1
|
Zhao H, Bu J, Liu HW. Radical S-Adenosylmethionine Sulfurtransferase MybB Catalyzed Formation of the 4-Thiazolidinone Core in Mycobacidin Represents an Intersection between Primary and Secondary Metabolism. J Am Chem Soc 2025; 147:4180-4187. [PMID: 39853311 PMCID: PMC11826332 DOI: 10.1021/jacs.4c13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Mycobacidin is an antitubercular antibiotic structurally composed of a sulfur-containing 4-thiazolidinone ring, yet its biosynthesis including the mechanism of sulfur incorporation has remained an open question since its discovery in 1952. In this study, the mycobacidin biosynthetic gene cluster is identified from soil-dwelling Streptomyces, and the corresponding biosynthetic pathway starting with 7-oxoheptanoate is characterized. The radical SAM enzyme MybB catalyzes two sulfur insertion reactions, thereby bridging C7 and C10 to complete the 4-thiazolidinone heterocycle as the final step in mycobacidin maturation. MybB is a homologue of biotin synthase, and in both biosynthetic pathways, the bridging sulfur originates from the degradation of an enzymatic auxiliary [Fe2S2] cluster. Introduction of the two C-S bonds during 4-thiazolidinone cyclization is shown to take place in a fixed sequence with the terminal C10-S bond generated first followed by the C7-S bond. MybB thus represents a generalization of biotin synthase activity that contributes to the maturation of not only primary but also secondary metabolites via sequential sulfur insertion reactions to yield sulfur containing heterocycles.
Collapse
Affiliation(s)
- Houyuan Zhao
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Junling Bu
- Division of Chemical Biology and Medicinal Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Division of Chemical Biology and Medicinal Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Lopez AE, Mayoral J, Zheng H, Cianciotto NP. Legionella pneumophila IrsA, a novel, iron-regulated exoprotein that facilitates growth in low-iron conditions and modulates biofilm formation. Microbiol Spectr 2025; 13:e0231324. [PMID: 39612475 PMCID: PMC11705809 DOI: 10.1128/spectrum.02313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
To discover new factors that are involved in iron acquisition by Legionella pneumophila, we used RNA-Seq to identify the genes that are most highly induced when virulent strain 130b is cultured in a low-iron chemically defined medium. Among other things, this revealed 14915, a heretofore uncharacterized gene that is predicted to be transcriptionally regulated by Fur and to encode a novel, ~15 kDa protein. 14915 was present in all L. pneumophila strains examined and had homologs in a subset of the other Legionella species. Compatible with it containing a classic signal sequence, the 14915 protein was detected in bacterial culture supernatants in a manner dependent upon the L. pneumophila type II secretion system. Thus, we designated 14915 as IrsA for iron-regulated, secreted protein A. Based on mutant analysis, the irsA gene was not required for optimal growth of strain 130b in low-iron media. However, after discovering that the commonly used laboratory-derived strain Lp02 has a much greater requirement for iron, we uncovered a growth-enhancing role for IrsA after examining an Lp02 mutant that lacked both IrsA and the Fe2+-transporter FeoB. The irsA mutant of 130b, but not its complemented derivative, did, however, display increased biofilm formation on both plastic and agar surfaces, and compatible with this, the mutant hyper-aggregated. Thus, IrsA is a novel, iron-regulated exoprotein that modulates biofilm formation and, under some circumstances, promotes growth in low-iron conditions. For this study, we determined and deposited in the database a complete and fully assembled genome sequence for strain 130b.IMPORTANCEThe bacterium Legionella pneumophila is the principal cause of Legionnaires' disease, a potentially fatal form of pneumonia that is increasing in incidence. L. pneumophila exists in many natural and human-made water systems and can be transmitted to humans through inhalation of contaminated water droplets. L. pneumophila flourishes within its habitats by spreading planktonically, assembling into biofilms, and growing in larger host cells. Iron acquisition is a key determinant for L. pneumophila persistence in water and during infection. We previously demonstrated that L. pneumophila assimilates iron both by secreting a non-protein iron chelator (siderophore) and by importing iron through membrane transporters. In this study, we uncovered a novel, secreted protein that is highly iron-regulated, promotes L. pneumophila's growth in low-iron media, and impacts biofilm formation. We also identified uncharacterized, IrsA-related proteins in other important human and animal pathogens. Thus, our results have important implications for understanding iron assimilation, biofilm formation, and pathogenesis.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Joshua Mayoral
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Huaixin Zheng
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
3
|
Ruszczycky MW, Liu HW. Initiation, Propagation, and Termination in the Chemistry of Radical SAM Enzymes. Biochemistry 2024; 63:3161-3183. [PMID: 39626071 PMCID: PMC11878213 DOI: 10.1021/acs.biochem.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes catalyze radical mediated chemical transformations notable for their diversity. The radical mediated reactions that take place in their catalytic cycles can be characterized with respect to one or more phases of initiation, propagation, and termination. Mechanistic models abound regarding these three phases of catalysis being regularly informed and updated by new discoveries that offer insights into their detailed workings. However, questions continue to be raised that touch on fundamental aspects of their mechanistic enzymology. Radical SAM enzymes are consequently far from fully understood, and this Perspective aims to outline some of the current models of radical SAM chemistry with an emphasis on lines of investigation that remain to be explored.
