1
|
Rodrigues JAO, Kiran NS, Chatterjee A, Prajapati BG, Dhas N, Dos Santos AO, de Sousa FF, Souto EB. Metallodrugs: Synthesis, mechanism of action and nanoencapsulation for targeted chemotherapy. Biochem Pharmacol 2025; 231:116644. [PMID: 39577705 DOI: 10.1016/j.bcp.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
As a multifactorial and heterogeneous disease, cancer has a high mortality rate, and the search for more effective treatments is an enormous challenge. Metal coordination compounds open a range of possibilities that conventional organic and biological molecules can no longer fulfil due to increasing drug resistance. Metallodrugs still have tremendous potential to help overcome drug resistance and find new cures in medicine, considering that at least 25 metallic elements participate in healthy functioning of the human body. Transition metal ions, such as copper, zinc and iron, are incorporated into catalytic proteins, the so-called metalloenzymes, which participate in various chemical reactions necessary for life. The interaction of metal complexes in different pathways with the structural richness of deoxyribonucleic acid encouraged to seek to understand the mechanisms of action and overcome the obstacles encountered for a promising future of these drugs. The success of platinum-based metallodrugs is one of the great inspirations for the search of new metallodrugs, although the approval of these molecules has been slow in recent years due to the risk of systemic toxicity and insufficient understanding of their mechanisms. To overcome the clinical limitations encountered in some metallodrugs, nanoencapsulation has been proposed as a new approach to improve therapeutic index in chemotherapy. The remarkable selectivity of nanoencapsulated metallodrugs and their enhanced capacity to bypass various biological barriers allow site-specific targeting. In this review, we present the advances in the development and use of the most relevant metallodrugs, and new delivery approaches, in the fight against cancer.
Collapse
Affiliation(s)
- Jessica A O Rodrigues
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil.
| | - Neelakanta S Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Bhupendra G Prajapati
- Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Adenilson O Dos Santos
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Francisco F de Sousa
- Center for Social Sciences, Health and Technology, Federal University of Maranhão (UFMA), 65900-410 Imperatriz, MA, Brazil; Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), 66075-110, Belem, PA, Brazil
| | - Eliana B Souto
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
2
|
Ballester F, Hernández-García A, Santana MD, Bautista D, Ashoo P, Ortega-Forte E, Barone G, Ruiz J. Photoactivatable Ruthenium Complexes Containing Minimal Straining Benzothiazolyl-1,2,3-triazole Chelators for Cancer Treatment. Inorg Chem 2024; 63:6202-6216. [PMID: 38385171 PMCID: PMC11005040 DOI: 10.1021/acs.inorgchem.3c04432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Ruthenium(II) complexes containing diimine ligands have contributed to the development of agents for photoactivated chemotherapy. Several approaches have been used to obtain photolabile Ru(II) complexes. The two most explored have been the use of monodentate ligands and the incorporation of steric effects between the bidentate ligands and the Ru(II). However, the introduction of electronic effects in the ligands has been less explored. Herein, we report a systematic experimental, theoretical, and photocytotoxicity study of a novel series of Ru(II) complexes Ru1-Ru5 of general formula [Ru(phen)2(N∧N')]2+, where N∧N' are different minimal strained ligands based on the 1-aryl-4-benzothiazolyl-1,2,3-triazole (BTAT) scaffold, being CH3 (Ru1), F (Ru2), CF3 (Ru3), NO2 (Ru4), and N(CH3)2 (Ru5) substituents in the R4 of the phenyl ring. The complexes are stable in solution in the dark, but upon irradiation in water with blue light (λex = 465 nm, 4 mW/cm2) photoejection of the ligand BTAT was observed by HPLC-MS spectrometry and UV-vis spectroscopy, with t1/2 ranging from 4.5 to 14.15 min depending of the electronic properties of the corresponding BTAT, being Ru4 the less photolabile (the one containing the more electron withdrawing substituent, NO2). The properties of the ground state singlet and excited state triplet of Ru1-Ru5 have been explored using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. A mechanism for the photoejection of the BTAT ligand from the Ru complexes, in H2O, is proposed. Phototoxicity studies in A375 and HeLa human cancer cell lines showed that the new Ru BTAT complexes were strongly phototoxic. An enhancement of the emission intensity of HeLa cells treated with Ru5 was observed in response to increasing doses of light due to the photoejection of the BTAT ligand. These studies suggest that BTAT could serve as a photocleavable protecting group for the cytotoxic bis-aqua ruthenium warhead [Ru(phen)2(OH2)2]2+.
