1
|
Ren S, Sun YX, Wang ZY, Li XS, Wu JR. Geminiarene-Based Charge-Transfer Cocrystals with Dichromatic Variants and Stimuli-Responsive Structural Interconversion. Angew Chem Int Ed Engl 2025; 64:e202506549. [PMID: 40192492 DOI: 10.1002/anie.202506549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
The construction of stimuli-responsive charge-transfer (CT) cocrystals is a challenging frontier in organic crystal engineering. Here, we introduce a gemini CT cocrystal system with dichromatic stimuli-responsiveness by utilizing the unique dual/gemini conformational feature of geminiarene. Geminiarene binds with the electron-deficient guest 1,2,4,5-tetracyanobenzene through exo-wall interactions to form two types of gemini CT cocrystals with distinct colors. Single-crystal structures, along with theoretical calculations and spectral analyses, reveal that the color differences are primarily due to the dual molecular conformations of geminiarene and their distinct electronic properties. Notably, the gemini CT cocrystal system can be used to develop a novel dichromatic sensing material capable of distinguishing commonly used organic solvents. Moreover, the stimuli-responsive interconversion between the two conformations of geminiarene enables a loop-locked structural transition in the cocrystal system. This work expands CT cocrystal engineering and offers a new strategy for designing intelligent responsive materials for sensing and adsorption applications.
Collapse
Affiliation(s)
- Susu Ren
- Key Laboratory of Automobile Materials, MOE, Department of Materials Science, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Yu-Xiang Sun
- Key Laboratory of Automobile Materials, MOE, Department of Materials Science, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Zi-Yu Wang
- Key Laboratory of Automobile Materials, MOE, Department of Materials Science, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Xiang-Shuai Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, P.R. China
| | - Jia-Rui Wu
- Key Laboratory of Automobile Materials, MOE, Department of Materials Science, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| |
Collapse
|
2
|
Wu J, Kreimendahl L, Greenfield JL. Enhancing the Photoswitching Properties of N-Alkyl Imines. J Am Chem Soc 2025; 147:17549-17554. [PMID: 40374166 PMCID: PMC12123613 DOI: 10.1021/jacs.5c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/17/2025]
Abstract
N-Alkyl imines are prevalent in dynamic-covalent chemistry and self-assembled structures, yet their E/Z photochromism is often overlooked due to the high-energy light required for isomerization. Here, we present a simple strategy to enhance their photoswitching properties, achieving switching wavelengths and photostationary state distributions comparable to azobenzene. Moreover, we demonstrate that these N-alkyl imines undergo photoisomerization in the condensed phase and exhibit isomer-dependent fluorescence. We anticipate that this study will inspire the design of photoresponsive architectures that operate directly at the dynamic-covalent bond, eliminating the need for dedicated photoswitchable motifs.
Collapse
Affiliation(s)
- Jiarong Wu
- Institut
für Organische Chemie, Universität
Würzburg, 97074Würzburg, Germany
- Center
for Nanosystems Chemistry (CNC), Universität
Würzburg, 97074Würzburg, Germany
| | - Lasse Kreimendahl
- Institut
für Physikalische und Theoretische Chemie, Universität Würzburg, 97074Würzburg, Germany
| | - Jake L. Greenfield
- Institut
für Organische Chemie, Universität
Würzburg, 97074Würzburg, Germany
- Center
for Nanosystems Chemistry (CNC), Universität
Würzburg, 97074Würzburg, Germany
| |
Collapse
|
3
|
Nolten M, Xia KT, Pezzotti S, Schwaab G, Bergman RG, Raymond KN, Dean Toste F, Head-Gordon T, Li WL, Havenith M. Tuning the free energy of host-guest encapsulation by cosolvent. Phys Chem Chem Phys 2025; 27:10120-10128. [PMID: 40302653 PMCID: PMC12042075 DOI: 10.1039/d5cp00661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025]
Abstract
Supramolecular hosts create unique microenvironments which enable the tuning of reactions via steric confinement and electrostatics. It has been shown that "solvent shaping inside hydrophobic cavities" is an important thermodynamic driving force for guest encapsulation in the nanocage host. Here, we show that even small (5%) changes in the solvent composition can have a profound impact on the free energy of encapsulation. In a combined THz, NMR and ab initio MD study, we reveal that the preferential residing of a single DMSO molecule in the cavity upon addition of ≥5% DMSO results in a considerable change of ΔS from 63-76 cal mol-1 K-1 to 23-24 cal mol-1 K-1. This can be rationalized by reduction of the cavity volume due to the DMSO molecule which resides preferentially in the cavity. These results provide novel insights into the guest-binding interactions, emphasizing that the entropic driving force is notably influenced by even small changes in the solvent composition, irrespective of changes in metal ligand vertices. Having demonstrated that the local solvent composition within the cage is essential for regulating catalytic efficiency, solvent tuning might enable novel applications in supramolecular chemistry in catalysis and chemical separation.
