1
|
Wang W, Chen Y, Bu X, Feng P. Heterometallic Aluminum Metal-Organic Frameworks. J Am Chem Soc 2025; 147:15146-15156. [PMID: 40285722 DOI: 10.1021/jacs.4c18251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
From spinel gemstone (MgAl2O4) to layered double hydroxides, nature has long relied on combinations between charge-complementary metal ions such as divalent metal ions (M2+) and Al3+ to create diverse valuable materials. However, for metal-organic frameworks (MOFs), heterometallic combinations such as Mg-Al are conspicuously absent. Here, we report a breakthrough in the synthesis of heterometallic Al-MOFs containing M2+/Al3+ trimeric clusters (M = Mg, Mn, Co, Ni). The synergistic effect between M(II) chlorides and aluminum lactate plays a critical role in the cooperative crystallization of M2+ and Al3+ into pore-space-partitioned MOFs (partitioned acs topology) with fast crystallization kinetics (about 3 h). New M2+/Al3+ MOFs exhibit highly tunable porosity and extraordinarily high uptakes for CO2 and small hydrocarbon molecules (112 cm3/g for CO2, 176 cm3/g for C2H2, 156 cm3/g for C2H4, and 163 cm3/g for C2H6) at 298 K and 1 bar. The high uptake capacity coupled with high selectivity (up to 8.5 for C2H2/CO2, 10.8 for C2H2/C2H4) gives rise to efficient separations of either C2H2/CO2 or C2H2/C2H4 gas mixtures, as confirmed by experimental breakthrough experiments.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
2
|
Lin QC, Liao WM, Li J, Ye B, Chen DT, Zhou XX, Li PH, Li M, Li MD, He J. High-Performance Overall Water Splitting Dominated by Direct Ligand-to-Cluster Photoexcitation in Metal-Organic Frameworks. Angew Chem Int Ed Engl 2025; 64:e202423070. [PMID: 39853850 DOI: 10.1002/anie.202423070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 01/26/2025]
Abstract
Expanding the spectral response of photocatalysts to facilitate overall water splitting (OWS) represents an effective approach for improving solar spectrum utilization efficiency. However, the majority of single-phase photocatalysts designed for OWS primarily respond to the ultraviolet region, which accounts for a small proportion of sunlight. Herein, we present a versatile strategy to achieve broad visible-light-responsive OWS photocatalysis dominated by direct ligand-to-cluster charge transfer (LCCT) within metal-organic frameworks (MOFs). Three synthesized OWS MOFs, namely Fe2MCbz (M2+ = Mn2+, Co2+, Ni2+), exhibited intrinsic OWS capability without the requirement for extra photosensitizer or sacrificial agent or cocatalyst. Among these, Fe2NiCbz was identified as the superior performer, and when dispersed with polyacrylonitrile nanofibers using electrospinning technology, it achieved the highest OWS rates of 170.2 and 85.1 μmol g-1 h-1 for H2 and O2 evolution, surpassing all previously documented MOF-based photocatalysts. Experimental and theoretical analyses revealed that direct LCCT played a crucial role in enhancing the photocatalytic efficiency, with exceptional performance of Fe2NiCbz attributed to its well-optimized energy level structures and highly efficient charge transfer mechanism. This work not only sets a benchmark in OWS MOF photocatalysts but also paves the way for maximizing solar spectrum utilization, thereby advancing renewable hydrogen production strategy.
Collapse
Affiliation(s)
- Qia-Chun Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei-Ming Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Jiayu Li
- College of Chemistry and Chemical Engineering and Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Bowei Ye
- College of Chemistry and Chemical Engineering and Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Da-Tang Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Xiang Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Peng-Hui Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meng Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering and Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| |
Collapse
|
3
|
Azmy A, Anderson AB, Bagherifard M, Tariq N, Nassar KES, Spanopoulos I. When Pore Met Semi: Charting the Rise of Porous Metal Halide Semiconductors. ACS ORGANIC & INORGANIC AU 2025; 5:87-96. [PMID: 40190390 PMCID: PMC11969274 DOI: 10.1021/acsorginorgau.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/06/2025] [Accepted: 02/11/2025] [Indexed: 04/09/2025]
Abstract
Metal halide semiconductors (MHS) are a versatile class of materials with fully customizable mechanical and optoelectronic properties that have proven to be prominent candidates in numerous impactful applications. Finding a way to generate porosity in MHS would bestow upon them an additional node in property engineering, thus allowing them to be utilized in uncharted technologies. Motivated by this promise, we developed a general strategy to render the MHS porous. We employed molecular cages as structure-directing agents and countercations, which fostered a new family of materials: porous metal halide semiconductors (PMHS). The presence of molecular cages gave rise to ultramicroporous structures imposed by the organic part cavities and a record water stability performance of 27 months so far. In this Perspective, we discuss the principles and promises of PMHS, which combine the merits of porous and electronic compounds.