Collapse
Affiliation(s)
- Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Want K, D'Autréaux B. Mechanism of mitochondrial [2Fe-2S] cluster biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119811. [PMID: 39128597 DOI: 10.1016/j.bbamcr.2024.119811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Iron‑sulfur (Fe-S) clusters constitute ancient cofactors that accompany a versatile range of fundamental biological reactions across eukaryotes and prokaryotes. Several cellular pathways exist to coordinate iron acquisition and sulfur mobilization towards a scaffold protein during the tightly regulated synthesis of Fe-S clusters. The mechanism of mitochondrial eukaryotic [2Fe-2S] cluster synthesis is coordinated by the Iron-Sulfur Cluster (ISC) machinery and its aberrations herein have strong implications to the field of disease and medicine which is therefore of particular interest. Here, we describe our current knowledge on the step-by-step mechanism leading to the production of mitochondrial [2Fe-2S] clusters while highlighting the recent developments in the field alongside the challenges that are yet to be overcome.
Collapse
Affiliation(s)
- Kristian Want
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Benoit D'Autréaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Patelski AM, Dziekońska-Kubczak U, Nowak A, Ditrych M, Balcerek M, Pielech-Przybylska K, Dziugan P. Effect of Selenium Supplementation on Biotin and Selenobiotin Concentrations in Meyerozyma guilliermondii and Trichosporon cutaneum Cells. Molecules 2024; 29:5607. [PMID: 39683765 DOI: 10.3390/molecules29235607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Numerous studies have demonstrated the efficacy of selenium compounds in preventing and treating lifestyle-related diseases such as cancer and cardiovascular disorders. The formulation of selenium-enriched supplements for humans and animals, particularly those containing selenium yeast, is highly advantageous. These products are rich in organic selenium derivatives, showing significantly higher bioavailability than inorganic forms of selenium. A particularly promising selenium analogue of sulphur-containing compounds is selenobiotin. The literature indicates that Phycomyces blakesleeanus and Escherichia coli strains can synthesise this compound. This research aimed to evaluate the effect of selenium supplementation on the biosynthesis of biotin and selenobiotin in Trichosporon cutaneum and Meyerozyma guilliermondii. The results have the potential to advance biotechnological approaches for the production of selenobiotin for various applications. A method based on affinity chromatography was used to quantify selenobiotin. The results confirmed that both yeast strains could synthesise selenobiotin in addition to biotin. In M. guilliermondii cells, selenobiotin accounted for up to 17.3% of the total biotin vitamer fraction. In comparison, in T. cutaneum cells, it accounted for up to 28.4% of the sum of biotin and its analogues. The highest levels of selenobiotin were observed in cells cultured with selenomethionine.
Collapse
Affiliation(s)
- Andrea Maria Patelski
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Urszula Dziekońska-Kubczak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Agnieszka Nowak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Maciej Ditrych
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Maria Balcerek
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Katarzyna Pielech-Przybylska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Piotr Dziugan
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| |
Collapse
|
6
|
Wu Y, Du GQ, Ma DH, Li JL, Fang H, Dong HN, Jin ZX, Zhang DW. Pathway and protein channel engineering of Bacillus subtilis for improved production of desthiobiotin and biotin. Synth Syst Biotechnol 2024; 10:307-313. [PMID: 39686976 PMCID: PMC11648629 DOI: 10.1016/j.synbio.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Biotin (vitamin B7) is a crucial cofactor for various metabolic processes and has significant applications in pharmaceuticals, cosmetics, and animal feed. Bacillus subtilis, a well-studied Gram-positive bacterium, presents a promising host for biotin production due to its Generally Recognized as Safe (GRAS) status, robust genetic tractability, and capacity for metabolite secretion. This study focuses on the metabolic engineering of B. subtilis to enhance biotin biosynthesis. Initially, the desthiobiotin (DTB) and biotin synthesis ability of different B. subtilis strains were evaluated to screen for suitable chassis cells. Subsequently, the titers of DTB and biotin were increased to 21.6 mg/L and 2.7 mg/L, respectively, by relieving the feedback repression of biotin synthesis and deleting the biotin uptake protein YhfU. Finally, through engineering the access tunnel to the active site of biotin synthase (BioB) for reactants and modulating its expression, the biotin titer was increased to 11.2 mg/L, marking an 1130-fold improvement compared to the wild-type strain. These findings provide novel strategies for enhancing the production of DTB and improving the conversion efficiency of DTB to biotin.
