1
|
Maji K, Palai A, Mallick D, Maji B. Cobalt-Catalyzed Enantioselective Reductive Coupling of Imines and Internal Alkynes. Angew Chem Int Ed Engl 2025; 64:e202424394. [PMID: 39781749 DOI: 10.1002/anie.202424394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Chiral allylamines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allylamines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor. The substrate scope is extensive. Symmetric and unsymmetric alkyl and aryl alkynes have been successfully coupled with various imines derived from aryl and alkyl aldehydes. Tri- and tetra-substituted allyl amines were isolated in high yields, with enantiomeric excess surpassing >99.9 % and regioselectivities exceeding >20 : 1. These chiral allyl amines can serve as versatile platforms for subsequent transformations while preserving their stereochemical integrity. Extensive experimental and computational mechanistic studies were performed to elucidate the mechanism. These investigations have indicated that an in situ cobalt(I) catalyst enables the oxidative cyclization of alkynes and imines, and a spin crossover occurs during the enantio-determining step. Zinc plays a pivotal role in facilitating the transmetallation of the resulting azacobaltacycle. The observed enantioselectivity was interpreted by the stabilization of the transition state through higher stabilizing interaction energy from high negative polarization, dispersion, and C-H⋅⋅⋅π interactions.
Collapse
Affiliation(s)
- Kakoli Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Angshuman Palai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Dibyendu Mallick
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
2
|
Parveen D, Yadav RK, Fantuzzi F, Roy DK. Bis(diiminate)-Supported Bimetallic Complexes: Tri-Coordinated Zinc for Nitrile and Carbodiimide Hydroboration. ACS OMEGA 2025; 10:2033-2043. [PMID: 39866612 PMCID: PMC11755180 DOI: 10.1021/acsomega.4c08068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
We report the synthesis and characterization of bis(diiminate)-supported tricoordinated zinc complexes (1-4) and demonstrate the catalytic activity of one representative compound in the hydroboration of nitriles and carbodiimides using pinacolborane (HBpin). Experimental and theoretical studies were performed to elucidate the reaction mechanism. Our findings indicate that the hydroboration reaction initiates with the formation of a tricoordinated zinc hydride intermediate, followed by the subsequent attack of nitriles and carbodiimides. This leads to the formation of a four-membered metallacycle before the release of the diborylated amine. This work provides access to new types of zinc complexes and highlights its effectiveness in the hydroboration of nitriles and carbodiimides, offering a milder alternative to existing reduction methods.
Collapse
Affiliation(s)
- Darakshan Parveen
- Department
of Chemistry, Indian Institute of Technology
Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Rahul Kumar Yadav
- Department
of Chemistry, Indian Institute of Technology
Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Felipe Fantuzzi
- School
of Chemistry and Forensic Science, University
of Kent, Park Wood Rd, Canterbury CT2 7NH, U.K.
| | - Dipak Kumar Roy
- Department
of Chemistry, Indian Institute of Technology
Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
3
|
Zhang C, Wu X, Qu J, Chen Y. A General Enantioselective α-Alkyl Amino Acid Derivatives Synthesis Enabled by Cobalt-Catalyzed Reductive Addition. J Am Chem Soc 2024; 146:25918-25926. [PMID: 39264330 DOI: 10.1021/jacs.4c09556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Enantioenriched unnatural amino acids represent a prevalent motif in organic chemistry, with profound applications in biochemistry, medicinal chemistry, and materials science. Herein, we report a cobalt-catalyzed aza-Barbier reaction of dehydroglycines with unactivated alkyl halides to afford unnatural α-amino esters with high enantioselectivity. This catalytic reductive alkylative addition protocol circumvents the use of moisture-, air-sensitive organometallic reagents, and stoichiometric chiral auxiliaries, enabling the conversion of a variety of primary, secondary, and even tertiary unactivated alkyl halides to α-alkyl-amino esters under mild conditions, thus leading to broad functional group tolerance. The expedient access to biologically active motifs demonstrates the practicality of this protocol by reducing the number of synthetic steps and enhancing the reaction efficiency.