Collapse
Affiliation(s)
- Ali Azmy
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Alissa Brooke Anderson
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Mina Bagherifard
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Neelam Tariq
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Kamal E. S. Nassar
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
4
|
Cao JW, Zhang T, Liu YQ, Wang Y, Pan FP, Chen J, Chen KJ. Precise C 2H 2 Adsorption Affinity Modulation by Nitrogen Functionalization in Isostructural Coordination Networks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501924. [PMID: 40033866 DOI: 10.1002/smll.202501924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Meticulous regulation of pore chemistry is essential for elucidating the intricate mechanism of the adsorption efficacy of porous materials. However, it is a great challenge to address the functionalization of pore chemistry while preserving pore size and geometry. In this study, the robust NPU-1 series network is selected as a platform to address this challenge. By regulating the nitrogen distribution in bilayer-pyridine ligands, a series of coordination networks (NPU-1-TPB/TPP/TPT) with the same pore size and geometry but different pore polarity is obtained, affording an increase in C2H2 enthalpies from -28.3 to -33.1 kJ mol-1. In situ, infrared spectroscopy uncovers the enhanced C2H2 interaction with the central phenyl ring of bilayer-pyridine ligands with the extent of nitrogen functionalization.
Collapse
Affiliation(s)
- Jian-Wei Cao
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Tao Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yu-Qi Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yu Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Fu-Ping Pan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Juan Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University Chongqing, Chongqing, 401135, China
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
5
|
Wu Y, Tang M, Barsoum ML, Chen Z, Huang F. Functional crystalline porous framework materials based on supramolecular macrocycles. Chem Soc Rev 2025; 54:2906-2947. [PMID: 39931748 DOI: 10.1039/d3cs00939d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Crystalline porous framework materials like metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) possess periodic extended structures, high porosity, tunability and designability, making them good candidates for sensing, catalysis, gas adsorption, separation, etc. Despite their many advantages, there are still problems affecting their applicability. For example, most of them lack specific recognition sites for guest uptake. Supramolecular macrocycles are typical hosts for guest uptake in solution. Macrocycle-based crystalline porous framework materials, in which macrocycles are incorporated into framework materials, are growing into an emerging area as they combine reticular chemistry and supramolecular chemistry. Organic building blocks which incorporate macrocycles endow the framework materials with guest recognition sites in the solid state through supramolecular interactions. Distinct from solution-state molecular recognition, the complexation in the solid state is ordered and structurally achievable. This allows for determination of the mechanism of molecular recognition through noncovalent interactions while that of the traditional recognition in solution is ambiguous. Furthermore, crystalline porous framework materials in the solid state are well-defined and recyclable, and can realize what is impossible in solution. In this review, we summarize the progress of the incorporation of macrocycles into functional crystalline porous frameworks (i.e., MOFs and COFs) for their solid state applications such as molecular recognition, chiral separation and catalysis. We focus on the design and synthesis of organic building blocks with macrocycles, and then illustrate the applications of framework materials with macrocycles. Finally, we propose the future directions of macrocycle-based framework materials as reliable carriers for specific molecular recognition, as well as guiding the crystalline porous frameworks with their chemistry, applications and commercialization.