Collapse
Affiliation(s)
- Melinda Nolten
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Kay T Xia
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Simone Pezzotti
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Gerhard Schwaab
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany.
| | - Robert G Bergman
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Kenneth N Raymond
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - F Dean Toste
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Teresa Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Kenneth S. Pitzer Theory Center and Departments of Bioengineering and Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Wan-Lu Li
- Department of Chemical and Nano Engineering, University of California, San Diego, CA 92093, USA.
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr University Bochum, 44801 Bochum, Germany.
| |
Collapse
|
4
|
Wang D, Xiong Y, Sheng Q, Huang Y, Qing G. Theoretical Calculations in Separation Science for Analytical Chemistry: Applications and Insights. Chem Asian J 2025:e202500006. [PMID: 40202415 DOI: 10.1002/asia.202500006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Separation and enrichment are critical steps in analytical detection, necessitating advanced materials with high selectivity and adsorption capacity for target compounds. In order to improve separation efficiency and selectivity, computational simulation could elucidate interaction mechanisms and analyze potential adsorption/desorption processes, providing a theoretical foundation for the optimization and design of separation materials. Recently, computational simulation has become an indispensable and crucial mean in separation science for analytical chemistry. Using various simulation software, researchers could investigate the structures, properties, and performance of separation materials at multiple levels and scales. In this review, we summarize the applications of computational simulations in the field of separation science, focusing on the separation of polar molecules, geometric isomers, enantiomer compounds, and post-translationally modified peptides. These calculation methods include quantum chemistry, molecular docking, molecular dynamics simulations, high-throughput screening, and machine learning. Finally, we discuss the current challenges and potential breakthroughs in computational simulation, aiming to offer valuable insights for researchers dedicated to computational simulation, material development, and separation applications.
Collapse
Affiliation(s)
- Dongdong Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Yuting Xiong
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
- Dalian Lingshui Bay Laboratory, Dalian, 116023, P.R. China
| | - Qianying Sheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R.China
| | - Yi Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R.China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R&A Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| |
Collapse
|
5
|
Akakpo C, Zavalij PY, Isaacs L. Acyclic cucurbit[ n]uril bearing alkyl sulfate ionic groups. Beilstein J Org Chem 2025; 21:717-726. [PMID: 40196390 PMCID: PMC11973588 DOI: 10.3762/bjoc.21.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
We report the synthesis and characterization of a new acyclic cucurbit[n]uril (CB[n]) host C1 that features four alkyl sulfate ionic groups. The X-ray crystal structure of the C1·Me 6 CHDA complex is reported. Host C1 is significantly less soluble in water (4 mM) compared to the analogous acyclic CB[n] host M1 which features sulfonate ionic groups (346 mM). Host C1 does not undergo significant self-association according to the results of 1H NMR dilution experiments. The molecular recognition behavior of the hosts C1 and M1 toward a panel of seven ammonium ions was explored by 1H NMR spectroscopy and isothermal titration calorimetry (ITC). We find that C1 generally binds slightly more tightly than M1 toward a specific guest. C1 binds more tightly to quaternary ammonium guests compared to the corresponding primary ammonium ions.
Collapse
Affiliation(s)
- Christian Akakpo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Ashirov T, Lim J, Robles A, Puangsamlee T, Fritz PW, Crochet A, Wang X, Hewson C, Iacomi P, Miljanić OŠ, Coskun A. Porous Organic Polymers Incorporating Shape-Persistent Cyclobenzoin Macrocycles for Organic Solvent Separation. Angew Chem Int Ed Engl 2025; 64:e202423809. [PMID: 39804699 DOI: 10.1002/anie.202423809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
The recovery and separation of organic solvents is highly important for the chemical industry and environmental protection. In this context, porous organic polymers (POPs) have significant potential owing to the possibility of integrating shape-persistent macrocyclic units with high guest selectivity. Here, we report the synthesis of a macrocyclic porous organic polymer (np-POP) and the corresponding model compound by reacting the cyclotetrabenzil naphthalene octaketone macrocycle with 1,2,4,5-tetraaminobenzene and 1,2-diaminobenzene, respectively, under solvothermal conditions. Co-crystallization of the macrocycle and the model compound with various solvent molecules revealed their size-selective inclusion within the macrocycle. Building on this finding, the np-POP with a hierarchical pore structure and a surface area of 579 m2 g-1 showed solvent uptake strongly correlated with their kinetic diameters. Solvents with kinetic diameters below 0.6 nm - such as acetonitrile and dichloromethane - showed high uptake capacities exceeding 7 mmol g-1. Xylene separation tests revealed a high overall uptake (~34 wt %), with o-xylene displaying a significantly lower uptake (~10 wt % less than other isomers), demonstrating the possibility of size and shape selective separation of organic solvents.