Collapse
Affiliation(s)
- Chengxi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Gao Q, Xu WC, Nie X, Bian KJ, Yuan HR, Zhang W, Wu BB, Wang XS. Regio- and enantioselective nickel-alkyl catalyzed hydroalkylation of alkynes. Nat Commun 2024; 15:6556. [PMID: 39095386 PMCID: PMC11297161 DOI: 10.1038/s41467-024-50947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The migratory insertion of metal-hydride into alkene has allowed regioselective access to organometallics, readily participating in subsequent functionalization as one conventional pathway of hydroalkylation, whereas analogous process with feedstock alkyne is drastically less explored. Among few examples, the regioselectivity of metal-hydride insertion is mostly governed by electronic bias of alkynes. To alter the regioselectivity and drastically expand the intermediate pools that we can access, one aspirational design is through alternative nickel-alkyl insertion, providing opposite regioselectivity induced by steric demand. Leveraging in situ formed nickel-alkyl species, we herein report the regio- and enantioselective hydroalkylation of alkynes with broad functional group tolerance, excellent regio- and enantioselectivity, enabling efficient route to diverse valuable chiral allylic amines motifs. Preliminary mechanistic studies indicate the aminoalkyl radical species can participate in metal-capture and lead to formation of nickel-alkyl, of which the migratory insertion is key to reverse regioselectivity observed in metal-hydride insertion.
Collapse
Affiliation(s)
- Qian Gao
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wei-Cheng Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xuan Nie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kang-Jie Bian
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Hong-Rui Yuan
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wen Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Bing-Bing Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, China.
| | - Xi-Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Zhang K, Huang Y, Zhang D, Wu J, Mai Y, Cai N, Wang C, Yue H, Liang W, Su R. Enhanced Co-Adsorption of Alcohols and Amines for Visible Light Driven Oxidative Condensation Using Iron-Based MOF. Chemistry 2024; 30:e202401540. [PMID: 38805347 DOI: 10.1002/chem.202401540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Imines are essential intermediates in organic transformations, and is generally produced by dehydrogenative condensation of alcohols and amines with the assist of specialized catalysts and additives. Heterogeneous photocatalysis provides a sustainable platform for such process without the using of toxic oxidants, yet a functionalized photocatalyst with optimized co-adsorption of reactants needs to be developed to promote the stoichiometric oxidative condensation under ambient conditions. Here, we show that benzyl alcohol and aniline adsorb non-interferingly on the Fe node and the linker sites of the MIL-53(Fe) metal organic frameworks (MOFs), respectively. The co-adsorption of both reactants barely influences the reduction of molecular oxygen to generate oxygen radicals, resulting in efficient formation of benzaldehyde under visible light. Additionally, the weak adsorption of water together with surface acidity of the MIL-53(Fe) promote a rapid condensation of benzaldehyde with aniline and the depletion of generated water, achieving an efficient C-N bond creation for a wide range of substrates.
Collapse
Affiliation(s)
- Kai Zhang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, 215006, Suzhou, China
| | - Yu Huang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, 215006, Suzhou, China
| | - Dongsheng Zhang
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, 215006, Suzhou, China
| | - Jianghua Wu
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou Industrial Park, 215123, Suzhou, China
| | - Yuanqiang Mai
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, 215006, Suzhou, China
| | - Nengjun Cai
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, 215006, Suzhou, China
| | - Chao Wang
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, 215006, Suzhou, China
| | - Huiyu Yue
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, 215006, Suzhou, China
| | - Wenting Liang
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, 030006, Taiyuan, China
| | - Ren Su
- Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, 215006, Suzhou, China
| |
Collapse
|
6
|
Sun T, Guo L, Li Q, Cao ZC. Nickel-Catalyzed Chemoselective Carbomagnesiation for Atroposelective Ring-Opening Difunctionalization. Angew Chem Int Ed Engl 2024; 63:e202401756. [PMID: 38651647 DOI: 10.1002/anie.202401756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
There is a pressing need for methods that can connect enantioenriched organic compounds with readily accessible building blocks via asymmetric functionalization of unreactive chemical bonds in organic synthesis and medicinal chemistry. Herein, the asymmetric chemoselective cleavage of two unactivated C(Ar)-O bonds in the same molecule is disclosed for the first time through an unusual nickel-catalyzed carbomagnesiation. This reaction facilitates the evolution of a novel atroposelective ring-opening difunctionalization. Utilizing readily available dibenzo bicyclic substrates, diverse valuable axially chiral biaryls are furnished with high efficiencies. Synthetic elaborations showcase the application potential of this method. The features of this method include good atom-economy, multiple roles of the nucleophile, and a simple catalytic system that enables the precise magnesiation of an α-C(Ar)-O bond and arylation of a β-C(Ar)-O bond.