Collapse
Affiliation(s)
- Yitao Wu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Meiqi Tang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Michael L Barsoum
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| |
Collapse
|
6
|
Xie JF, Wei PC, Li Y, Chang CC, Chang KC, Lu CP, Hsu T, Tzou DLM, Tu HL, Wang CM. Unique Organic-Inorganic Hybrid Copper(I) Phosphate with Ultralow Ractopamine Detection Limit and In Situ Sensing Ability. Inorg Chem 2025; 64:4408-4414. [PMID: 40014463 PMCID: PMC11898167 DOI: 10.1021/acs.inorgchem.4c05123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
We successfully synthesized and characterized the first-ever organic-inorganic hybrid metal phosphate, NTOU-10, featuring lower-valence copper nodes under hydrothermal conditions. The crystalline structure, confirmed through single-crystal X-ray diffraction, thermogravimetric analysis, solid-state NMR spectroscopy, X-ray photoelectron spectroscopy, and bond valence-sum calculations, revealed its chemical composition, and unique coordination bonding models between organic linkers, metal nodes, and phosphate groups. These building blocks intricately bonded through metal-oxygen and metal-nitrogen linkages to form a highly complex crystalline structure. Taking innovation a step further, we polymerized NTOU-10 with pyrrole to develop the hybrid NTOU-10@polypyrrole (PPy) electrode, setting a groundbreaking record with an ultrasensitive limit of detection (LOD) of 3.31 × 10-19 M for ractopamine (RAC) sensing, surpassing existing crystalline materials by more than 9 orders of magnitude. The real-world effectiveness of this biosensor was demonstrated by detecting RAC in spiked pork samples. Additionally, we integrated the NTOU-10@PPy electrode into a flow injection analysis (FIA) system, offering advantages such as rapid detection, minimal sample requirement, and operational convenience. This work presents a significant leap forward in the design and synthesis of novel materials, along with the development of a high-performance biosensing platform for RAC detection.
Collapse
Affiliation(s)
- Ji-Fang Xie
- Department
of Bioscience and Biotechnology, National
Taiwan Ocean University, Keelung, Taiwan 202, ROC
| | - Pi-Chen Wei
- Department
of Bioscience and Biotechnology, National
Taiwan Ocean University, Keelung, Taiwan 202, ROC
| | - Ying Li
- Department
of Bioscience and Biotechnology, National
Taiwan Ocean University, Keelung, Taiwan 202, ROC
| | - Chiao-Chun Chang
- Department
of Bioscience and Biotechnology, National
Taiwan Ocean University, Keelung, Taiwan 202, ROC
| | - Kai-Chi Chang
- Department
of Applied Chemistry, National Chi Nan University, Nantou, Taiwan 202, ROC
| | - Ching-Ping Lu
- Department
of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, Taiwan 202, ROC
| | - Todd Hsu
- Department
of Bioscience and Biotechnology, National
Taiwan Ocean University, Keelung, Taiwan 202, ROC
| | - Der-Lii M. Tzou
- Institute
of Chemistry, Academia Sinica, Taipei, Taiwan 202, ROC
| | - Hsiung-Lin Tu
- Institute
of Chemistry, Academia Sinica, Taipei, Taiwan 202, ROC
| | - Chih-Min Wang
- Department
of Bioscience and Biotechnology, National
Taiwan Ocean University, Keelung, Taiwan 202, ROC
- General
Education Center, National Taiwan Ocean
University, Keelung, Taiwan 202, ROC
| |
Collapse
|
7
|
Xiao Y, Bu X, Feng P. Isoreticular Tolerance and Phase Selection in the Synthesis of Multi-Module Metal-Organic Frameworks for Gas Separation and Electrocatalytic OER. Angew Chem Int Ed Engl 2025; 64:e202422635. [PMID: 39832215 DOI: 10.1002/anie.202422635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Although metal-organic frameworks are coordination-driven assemblies, the structural prediction and design using metal-ligand interactions can be unreliable due to other competing interactions. Leveraging non-coordination interactions to develop porous assemblies could enable new materials and applications. Here, we use a multi-module MOF system to explore important and pervasive impact of ligand-ligand interactions on metal-ligand as well as ligand-ligand co-assembly process. It is found that ligand-ligand interactions play critical roles on the scope or breakdown of isoreticular chemistry. With cooperative di- and tri-topic ligands, a family of Ni-MOFs has been synthesized in various structure types including partitioned MIL-88-acs (pacs), interrupted pacs (i-pacs), and UMCM-1-muo. A new type of isoreticular chemistry on the muo platform is established between two drastically different chemical systems. The gas sorption and electrocatalytic studies were performed that reveal excellent performance such as high C2H2/CO2 selectivity of 21.8 and high C2H2 uptake capacity of 114.5 cm3/g at 298 K and 1 bar.