Collapse
Affiliation(s)
- Timur Ashirov
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| | - Jay Lim
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
| | - Alexandra Robles
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
| | - Thamon Puangsamlee
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
| | - Patrick W Fritz
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| | - Aurelien Crochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| | - Xiqu Wang
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
| | - Connor Hewson
- Surface Measurement Systems Ltd., 5 Wharfside, Rosemont Road, Alperton, Middlesex, HA0 4PE, United Kingdom
| | - Paul Iacomi
- Surface Measurement Systems Ltd., 5 Wharfside, Rosemont Road, Alperton, Middlesex, HA0 4PE, United Kingdom
| | - Ognjen Š Miljanić
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, TX 77204-5003, United States
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71408, Vietnam
| | - Ali Coskun
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| |
Collapse
|
7
|
Fang F, Liu P, Lin W, Alimi LO, Moosa B, Maltseva E, Khashab NM. Supramolecular Interfacial Assembly: Integrating Supramolecular Hosts into Polymeric Membranes through an Aqueous Interface. Angew Chem Int Ed Engl 2025; 64:e202416050. [PMID: 39382223 DOI: 10.1002/anie.202416050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
Efficient incorporation of macrocycles in polymeric membranes can impart the overall matrix with new properties for a range of cutting-edge applications. Here, we introduce a Supramolecular Interfacial Assembly (SIA) method for the fabrication of polymeric membranes featuring embedded macrocycles. Through harnessing the quasi-liquid nature of the concentrated polymer solution, SIA orchestrates the homogeneous spreading of macrocycles in an aqueous layer on its surface, leading to the creation of an interface between "water/water" phases, subsequently forming a cross-linked membrane driven by supramolecular electrostatic interactions. Remarkably, compared to the traditional interfacial polymerization, SIA adheres to a "green" paradigm without the need for organic solvents. The resultant composite membrane exhibits superior performance in organic solvent nanofiltration (OSN), owing to the precise molecular sieving property provided by the macrocycles with well-defined permanent cavities. This fabrication method holds great promise for the innovative design and production of composite membranes that seamlessly integrates macrocycles with conventional polymers, which can greatly impact the design and preparation of advanced membrane materials in the future.
Collapse
Affiliation(s)
- Fang Fang
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Peiren Liu
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Weibin Lin
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elizaveta Maltseva
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials, Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Pausch T, Clopot S, Jordan DN, Weingart O, Janiak C, Schmidt BM. Fluorinated Squareimines for Molecular Sieving of Aromatic over Aliphatic Compounds. Angew Chem Int Ed Engl 2024; 63:e202418877. [PMID: 39512137 DOI: 10.1002/anie.202418877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The development of more energy-efficient separation technologies is essential. Especially the separation of cyclic aliphatic hydrocarbons from their aromatic counterparts remains a significant challenge due to azeotrope formation and similar physical properties, often requiring energy-intensive processes. Herein, we introduce a novel class of electron-deficient macrocycles with a unique rectangular structure to optimise interactions within the pore, enabling the highly selective molecular sieving of aromatic compounds from mixtures. Utilising dynamic covalent imine chemistry, the squareimine NDI2F42-based crystalline functional material is directly obtained from the reaction mixture in a single self-assembly step in high yields of 83 %, alongside the larger NDI2F82 congener, which can be obtained in 69 % yield. In vapour sorption and diffusion experiments, NDI2F42 demonstrates rapid adsorption kinetics with selectivities of 97 : 3 for benzene over cyclohexane and 93 : 7 for toluene over methylcyclohexane, while single-crystal and powder X-ray diffraction studies indicate that the selectivity is primarily governed by directed interactions between the electron-deficient panels and aromatic guests.
