating Lessons from Targeted Protein Degradation to Other Proximity-Inducing Drugs. ACS Chem Biol 2024; 19:2089-2102. [PMID: 39264973 PMCID: PMC11494510 DOI: 10.1021/acschembio.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024]
Abstract
Targeted protein degradation (TPD) is an emerging pharmacologic strategy. It relies on small-molecule "degraders" that induce proximity of a component of an E3 ubiquitin ligase complex and a target protein to induce target ubiquitination and subsequent proteasomal degradation. Essentially, degraders thus expand the function of E3 ligases, allowing them to degrade proteins they would not recognize in the absence of the small molecule. Over the past decade, insights gained from identifying, designing, and characterizing various degraders have significantly enhanced our understanding of TPD mechanisms, precipitating in rational degrader discovery strategies. In this Account, I aim to explore how these insights can be extrapolated to anticipate both opportunities and challenges of utilizing the overarching concept of proximity-inducing pharmacology to manipulate other cellular circuits for the dissection of biological mechanisms and for therapeutic purposes.
Collapse
Affiliation(s)
- Georg E. Winter
- CeMM Research Center for
Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
11
|
McDuffie EL, Panettieri RA, Scott CP. G 12/13 signaling in asthma. Respir Res 2024; 25:295. [PMID: 39095798 PMCID: PMC11297630 DOI: 10.1186/s12931-024-02920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Shortening of airway smooth muscle and bronchoconstriction are pathognomonic for asthma. Airway shortening occurs through calcium-dependent activation of myosin light chain kinase, and RhoA-dependent calcium sensitization, which inhibits myosin light chain phosphatase. The mechanism through which pro-contractile stimuli activate calcium sensitization is poorly understood. Our review of the literature suggests that pro-contractile G protein coupled receptors likely signal through G12/13 to activate RhoA and mediate calcium sensitization. This hypothesis is consistent with the effects of pro-contractile agonists on RhoA and Rho kinase activation, actin polymerization and myosin light chain phosphorylation. Recognizing the likely role of G12/13 signaling in the pathophysiology of asthma rationalizes the effects of pro-contractile stimuli on airway hyperresponsiveness, immune activation and airway remodeling, and suggests new approaches for asthma treatment.
Collapse
Affiliation(s)
- Elizabeth L McDuffie
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Charles P Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Nishiyama K, Aihara Y, Suzuki T, Takahashi K, Kinoshita T, Dohmae N, Sato A, Hagihara S. Discovery of a Plant 14-3-3 Inhibitor Possessing Isoform Selectivity and In Planta Activity. Angew Chem Int Ed Engl 2024; 63:e202400218. [PMID: 38658314 DOI: 10.1002/anie.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Synthetic modulators of plant 14-3-3s are promising chemical tools both for understanding the 14-3-3-related signaling pathways and controlling plant physiology. Herein, we describe a novel small-molecule inhibitor for 14-3-3 proteins of Arabidopsis thaliana. The inhibitor was identified from unexpected products in a stock solution in dimethyl sulfoxide (DMSO) of an in-house chemical library. Mass spectroscopy, mutant-based analyses, fluorescence polarization assays, and thermal shift assays revealed that the inhibitor covalently binds to an allosteric site of 14-3-3 with isoform selectivity. Moreover, infiltration of the inhibitor to Arabidopsis leaves suppressed the stomatal aperture. The inhibitor should provide new insight into the design of potent and isoform-selective 14-3-3 modulators.
Collapse
Affiliation(s)
- Kotaro Nishiyama
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Yusuke Aihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| | - Takehiro Suzuki
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Koji Takahashi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
- Graduate School of Science, Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Naoshi Dohmae
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| | - Shinya Hagihara
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama, 351-0198, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
13
|
Vickery HR, Virta JM, Konstantinidou M, Arkin MR. Development of a NanoBRET assay for evaluation of 14-3-3σ molecular glues. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100165. [PMID: 38797286 PMCID: PMC11774552 DOI: 10.1016/j.slasd.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
We report the development of a 384-well formatted NanoBRET assay to characterize molecular glues of 14-3-3/client interactions in living cells. The seven isoforms of 14-3-3 are dimeric hub proteins with diverse roles including transcription factor regulation and signal transduction. 14-3-3 interacts with hundreds of client proteins to regulate their function and is therefore an ideal therapeutic target when client selectivity can be achieved. We have developed the NanoBRET system for three 14-3-3σ client proteins CRAF, TAZ, and estrogen receptor α (ERα), which represent three specific binding modes. We have measured stabilization of 14-3-3σ/client complexes by molecular glues with EC50 values between 100 nM and 1 μM in cells, which align with the EC50 values calculated by fluorescence anisotropy in vitro. Developing this NanoBRET system for the hub protein 14-3-3σ allows for a streamlined approach, bypassing multiple optimization steps in the assay development process for other 14-3-3σ clients. The NanoBRET system allows for an assessment of PPI stabilization in a more physiologically relevant, cell-based environment using full-length proteins. The method is applicable to diverse protein-protein interactions (PPIs) and offers a robust platform to explore libraries of compounds for both PPI stabilizers and inhibitors.