Collapse
Affiliation(s)
- Yue Wu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Guang-Qing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dong-Han Ma
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jin-Long Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Na Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Xia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Da-Wei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Gervason S, Sen S, Fontecave M, Golinelli-Pimpaneau B. [4Fe-4S]-dependent enzymes in non-redox tRNA thiolation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119807. [PMID: 39106920 DOI: 10.1016/j.bbamcr.2024.119807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024]
Abstract
Post-transcriptional modification of nucleosides in transfer RNAs (tRNAs) is an important process for accurate and efficient translation of the genetic information during protein synthesis in all domains of life. In particular, specific enzymes catalyze the biosynthesis of sulfur-containing nucleosides, such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A), within tRNAs. Whereas the mechanism that has prevailed for decades involved persulfide chemistry, more and more tRNA thiolation enzymes have now been shown to contain a [4Fe-4S] cluster. This review summarizes the information over the last ten years concerning the biochemical, spectroscopic and structural characterization of [4Fe-4S]-dependent non-redox tRNA thiolation enzymes.
Collapse
Affiliation(s)
- Sylvain Gervason
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Sambuddha Sen
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France.
| |
Collapse
|
8
|
Cronan JE. Lipoic acid attachment to proteins: stimulating new developments. Microbiol Mol Biol Rev 2024; 88:e0000524. [PMID: 38624243 PMCID: PMC11332335 DOI: 10.1128/mmbr.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
SUMMARYLipoic acid-modified proteins are essential for central metabolism and pathogenesis. In recent years, the Escherichia coli and Bacillus subtilis lipoyl assembly pathways have been modified and extended to archaea and diverse eukaryotes including humans. These extensions include a new pathway to insert the key sulfur atoms of lipoate, several new pathways of lipoate salvage, and a novel use of lipoic acid in sulfur-oxidizing bacteria. Other advances are the modification of E. coli LplA for studies of protein localization and protein-protein interactions in cell biology and in enzymatic removal of lipoate from lipoyl proteins. Finally, scenarios have been put forth for the evolution of lipoate assembly in archaea.
Collapse
Affiliation(s)
- John E. Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
9
|
Qu D, Ge P, Botella L, Park SW, Lee HN, Thornton N, Bean JM, Krieger IV, Sacchettini JC, Ehrt S, Aldrich CC, Schnappinger D. Mycobacterial biotin synthases require an auxiliary protein to convert dethiobiotin into biotin. Nat Commun 2024; 15:4161. [PMID: 38755122 PMCID: PMC11099021 DOI: 10.1038/s41467-024-48448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Lipid biosynthesis in the pathogen Mycobacterium tuberculosis depends on biotin for posttranslational modification of key enzymes. However, the mycobacterial biotin synthetic pathway is not fully understood. Here, we show that rv1590, a gene of previously unknown function, is required by M. tuberculosis to synthesize biotin. Chemical-generic interaction experiments mapped the function of rv1590 to the conversion of dethiobiotin to biotin, which is catalyzed by biotin synthases (BioB). Biochemical studies confirmed that in contrast to BioB of Escherichia coli, BioB of M. tuberculosis requires Rv1590 (which we named "biotin synthase auxiliary protein" or BsaP), for activity. We found homologs of bsaP associated with bioB in many actinobacterial genomes, and confirmed that BioB of Mycobacterium smegmatis also requires BsaP. Structural comparisons of BsaP-associated biotin synthases with BsaP-independent biotin synthases suggest that the need for BsaP is determined by the [2Fe-2S] cluster that inserts sulfur into dethiobiotin. Our findings open new opportunities to seek BioB inhibitors to treat infections with M. tuberculosis and other pathogens.
Collapse
Affiliation(s)
- Di Qu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Peng Ge
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Laure Botella
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Natalie Thornton
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - James M Bean
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Inna V Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA.