Collapse
Affiliation(s)
- Tobias Pausch
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Samanta Clopot
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Dustin N Jordan
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Oliver Weingart
- Zentrum für Informations- und Medientechnologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
9
|
Chen Z, Fang P, Li J, Han X, Huang W, Cui W, Liu Z, Warren MR, Allan D, Cheng P, Yang S, Shi W. Rapid extraction of trace benzene by a crown-ether-based metal-organic framework. Natl Sci Rev 2024; 11:nwae342. [PMID: 39554229 PMCID: PMC11562822 DOI: 10.1093/nsr/nwae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Accepted: 09/08/2024] [Indexed: 11/19/2024] Open
Abstract
Due to almost identical boiling points of benzene and cyclohexane, the extraction of trace benzene from cyclohexane is currently performed via the energy-intensive extractive distillation method. Their adsorptive separation by porous materials is hampered by their similar dimensions. Metal-organic frameworks (MOFs) with versatile pore environments are capable of molecular discrimination, but the separation of trace substrates in liquid-phase remains extremely challenging. Herein, we report a robust MOF (NKU-300) with triangular channels decorated with crown ether that can discriminate trace benzene from cyclohexane, exhibiting an unprecedented selectivity of 8615(10) for the mixture of benzene/cyclohexane (v/v = 1/1000). Remarkably, NKU-300 demonstrates exceptional selectivities for the extraction of benzene from cyclohexane over a wide range of concentrations of 0.1%-50% with ultrafast sorption kinetics and excellent stability. Single-crystal X-ray diffraction and computational modelling reveal that multiple supramolecular interactions cooperatively immobilise benzene molecules in the triangular channel, enabling superior separation performance. This study will promote the application of advanced sorbents with tailored binding sites for challenging industrial separations.
Collapse
Affiliation(s)
- Zhonghang Chen
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peiyu Fang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiangnan Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xue Han
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wenhao Huang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenyue Cui
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mark R Warren
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK
| | - David Allan
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK
| | - Peng Cheng
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Sihai Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Shi
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Ren S, Qiao GY, Wu JR. Supramolecular-macrocycle-based functional organic cocrystals. Chem Soc Rev 2024; 53:10312-10334. [PMID: 39240538 DOI: 10.1039/d4cs00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Supramolecular macrocycles, renowned for their remarkable capabilities in molecular recognition and complexation, have emerged as pivotal elements driving advancements across various innovative research fields. Cocrystal materials, an important branch within the realm of crystalline organic materials, have garnered considerable attention owing to their simple preparation methods and diverse potential applications, particularly in optics, electronics, chemical sensing and photothermal conversion. In recent years, macrocyclic entitles have been successfully brought into this field, providing an essential and complementary channel to create novel functional materials, especially those with multiple functionalities and smart stimuli-responsiveness. In this Review, we present an overview of the research efforts on functional cocrystals constructed with macrocycles, covering their design principles, preparation strategies, assembly modes, and diverse functions and applications. Finally, the remaining challenges and perspectives are outlined. We anticipate that this review will serve as a valuable and timely reference for researchers interested in supramolecular crystalline materials and beyond, catalyzing the emergence of more original and innovative studies in related fields.
Collapse
Affiliation(s)
- Susu Ren
- Department of Materials Science, School of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| | - Guan-Yu Qiao
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jia-Rui Wu
- Department of Materials Science, School of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
11
|
Ono Y, Hirao T, Kawata N, Haino T. Latent porosity of planar tris(phenylisoxazolyl)benzene. Nat Commun 2024; 15:8314. [PMID: 39333129 PMCID: PMC11436937 DOI: 10.1038/s41467-024-52526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Interest in developing separation systems for chemical entities based on crystalline molecules has provided momentum for the fabrication of synthetic porous materials showing selectivity in molecular encapsulation, such as metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, zeolites, and macrocyclic molecular crystals. Among these, macrocyclic molecular crystals have generated renewed interest for use in separation systems. Selective encapsulation relies on the sizes, shapes, and dimensions of the pores present in the macrocyclic cavities; thus, nonmacrocyclic molecular crystals with high selectivity for molecular encapsulation via porosity-without-pore behaviors have not been studied. Here, we report that planar tris(phenylisoxazolyl)benzene forms porous molecular crystals possessing latent pores exhibiting porosity-without-pore behavior. After exposing the crystals to complementary guest molecules, the latent pores encapsulate cis- and trans-decalin while maintaining the structural rigidity responsible for the high selectivity. The encapsulation via porosity without pores is a kinetic process with remarkable selectivity for cis-decalin over trans-decalin with a cis-/trans-ratio of 96:4, which is confirmed by single-crystal X-ray diffraction and powder X-ray diffraction analyses. Hirshfeld surface analysis and fingerprint plots show that the latent intermolecular pores are rigidified by intermolecular dipole‒dipole and π-π stacking interactions, which determines the remarkable selectivity of molecular recognition.