Collapse
Affiliation(s)
- Yuchen Xiao
- Department of Chemistry, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, 900 University Ave, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Li Z, He W, Zhang P, Lei J, Zhai QG. Hexaazatrinaphthylene-Based Ultrastable Metal-Organic Frameworks Modulated by the Chelating Coordination Configuration for CO 2 Capture. Inorg Chem 2025; 64:3057-3065. [PMID: 39908016 DOI: 10.1021/acs.inorgchem.4c05364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Hexaazatrinaphthylene (HATN), a polyheterocyclic aromatic ligand, is ideal for constructing discrete functional coordination complexes. However, its conjugated rigidity has resulted in a great challenge in forming extended structures with only one 3D metal-organic framework (MOF) reported 24 years ago. Herein, by regulation of the dihedral angle between two chelating HATN planes, three new porous HATN-based MOFs (SNNU-231-233) with mononuclear metal centers were successfully synthesized. SNNU-231, a unique 2-fold interpenetrated MOF, was first assembled, but the interpenetration leads to the lost pores. By modulating coordination configurations, the pore channels were successfully opened in SNNU-232 and SNNU-233, leading to a new topology in SNNU-232 and breaking the interpenetration in SNNU-233. All HATN-based MOFs exhibit exceptional thermal stability above 500 °C, surpassing most reported MOF materials. At the same time, SNNU-233 can keep its structure in water from pH = 1 to 14. Specifically, SNNU-233 had outstanding CO2 uptake capacity and separation ability of CO2/N2 due to its strong affinity to CO2 molecules in specific pores with abundant hydrogen bonds and π-force adsorption sites. SNNU-233 also showed significant potential for the simulated low calorific value coal gases with five components of H2 (5.1%), CO (9.1%), CH4 (5.0%), N2 (66.3%), and CO2 (14.3%).
Collapse
Affiliation(s)
- Zhuo Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Wanrong He
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Peng Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Jiao Lei
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
9
|
Lu M, Zhao Z, Tang Y, Wang Y, Zhang F, Li J, Yang J. A Lewis basic site rich metal-organic framework featuring a hydrogen-bonded acetylene nano-trap for the efficient separation of C 2H 2/CO 2. Dalton Trans 2025; 54:2812-2818. [PMID: 39807081 DOI: 10.1039/d4dt03411b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The physical separation of C2H2 from CO2 on metal-organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for C2H2/CO2 separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique C2H2 nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward C2H2 molecules. This material exhibits a good acetylene capacity of 55.31 cm3 g-1 and high C2H2/CO2 selectivity of 7.0 under ambient conditions. We have combined in situ IR spectroscopy and in-depth theoretical calculations to unravel the synergistic interactions driven by the high density of accessible oxygen and nitrogen sites. Furthermore, dynamic breakthrough experiments confirmed the capability of TUTJ-201Ni for the separation of binary C2H2/CO2 mixtures. This study on Ni-based MOFs will enrich Lewis basic site rich MOFs for gas adsorption and separation applications.
Collapse
Affiliation(s)
- Mengyue Lu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Zhiwei Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Yuhao Tang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Yating Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Jiangfeng Yang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| |
Collapse
|
10
|
Ruan HY, Wu XQ, Liao CL, Wang M, Wu YP, Hai G, Zhao X, Li DS. Self-adaptive Coordination Evolution Mediated Pore-Space-Partition in Metal-Organic Frameworks for Boosting SF 6/N 2 Separation. Angew Chem Int Ed Engl 2025; 64:e202419302. [PMID: 39578980 DOI: 10.1002/anie.202419302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
The controllable and precise structural regulation of metal-organic frameworks (MOFs) based on isoreticular chemistry is an effective strategy for creating functional material platforms, such as efficient porous adsorbents. Herein, for the first time, mediated by an unprecedented self-adaptive coordination evolution (SACE) on pseudo-D2h-symmetric [M4(μ3-O)2(COO)6] (M=Mn/Fe) clusters, two pore space partitioned MOFs (CTGU-47-Mn/Fe, CTGU=China Three Gorges University) have been successfully constructed. Owing to the more confined adsorption space and dense binding sites produced by pore space partitioning (PSP), the CTGU-47-Mn/Fe exhibit significantly enhanced performance in the capture or recovery SF6 (greenhouse/electronic specialty gas) from SF6/N2 mixture compared to their non-partitioned homologous structures (CTGU-46-Mn/Fe) with adsorption selectivity increased from 37/72 to 634/157 (v/v, 10/90, 100 kPa). The theoretical calculations also elucidated that the implementation of PSP within CTGU-47-Mn/Fe leads to dramatically strengthened binding affinity for SF6 over N2 through extra multiple F⋅⋅⋅H interactions. This study represents a valuable advance in crystal engineering field: the SACE of polynuclear metal clusters is expected to be useful in the structural regulation of MOFs and the fabrication of advanced porous adsorbents.