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Ma D, Du G, Fang H, Li R, Zhang D. Advances and prospects in microbial production of biotin. Microb Cell Fact 2024; 23:135. [PMID: 38735926 PMCID: PMC11089781 DOI: 10.1186/s12934-024-02413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Biotin, serving as a coenzyme in carboxylation reactions, is a vital nutrient crucial for the natural growth, development, and overall well-being of both humans and animals. Consequently, biotin is widely utilized in various industries, including feed, food, and pharmaceuticals. Despite its potential advantages, the chemical synthesis of biotin for commercial production encounters environmental and safety challenges. The burgeoning field of synthetic biology now allows for the creation of microbial cell factories producing bio-based products, offering a cost-effective alternative to chemical synthesis for biotin production. This review outlines the pathway and regulatory mechanism involved in biotin biosynthesis. Then, the strategies to enhance biotin production through both traditional chemical mutagenesis and advanced metabolic engineering are discussed. Finally, the article explores the limitations and future prospects of microbial biotin production. This comprehensive review not only discusses strategies for biotin enhancement but also provides in-depth insights into systematic metabolic engineering approaches aimed at boosting biotin production.
Collapse
Affiliation(s)
- Donghan Ma
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Rong Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Vallières C, Benoit O, Guittet O, Huang ME, Lepoivre M, Golinelli-Cohen MP, Vernis L. Iron-sulfur protein odyssey: exploring their cluster functional versatility and challenging identification. Metallomics 2024; 16:mfae025. [PMID: 38744662 PMCID: PMC11138216 DOI: 10.1093/mtomcs/mfae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Iron-sulfur (Fe-S) clusters are an essential and ubiquitous class of protein-bound prosthetic centers that are involved in a broad range of biological processes (e.g. respiration, photosynthesis, DNA replication and repair and gene regulation) performing a wide range of functions including electron transfer, enzyme catalysis, and sensing. In a general manner, Fe-S clusters can gain or lose electrons through redox reactions, and are highly sensitive to oxidation, notably by small molecules such as oxygen and nitric oxide. The [2Fe-2S] and [4Fe-4S] clusters, the most common Fe-S cofactors, are typically coordinated by four amino acid side chains from the protein, usually cysteine thiolates, but other residues (e.g. histidine, aspartic acid) can also be found. While diversity in cluster coordination ensures the functional variety of the Fe-S clusters, the lack of conserved motifs makes new Fe-S protein identification challenging especially when the Fe-S cluster is also shared between two proteins as observed in several dimeric transcriptional regulators and in the mitoribosome. Thanks to the recent development of in cellulo, in vitro, and in silico approaches, new Fe-S proteins are still regularly identified, highlighting the functional diversity of this class of proteins. In this review, we will present three main functions of the Fe-S clusters and explain the difficulties encountered to identify Fe-S proteins and methods that have been employed to overcome these issues.
Collapse
Affiliation(s)
- Cindy Vallières
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Orane Benoit
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Olivier Guittet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Meng-Er Huang
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Michel Lepoivre
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Marie-Pierre Golinelli-Cohen
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Laurence Vernis
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| |
Collapse
|
12
|
Zhao JR, Zuo SQ, Xiao F, Guo FZ, Chen LY, Bi K, Cheng DY, Xu ZN. Advances in biotin biosynthesis and biotechnological production in microorganisms. World J Microbiol Biotechnol 2024; 40:163. [PMID: 38613659 DOI: 10.1007/s11274-024-03971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Abstract
Biotin, also known as vitamin H or B7, acts as a crucial cofactor in the central metabolism processes of fatty acids, amino acids, and carbohydrates. Biotin has important applications in food additives, biomedicine, and other fields. While the ability to synthesize biotin de novo is confined to microorganisms and plants, humans and animals require substantial daily intake, primarily through dietary sources and intestinal microflora. Currently, chemical synthesis stands as the primary method for commercial biotin production, although microbial biotin production offers an environmentally sustainable alternative with promising prospects. This review presents a comprehensive overview of the pathways involved in de novo biotin synthesis in various species of microbes and insights into its regulatory and transport systems. Furthermore, diverse strategies are discussed to improve the biotin production here, including mutation breeding, rational metabolic engineering design, artificial genetic modification, and process optimization. The review also presents the potential strategies for addressing current challenges for industrial-scale bioproduction of biotin in the future. This review is very helpful for exploring efficient and sustainable strategies for large-scale biotin production.
Collapse
Affiliation(s)
- Jia-Run Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Si-Qi Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Feng Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Feng-Zhu Guo
- Zhejiang Sliver-Elephant Bio-engineering Co., Ltd., Tiantai, 317200, China
| | - Lu-Yi Chen
- Zhejiang Sliver-Elephant Bio-engineering Co., Ltd., Tiantai, 317200, China
| | - Ke Bi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong-Yuan Cheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhi-Nan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|