Collapse
Affiliation(s)
- Francisco
J. Ballester
- Departamento
de Química Inorgánica, Universidad
de Murcia and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Alba Hernández-García
- Departamento
de Química Inorgánica, Universidad
de Murcia and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - M. Dolores Santana
- Departamento
de Química Inorgánica, Universidad
de Murcia and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | | | - Pezhman Ashoo
- Departamento
de Química Inorgánica, Universidad
de Murcia and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Enrique Ortega-Forte
- Departamento
de Química Inorgánica, Universidad
de Murcia and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Giampaolo Barone
- Dipartimento
di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (SteBiCeF), Università degli Studi di Palermo, I-90128 Palermo, Italy
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad
de Murcia and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| |
Collapse
|
3
|
Whetter JN, Śmiłowicz D, Boros E. Exploring Aqueous Coordination Chemistry of Highly Lewis Acidic Metals with Emerging Isotopes for Nuclear Medicine. Acc Chem Res 2024; 57:933-944. [PMID: 38501206 DOI: 10.1021/acs.accounts.3c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Nuclear medicine harnesses radioisotopes for the diagnosis and treatment of disease. While the isotopes 99mTc and 111In have enabled the clinical diagnosis of millions of patients over the past 3 decades, more recent clinical translation of numerous 68Ga/177Lu-based radiopharmaceuticals for diagnostic imaging and therapy underscores the clinical utility of metal-based radiopharmaceuticals in mainstream cancer treatment. In addition to such established radionuclides, advancements in radioisotope production have enabled the production of radionuclides with a broad range of half-lives and emission properties of interest for nuclear medicine. Chemical means to form kinetically inert, in vivo-compatible species that can be modified with disease-targeting vectors is imperative. This presents a challenge for radiosiotopes of elements where the aqueous chemistry is still underdeveloped and poorly understood. Here, we discuss our efforts to date in exploring the aqueous, radioactive coordination chemistry of highly Lewis acidic metal ions and how our discoveries apply to the diagnosis and treatment of cancer in preclinical models of disease. The scope of this Account includes approaches to aqueous coordination of to-date understudied highly Lewis acidic metal ions with radioisotopes of emerging interest and the modulation of well-understood coordination environments of radio-coordination complexes to induce metal-catalyzed reactivity for separation and pro-drug applications.First, we discuss the development of seven-coordinate, small-cavity macrocyclic chelator platform mpatcn/picaga as an exemplary case study, which forms robust complexes with 44Sc/47Sc isotopes. Due to the high chemical hardness and pronounced Lewis acidity of the Sc3+ ion, the displacement of ternary ligand H2O by 18/natF- can be achieved to form an inert Sc-18/natF bond. Corresponding coordination complex natSc-18F is in vivo compatible and forms a theranostic tetrad with corresponding 44Sc/47Sc, 177Lu complexes all exhibiting homologous biodistribution profiles. Another exceptionally hard, highly Lewis acidic ion with underdeveloped aqueous chemistry and emerging interest in nuclear medicine is 45Ti4+. To develop de novo approaches to the mononuclear chelation of this ion under aqueous conditions, we employed a fragment-based bidentate ligand screening approach which identified two leads. The screen successfully predicted the formation of [45Ti][Ti(TREN-CAM)], a Ti-triscatechol complex that exhibits remarkable in vivo stability. Furthermore, the fragment-based screen also identified approaches that enabled solid-phase separation of Ti4+ and Sc3+ of interest in streamlining the isotope production of 45Ti and accessing new ways to separate 44Ti/44Sc for the development of a long-lived generator system. In addition to establishing the inert chelation of Ti4+ and Sc3+, we introduce controlled, metal-induced reactivity of corresponding coordination complexes on macroscopic and radiotracer scales. Metal-mediated autolytic amide bond cleavage (MMAAC) enables the temperature-dependent release of high-molar-activity, ready-to-inject radiopharmaceuticals; cleavage is selectively triggered by coordinated trivalent Lewis acid nat/68Ga3+ or Sc3+. Following the scope of reactivity and mechanistic studies, we validated MMAAC for the synthesis of high-molar-activity radiopharmaceuticals to image molecular targets with low expression and metal-mediated prodrug hydrolysis in vivo.This Account summarizes how developing the aqueous coordination chemistry and tuning the chemical reactivity of metal ions with high Lewis acidity at the macroscopic and tracer scales directly apply to the radiopharmaceutical synthesis with clinical potential.