Collapse
Affiliation(s)
- Heng-Yu Ruan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Xue-Qian Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Cai-Lian Liao
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Meidi Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Ya-Pan Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Guangtong Hai
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiang Zhao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|
11
|
Guo ZH, Wu XQ, Wu YP, Li DS, Yang GP, Wang YY. A Scalable Pore-space-partitioned Metal-organic Framework Powered by Polycatenation Strategy for Efficient Acetylene Purification. Angew Chem Int Ed Engl 2025; 64:e202421992. [PMID: 39668752 DOI: 10.1002/anie.202421992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/14/2024]
Abstract
Efficient separation of acetylene (C2H2) from carbon dioxide (CO2) and ethylene (C2H4) is a significant challenge in the petrochemical industry due to their similar physicochemical properties. Pore space partition (PSP) has shown promise in enhancing gas adsorption capacity and selectivity by reducing pore size and increasing the density of guest binding sites. Herein, we firstly employ the 2D→3D polycatenation strategy to construct a PSP metal-organic framework (MOF) Ni-dcpp-bpy, incorporating functional N/O sites to enhance C2H2 purification. The polycatenated framework with optimized pore size and regularity, exhibiting significant improvements over traditional PSP MOFs by resolving the critical contradiction of balancing C2H2 uptake (98.5 cm3 g-1 at 298 K, 100 kPa) and selectivity of C2H2/CO2 (3.4), C2H2/C2H4 (5.9), and C2H2/CH4 (96.4) in a MOF. Breakthrough experiments confirm high-purity C2H4 (>99.9 %) and high C2H2 productivity from binary and ternary mixtures. Notably, Ni-dcpp-bpy exhibits excellent water stability, scalability, and regenerability after 20 cycles for separating C2H2/CO2. Theoretical calculations verify that the strong binding of C2H2 is mainly attributed to the C-H⋅⋅⋅O/N interactions between host Ni-dcpp-bpy and guest C2H2 molecules. The polycatenation strategy not only improved industrial C2H2 purification efficiency but also enriched the design diversity of customized MOFs for other gas separation applications.
Collapse
Affiliation(s)
- Zhen-Hua Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xue-Qian Wu
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang, 443002, P. R. China
| | - Ya-Pan Wu
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang, 443002, P. R. China
| | - Dong-Sheng Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang, 443002, P. R. China
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
12
|
Chen Y, Wang W, Alston S, Xiao Y, Ajayan P, Bu X, Feng P. Multi-Stage Optimization of Pore Size and Shape in Pore-Space-Partitioned Metal-Organic Frameworks for Highly Selective and Sensitive Benzene Capture. Angew Chem Int Ed Engl 2025; 64:e202415576. [PMID: 39298644 DOI: 10.1002/anie.202415576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Compared to exploratory development of new structure types, pushing the limits of isoreticular synthesis on a high-performance MOF platform may have higher probability of achieving targeted properties. Multi-modular MOF platforms could offer even more opportunities by expanding the scope of isoreticular chemistry. However, navigating isoreticular chemistry towards best properties on a multi-modular platform is challenging due to multiple interconnected pathways. Here on the multi-modular pacs (partitioned acs) platform, we demonstrate accessibility to a new regime of pore geometry using two independently adjustable modules (framework-forming module 1 and pore-partitioning module 2). A series of new pacs materials have been made. Benzene/cyclohexane selectivity is tuned, progressively, from 4.5 to 15.6 to 195.4 and to 482.5 by pushing the boundary of the pacs platform towards the smallest modules known so far. The exceptional stability of these materials in retaining both porosity and single crystallinity enables single-crystal diffraction studies of different crystal forms (as-synthesized, activated, guest-loaded) that help reveal the mechanistic aspects of adsorption in pacs materials.