Collapse
Affiliation(s)
- Tingting Sun
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, China, 230036
| | - Linchao Guo
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, China, 230036
| | - Qi Li
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, China, 230036
| | - Zhi-Chao Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, China, 230036
| |
Collapse
|
7
|
Xia T, Wu W, Wu X, Qu J, Chen Y. Cobalt-Catalyzed Enantioselective Reductive α-Chloro-Carbonyl Addition of Ketimine to Construct the β-Tertiary Amino Acid Analogues. Angew Chem Int Ed Engl 2024; 63:e202318991. [PMID: 38252658 DOI: 10.1002/anie.202318991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
β-Tertiary amino acid derivatives constitute one of the most frequently occurring units in natural products and bioactive molecules. However, the efficient asymmetric synthesis of this motif still remains a significant challenge. Herein, we disclose a cobalt-catalyzed enantioselective reductive addition reaction of ketimine using α-chloro carbonyl compound as a radical precursor, providing expedient access to a diverse array of enantioenriched β-quaternary amino acid analogues. This protocol exhibits outstanding enantioselectivity and broad substrate scope with excellent functional group tolerance. Preliminary mechanism studies rule out the possibility of Reformatsky-type addition and confirm the involvement of radical species in stereoselective addition process. The synthetic utility has been demonstrated through the rapid assembly of iterative amino acid units and oligopeptide, showcasing its versatile platform for late-stage modification of drug candidates.
Collapse
Affiliation(s)
- Tingting Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenwen Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
8
|
Yamaguchi H, Takahashi F, Kurogi T, Yorimitsu H. Reductive anti-Dizincation of Arylacetylenes. Chem Asian J 2024; 19:e202400384. [PMID: 38647096 DOI: 10.1002/asia.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Arylacetylenes undergo anti-1,2-dizincation to afford trans-1,2-dizincioalkenes. The process employs sodium dispersion as a reducing agent and zinc chloride TMEDA complex as a reduction-resistant zinc electrophile. This reductive anti-dizincation contrasts with the conventional additive syn-dimetalation like silylzincation. The resulting dizincated alkenes undergo the cross-coupling to yield multi-substituted alkenes stereoselectively.
Collapse
Affiliation(s)
- Haruka Yamaguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Fumiya Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Kurogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
9
|
Wang H, Jie X, Chong Q, Meng F. Pathway-divergent coupling of 1,3-enynes with acrylates through cascade cobalt catalysis. Nat Commun 2024; 15:3427. [PMID: 38654019 DOI: 10.1038/s41467-024-47719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Catalytic cascade transformations of simple starting materials into highly functionalized molecules bearing a stereochemically defined multisubstituted alkene, which are important in medicinal chemistry, natural product synthesis, and material science, are in high demand for organic synthesis. The development of multiple reaction pathways accurately controlled by catalysts derived from different ligands is a critical goal in the field of catalysis. Here we report a cobalt-catalyzed strategy for the direct coupling of inexpensive 1,3-enynes with two molecules of acrylates to construct a high diversity of functionalized 1,3-dienes containing a trisubstituted or tetrasubstituted olefin. Such cascade reactions can proceed through three different pathways initiated by oxidative cyclization to achieve multiple bond formation in high chemo-, regio- and stereoselectivity precisely controlled by ligands, providing a platform for the development of tandem carbon-carbon bond-forming reactions.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaofeng Jie
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300074, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100086, China.
| |
Collapse
|
10
|
Xia T, Wu Y, Hu J, Wu X, Qu J, Chen Y. Cobalt-Catalyzed Asymmetric Aza-Nozaki-Hiyama-Kishi (NHK) Reaction of α-Imino Esters with Alkenyl Halides. Angew Chem Int Ed Engl 2024; 63:e202316012. [PMID: 38164694 DOI: 10.1002/anie.202316012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Chromium-catalyzed enantioselective Nozaki-Hiyama-Kishi (NHK) reaction represents one of the most powerful approaches for the formation of chiral carbon-heteroatom bond. However, the construction of sterically encumbered tetrasubstituted stereocenter through NHK reaction still posts a significant challenge. Herein, we disclose a cobalt-catalyzed aza-NHK reaction of ketimine with alkenyl halide to provide a convenient synthetic approach for the manufacture of enantioenriched tetrasubstituted α-vinylic amino acid. This protocol exhibits excellent functional group tolerance with excellent 99 % ee in most cases. Additionally, this asymmetric reductive method is also applicable to the aldimine to access the trisubstituted stereogenic centers.
Collapse
Affiliation(s)
- Tingting Xia
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yinhui Wu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jiangtao Hu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|