Collapse
Affiliation(s)
- Jennifer N Whetter
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Kras EA, Cineus R, Crawley MR, Morrow JR. Macrocyclic complexes of Fe(III) with mixed hydroxypropyl and phenolate or amide pendants as T 1 MRI probes. Dalton Trans 2024; 53:4154-4164. [PMID: 38318938 PMCID: PMC10897765 DOI: 10.1039/d3dt04013e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
High-spin Fe(III) complexes of 1,4,7-triazacyclononane (TACN) with mixed oxygen donor pendants including hydroxypropyl, phenolate or amide groups are prepared for study as T1 MRI probes. Complexes with two hydroxypropyl pendants and either amide (Fe(TOAB)) or phenolate (Fe(PTOB)) groups are compared to an analog with three hydroxypropyl groups (Fe(NOHP)), in order to study the effect of the third pendant on the coordination sphere as probed by solution chemistry, relaxivity and structural studies. Solution studies show that Fe(PTOB) has two ionizations with the phenol pendant deprotonating with a pKa of 1.7 and a hydroxypropyl pendent with pKa of 6.3. The X-ray crystal structure of [Fe(PTOB)]Br2 features a six-coordinate complex with two bound hydroxypropyl groups, and a phenolate in a distorted octahedral geometry. The Fe(TOAB) complex has a single deprotonation, assigned to a hydroxypropyl group with a pKa value of 7.0. Both complexes are stabilized as high-spin Fe(III) in solution as shown by their effective magnetic moments and Fe(III)/Fe(II) redox potentials of -390 mV and -780 mV versus NHE at pH 7 and 25 °C for Fe(TOAB) and Fe(PTOB) respectively. Both Fe(PTOB) and Fe(TOAB) are kinetically inert to dissociation under a variety of challenges including phosphate/carbonate buffer, one equivalent of ZnCl2, two equivalents of transferrin or 100 mM HCl, or at basic pH values over 24 h at 37 °C. The r1 relaxivity of Fe(TOAB) at 1.4 T, pH 7.4 and 33 °C is relatively low at 0.6 mM-1 s-1 whereas the r1 relaxivity of Fe(PTOB) is more substantial and shows an increase of 2.5 fold to 2.5 mM-1 s-1 at acidic pH. The increase in relaxivity at acidic pH is attributed to protonation of the phenolate group to provide an additional pathway for proton relaxation.
Collapse
Affiliation(s)
- Elizabeth A Kras
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, USA.
| | - Roy Cineus
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, USA.
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, USA.
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, USA.
| |
Collapse
|
5
|
DaSilva J, Decristoforo C, Mach RH, Bormans G, Carlucci G, Al-Qahtani M, Duatti A, Gee AD, Szymanski W, Rubow S, Hendrikx J, Yang X, Jia H, Zhang J, Caravan P, Yang H, Zeevaart JR, Rodriquez MA, Oliveira RS, Zubillaga M, Sakr T, Spreckelmeyer S. Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharm Chem 2023; 8:35. [PMID: 37889361 PMCID: PMC10611660 DOI: 10.1186/s41181-023-00218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY This selection of highlights provides commentary on 21 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field in many aspects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xing Yang
- Peking University First Hospital, Beijing, China
| | | | | | - Peter Caravan
- Massuchusetts General Hospital, Harvard University, Boston, USA
| | | | | | | | - Ralph Santos Oliveira
- Brazilian Association of Radiopharmacy Brazil, Brazilian Nuclear Energy Commission - Nuclear Engineering Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Tamer Sakr
- Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sarah Spreckelmeyer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|