Collapse
Affiliation(s)
- Yichong Chen
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Wei Wang
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Samuel Alston
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Yuchen Xiao
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Pooja Ajayan
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach 1250 Bellflower Blvd, Long Beach, CA-90840, United States
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| |
Collapse
|
13
|
Tran N, Wang W, Chen Y, Feng P, Bu X. Ligand Circuit Concept for Developing Gas Separation Materials from Pore-Space-Partitioned Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410680. [PMID: 39648463 DOI: 10.1002/smll.202410680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Isoreticular chemistry is among the most powerful strategies for designing novel materials with optimizable pore geometry and properties. Of great significance to the further advance of isoreticular chemistry is the development of broadly applicable new concepts capable of guiding and systematizing the ligand-family expansion as well as establishing correlations between dissimilar and seemingly uncorrelated ligands for better predictive synthetic design and more insightful structure and property analysis. Here ligand circuit concept is proposed and its use has been demonstrated for the synthesis of a family of highly stable, high-performance pore-space-partitioned materials based on an acyclic ligand, trans, trans-muconic acid. This work represents a key step toward developing highly porous and highly stable pore-space-partitioned materials from acyclic ligands. The new materials exhibit excellent sorption properties such as high uptake capacity for CO2 (81.3 cm3 g-1) and C2H2 (165.4 cm3 g-1) by CPM-7.3a-NiV. CPM-7.3a-CoV shows C2H6-selective C2H6/C2H4 separation properties and its high uptakes for C2H4 (134.0 cm3 g-1) and C2H6 (148.0 cm3 g-1) at 1 bar and 298 K contribute to the separation potential of 1.35 mmol g-1. The multi-cycle breakthrough experiment confirms the promising separation performance for C2H2/CO2.
Collapse
Affiliation(s)
- Natalie Tran
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA, 90840, USA
| | - Wei Wang
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA, 90840, USA
| |
Collapse
|
14
|
Feng X, Wang X, Yan H, Liu H, Liu X, Guan J, Lu Y, Fan W, Yue Q, Sun D. Precise Pore Engineering of Zirconium Metal-Organic Cages for One-Step Ethylene Purification from Ternary Mixtures. Angew Chem Int Ed Engl 2024; 63:e202407240. [PMID: 38839564 DOI: 10.1002/anie.202407240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
One-step purification of ethylene from ternary mixtures (C2H2, C2H4, and C2H6) can greatly reduce the energy consumption of the separation process, but it is extremely challenging. Herein, we use crystal engineering and reticular chemistry to introduce unsaturated bonds (ethynyl and alkyne) into ligands, and successfully design and synthesized two novel Zr-MOCs (ZrT-1-ethenyl and ZrT-1-alkyne). The introduction of carbon-carbon unsaturated bonds provides abundant adsorption sites within the framework while modulating the pore window size. Comprehensive characterization techniques including single crystal and powder X-ray diffraction, as well as electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) confirm that ZrT-1-ethenyl and ZrT-1-alkyne possess an isostructural framework with ZrT-1 and ZrT-1-Me, respectively. Adsorption isotherms and breakthrough experiments combined with theoretical calculations demonstrate that ZrT-1-ethenyl can effectively remove trace C2H2 and C2H6 in C2H4 and achieve separation of C2H2 from C2H4 and CO2. ZrT-1-ethenyl can also directly purify C2H4 in liquid solutions. This work provides a benchmark for MOCs that one-step purification of ethylene from ternary mixtures.
Collapse
Affiliation(s)
- Xueying Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao Shandong, 266580, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao Shandong, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao Shandong, 266580, China
| | - Xiaokang Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao Shandong, 266580, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao Shandong, 266580, China
| | - Hui Yan
- School of pharmaceutical science, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Hongyan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao Shandong, 266580, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao Shandong, 266580, China
| | - Xiuping Liu
- School of Materials Science and Engineering, Linyi University, Linyi, Shandong, 276000, China
| | - Jiayi Guan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao Shandong, 266580, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao Shandong, 266580, China
| | - Yukun Lu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao Shandong, 266580, China
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao Shandong, 266580, China
| | - Weidong Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao Shandong, 266580, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao Shandong, 266580, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Qin Yue
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao Shandong, 266580, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao Shandong, 266580, China
| |
Collapse
|
15
|
Xiao Y, Chen Y, Wang W, Bu X, Feng P. Advancing Pore-Space-Partitioned Metal-Organic Frameworks with Isoreticular Cluster Concept. Angew Chem Int Ed Engl 2024; 63:e202403698. [PMID: 38720517 DOI: 10.1002/anie.202403698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 06/16/2024]
Abstract
Trigonal planar M3(O/OH) trimers are among the most important clusters in inorganic chemistry and are the foundational features of multiple high-impact MOF platforms. Here we introduce a concept called isoreticular cluster series and demonstrate that M3(O/OH), as the first member of a supertrimer series, can be combined with a higher hierarchical member (double-deck trimer here) to advance isoreticular chemistry. We report here an isoreticular series of pore-space-partitioned MOFs called M3M6 pacs made from co-assembly between M3 single-deck trimer and M3x2 double-deck trimer. Important factors were identified on this multi-modular MOF platform to guide optimization of each module, which enables the phase selection of M3M6 pacs by overcoming the formation of previously-always-observed same-cluster phases. The new pacs materials exhibit high surface area and high uptake capacity for CO2 and small hydrocarbons, as well as selective adsorption properties relevant to separation of industrially important mixtures such as C2H2/CO2 and C2H2/C2H4. Furthermore, new M3M6 pacs materials show electrocatalytic properties with high activity.