Collapse
Affiliation(s)
- Holly R Vickery
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA
| | - Johanna M Virta
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA
| | - Markella Konstantinidou
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA.
| |
Collapse
|
14
|
Konstantinidou M, Arkin MR. Molecular glues for protein-protein interactions: Progressing toward a new dream. Cell Chem Biol 2024; 31:1064-1088. [PMID: 38701786 PMCID: PMC11193649 DOI: 10.1016/j.chembiol.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
The modulation of protein-protein interactions with small molecules is one of the most rapidly developing areas in drug discovery. In this review, we discuss advances over the past decade (2014-2023) focusing on molecular glues (MGs)-monovalent small molecules that induce proximity, either by stabilizing native interactions or by inducing neomorphic interactions. We include both serendipitous and rational discoveries and describe the different approaches that were used to identify them. We classify the compounds in three main categories: degradative MGs, non-degradative MGs or PPI stabilizers, and MGs that induce self-association. Diverse, illustrative examples with structural data are described in detail, emphasizing the elements of molecular recognition and cooperative binding at the interface that are fundamental for a MG mechanism of action.
Collapse
Affiliation(s)
- Markella Konstantinidou
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Pitasse-Santos P, Hewitt-Richards I, Abeywickrama Wijewardana Sooriyaarachchi MD, Doveston RG. Harnessing the 14-3-3 protein-protein interaction network. Curr Opin Struct Biol 2024; 86:102822. [PMID: 38685162 DOI: 10.1016/j.sbi.2024.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Protein-protein interactions (PPIs) play a critical role in cellular signaling and represent interesting targets for therapeutic intervention. 14-3-3 proteins integrate many signaling targets via PPIs and are frequently implicated in disease, making them intriguing drug targets. Here, we review the recent advances in the 14-3-3 field. It will discuss the roles 14-3-3 proteins play within the cell, elucidation of their expansive interactome, and the complex mechanisms that underpin their function. In addition, the review will discuss significant advances in the development of molecular glues that target 14-3-3 PPIs. In particular, it will focus on novel drug discovery and development methodologies that have delivered selective, potent, and drug-like molecules that could open new avenues for the development of precision molecular tools and medicines.
Collapse
Affiliation(s)
- Paulo Pitasse-Santos
- Leicester Institute of Structural and Chemical Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK; School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Isaac Hewitt-Richards
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Richard G Doveston
- Leicester Institute of Structural and Chemical Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK; School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
16
|
Li L, Liu S, Luo Y. Application of covalent modality in proximity-induced drug pharmacology: Early development, current strategy, and feature directions. Eur J Med Chem 2024; 271:116394. [PMID: 38643668 DOI: 10.1016/j.ejmech.2024.116394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
With a growing number of covalent drugs securing FDA approval as successful therapies across various indications, particularly in the realm of cancer treatment, the covalent modulating strategy is undergoing a resurgence. The renewed interest in covalent bioactive compounds has captured significant attention from both the academic and biopharmaceutical industry sectors. Covalent chemistry presents several advantages over traditional noncovalent proximity-induced drugs, including heightened potency, reduced molecular size, and the ability to target "undruggable" entities. Within this perspective, we have compiled a comprehensive overview of current covalent modalities applied to proximity-induced molecules, delving into their advantages and drawbacks. Our aim is to stimulate more profound insights and ideas within the scientific community, guiding future research endeavors in this dynamic field.
Collapse
Affiliation(s)
- Linjie Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Garbagnoli M, Linciano P, Listro R, Rossino G, Vasile F, Collina S. Biophysical Assays for Investigating Modulators of Macromolecular Complexes: An Overview. ACS OMEGA 2024; 9:17691-17705. [PMID: 38680367 PMCID: PMC11044174 DOI: 10.1021/acsomega.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Drug discovery is a lengthy and intricate process, and in its early stage, crucial steps are the selection of the therapeutic target and the identification of novel ligands. Most targets are dysregulated in pathogenic cells; typically, their activation or deactivation leads to the desired effect, while in other cases, interfering with the target-natural binder complex achieves the therapeutic results. Biophysical assays are a suitable strategy for finding new ligands or interferent agents, being able to evaluate ligand-protein interactions and assessing the effect of small molecules (SMols) on macromolecular complexes. This mini-review provides a detailed analysis of widely used biophysical methods, including fluorescence-based approaches, circular dichroism, isothermal titration calorimetry, microscale thermophoresis, and NMR spectroscopy. After a brief description of the methodologies, examples of interaction and competition experiments are described, together with an analysis of the advantages and disadvantages of each technique. This mini-review provides an overview of the most relevant biophysical technologies that can help in identifying SMols able not only to bind proteins but also to interfere with macromolecular complexes.
Collapse
Affiliation(s)
- Martina Garbagnoli
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Pasquale Linciano
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Roberta Listro
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Giacomo Rossino
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| | - Francesca Vasile
- Department
of Chemistry, University of Milan, Via Golgi 19, Milano 20133, Italy
| | - Simona Collina
- Department
of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
18
|
Mehta NV, Degani MS. The expanding repertoire of covalent warheads for drug discovery. Drug Discov Today 2023; 28:103799. [PMID: 37839776 DOI: 10.1016/j.drudis.2023.103799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The reactive functionalities of drugs that engage in covalent interactions with the enzyme/receptor residue in either a reversible or an irreversible manner are called 'warheads'. Covalent warheads that were previously neglected because of safety concerns have recently gained center stage as a result of their various advantages over noncovalent drugs, including increased selectivity, increased residence time, and higher potency. With the approval of several covalent inhibitors over the past decade, research in this area has accelerated. Various strategies are being continuously developed to tune the characteristics of warheads to improve their potency and mitigate toxicity. Here, we review research progress in warhead discovery over the past 5 years to provide valuable insights for future drug discovery.
Collapse
Affiliation(s)
- Namrashee V Mehta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|