Collapse
Affiliation(s)
- Yuchen Xiao
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Wei Wang
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
| |
Collapse
|
16
|
Wang W, Chen Y, Feng P, Bu X. Tailorable Multi-Modular Pore-Space-Partitioned Vanadium Metal-Organic Frameworks for Gas Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403834. [PMID: 38718839 DOI: 10.1002/adma.202403834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/27/2024] [Indexed: 05/18/2024]
Abstract
Currently, few porous vanadium metal-organic frameworks (V-MOFs) are known and even fewer are obtainable as single crystals, resulting in limited information on their structures and properties. Here this work demonstrates remarkable promise of V-MOFs by presenting an extensible family of V-MOFs with tailorable pore geometry and properties. The synthesis leverages inter-modular synergy on a tri-modular pore-partitioned platform. New V-MOFs show a broad range of structural features and sorption properties suitable for gas storage and separation applications for C2H2/CO2, C2H6/C2H4, and C3H8/C3H6. The c/a ratio of the hexagonal cell, a measure of pore shape, is tunable from 0.612 to 1.258. Other tunable properties include pore size from 5.0 to 10.9 Å and surface area from 820 to 2964 m2 g-1. With C2H2/CO2 selectivity from 3.3 to 11 and high uptake capacity for C2H2 from 65.2 to 182 cm3 g-1 (298K, 1 bar), an efficient separation is confirmed by breakthrough experiments. The near-record high uptake for C2H6 (166.8 cm3 g-1) contributes to the promise for C2H6-selective separation of C2H6/C2H4. The multi-module pore expansion enables transition from C3H6-selective to more desirable C3H8-selective separation with extraordinarily high C3H8 uptake (254.9 cm3 g-1) and high separation potential (1.25 mmol g-1) for C3H8/C3H6 (50:50 v/v) mixture.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA, 90840, USA
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA, 90840, USA
| |
Collapse
|
17
|
Zhao Y, Chen Q, Zhang X, Li J. Enabling C 2H 2/CO 2 Separation Under Humid Conditions with a Methylated Copper MOF. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310025. [PMID: 38408136 PMCID: PMC11077691 DOI: 10.1002/advs.202310025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Indexed: 02/28/2024]
Abstract
As a unique subclass of metal-organic frameworks (MOFs), MOFs with open metal site (OMS) are demonstrated efficient gas separation performance through pi complexation with unsaturated hydrocarbons. However, their practical application faces the challenge of humidity that causes structure degradation and completive binding at the OMS. In this work, the effect of linker methylation of a copper MOF (BUT-155) on the C2H2/CO2 separation performance under humid condition is evaluated. The water adsorption isotherm, adsorption kinetics, and breakthrough under dry and humid conditions are performed. The BUT-155 with methylated linker exhibits lower water uptake and adsorption kinetics under humid condition (RH = 20%), in comparison with HKUST-1. Therefore, the C2H2/CO2 separation performance of BUT-155 is much less affected by water, especially under higher gas flow rate. Moreover, the dynamic C2H2/CO2 separation performance of BUT-155 can maintain five breakthrough cycles under humid conditions (RH = 20% and RH = 80%) without obvious performance degradation.
Collapse
Affiliation(s)
- Yan‐Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical EngineeringCollege of Materials Science & EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Qiancheng Chen
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical EngineeringCollege of Materials Science & EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical EngineeringCollege of Materials Science & EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Jian‐Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical EngineeringCollege of Materials Science & EngineeringBeijing University of TechnologyBeijing100124P. R. China
| |
Collapse
|
18
|
Xing B, Yang SQ, Zhang Q, Hu TL. A microporous bismuth-based MOF for efficient separation of acetylene from carbon dioxide. Dalton Trans 2024; 53:6993-6999. [PMID: 38563111 DOI: 10.1039/d4dt00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The separation of acetylene from carbon dioxide is challenging due to their almost identical molecular sizes and volatilities. Metal-organic frameworks (MOFs) in general are strong candidates for the separation of gas mixtures owing to the presence of functional pore surfaces that can selectively capture specific target molecules. Herein, we report a stable and easily synthesized bismuth-based MOF, Bi-BTC, which can achieve the separation of acetylene and carbon dioxide. We performed a detailed analysis of the sorption properties of the Bi-MOF. Bi-BTC shows good adsorption capacities for C2H2 with a capacity of 53.8 cm3 g-1 at 298 K and 1.0 bar, and C2H2/CO2 selectivity of 5.14/7.69 at 298 K and 1.0/0.1 bar. IAST selectivity calculations indicate that Bi-BTC possesses good separation capacity, and dynamic breakthrough experiments were performed to prove the separation of C2H2 and CO2. Bi-MOFs as a group of relatively less studied types of MOFs have interesting adsorption characteristics, and this study on Bi-based MOF will enrich three-dimensional Bi-MOF adsorbents for gas adsorption and separation applications.
Collapse
Affiliation(s)
- Bo Xing
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Shan-Qing Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Qiang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| |
Collapse
|
19
|
Zhang L, Xiao T, Zeng X, You J, He Z, Chen CX, Wang Q, Nafady A, Al-Enizi AM, Ma S. Isoreticular Contraction of Cage-like Metal-Organic Frameworks with Optimized Pore Space for Enhanced C 2H 2/CO 2 and C 2H 2/C 2H 4 Separations. J Am Chem Soc 2024; 146:7341-7351. [PMID: 38442250 DOI: 10.1021/jacs.3c12032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The C2H2 separation from CO2 and C2H4 is of great importance yet highly challenging in the petrochemical industry, owing to their similar physical and chemical properties. Herein, the pore nanospace engineering of cage-like mixed-ligand MFOF-1 has been accomplished via contracting the size of the pyridine- and carboxylic acid-functionalized linkers and introducing a fluoride- and sulfate-bridging cobalt cluster, based on a reticular chemistry strategy. Compared with the prototypical MFOF-1, the constructed FJUT-1 with the same topology presents significantly improved C2H2 adsorption capacity, and selective C2H2 separation performance due to the reduced cage cavity size, functionalized pore surface, and appropriate pore volume. The introduction of fluoride- and sulfate-bridging cubane-type tetranuclear cobalt clusters bestows FJUT-1 with exceptional chemical stability under harsh conditions while providing multiple potential C2H2 binding sites, thus rendering the adequate ability for practical C2H2 separation application as confirmed by the dynamic breakthrough experiments under dry and humid conditions. Additionally, the distinct binding mechanism is suggested by theoretical calculations in which the multiple supramolecular interactions involving C-H···O, C-H···F, and other van der Waals forces play a critical role in the selective C2H2 separation.
Collapse
Affiliation(s)
- Lei Zhang
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Taotao Xiao
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Xiayun Zeng
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Jianjun You
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Ziyu He
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Cheng-Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qianting Wang
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
20
|
Wang X, Liu H, Sun M, Wang H, Feng X, Chen W, Feng X, Fan W, Sun D. Thiadiazole-Functionalized Th/Zr-UiO-66 for Efficient C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7819-7825. [PMID: 38300743 DOI: 10.1021/acsami.3c17622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Adsorptive separation technology provides an effective approach for separating gases with similar physicochemical properties, such as the purification of acetylene (C2H2) from carbon dioxide (CO2). The high designability and tunability of metal-organic framework (MOF) adsorbents make them ideal design platforms for this challenging separation. Herein, we employ an isoreticular functionalization strategy to fine-tune the pore environment of Zr- and Th-based UiO-66 by the immobilization of the benzothiadiazole group via bottom-up synthesis. The functionalized UPC-120 exhibits an enhanced C2H2/CO2 separation performance, which is confirmed by adsorption isotherms, dynamic breakthrough curves, and theoretical simulations. The synergy of ligand functionalization and metal ion fine-tuning guided by isoreticular chemistry provides a new perspective for the design and development of adsorbents for challenging gas separation processes.
Collapse
Affiliation(s)
- Xiaokang Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hongyan Liu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Meng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Haoyang Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xueying Feng
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Wenmiao Chen
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Weidong Fan
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Daofeng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|