Collapse
Affiliation(s)
- Yudai Ono
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Naomi Kawata
- Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| |
Collapse
|
12
|
Xu Z, Yang W, Liu H, Jiang S, Sue ACH. Guest-Induced Conformational Transformations in Tiara[5]arene Crystals: A Pathway for Molecular Sieving. JACS AU 2024; 4:3475-3483. [PMID: 39328758 PMCID: PMC11423331 DOI: 10.1021/jacsau.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 09/28/2024]
Abstract
In pursuit of environmental sustainability and energy efficiency, assorted macrocyclic compounds have recently emerged as crystalline adsorbents for the efficient molecular sieving of various chemical commodities. Herein, we delve into the conformational characteristics and solid-state packing modes of tiara[5]arenes (T[5]), a rim-differentiated pillar[5]arene derivative. By meticulously exploring the conformational space, we have successfully identified a multitude of distinct T[5] conformers within a relatively narrow energy range of 22 kJ/mol. This finding underscores the inherent conformational flexibility of this macrocyclic scaffold, enabling T[5] to adapt diverse packing arrangements in the solid state. While solvent-free T[5] crystals do not exhibit permanent porosity, they undergo solvomorphic interconversions when exposed to various guest compounds. Our study demonstrates that T[5]-based crystalline materials exhibit a notable preference for selectively capturing aromatic and olefinic solvents, such as benzene, toluene, chlorobenzene, and cyclohexene, over their aliphatic hydrocarbon counterparts from equivalent volume liquid mixtures, achieving up to 10:1 selectivity between benzene and cyclohexane.
Collapse
Affiliation(s)
- Zezhao Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Weiwei Yang
- Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, China
| | - Huiyu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Li Y, Yang X, Jiang W, Huang G, Wang Y, Xiao Y. Highly Efficient Separation of BTEX via Amide Naphthotube Cavity-Confined Tandem C/N-H···π Interactions. Anal Chem 2024; 96:12622-12629. [PMID: 38973321 DOI: 10.1021/acs.analchem.4c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The separation of BTEX [benzene, toluene, ethylbenzene (EB), and xylene isomers] poses a huge challenge in the industry, attributed to their similar structures and physical properties. Supramolecular compounds show great promise for hydrocarbon separation. Herein, we designed two pairs of endo-functionalized amide naphthotubes with methyl and benzyl side chains, which were first employed as chromatographic separation materials and exhibited high shape-selectivity for BTEX. In particular, the amide naphthotubes with methyl side chains provided complete separation toward BTEX and anti-3a showed high selectivity for the p-xylene over other isomers with αPX/OX = 9.34, αPX/MX = 5.50, and αPX/EB = 4.30. The mechanism of BTEX separation originates from the synergistic effect of specially confined tandem N-H···π and C-H···π interactions toward aromatic compounds. The findings of this research show promise for practical applications in efficiently separating crucial aromatic isomers.
Collapse
Affiliation(s)
- Yuan Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Xiran Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen 518055, China
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen 518055, China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300350, China
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
14
|
Wu J, Greenfield JL. Photoswitchable Imines Drive Dynamic Covalent Systems to Nonequilibrium Steady States. J Am Chem Soc 2024; 146:20720-20727. [PMID: 39025474 PMCID: PMC11295185 DOI: 10.1021/jacs.4c03817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Coupling a photochemical reaction to a thermal exchange process can drive the latter to a nonequilibrium steady state (NESS) under photoirradiation. Typically, systems use separate motifs for photoresponse and equilibrium-related processes. Here, we show that photoswitchable imines can fulfill both roles simultaneously, autonomously driving a dynamic covalent system into a NESS under continuous light irradiation. We demonstrate this using transimination reactions, where E-to-Z photoisomerism generates a more kinetically labile species. At the NESS, energy is stored both in the metastable Z-isomer of the imine and in the system's nonequilibrium constitution; when the light is switched off, this stored energy is released as the system reverts to its equilibrium state. The system operates autonomously under continuous light irradiation and exhibits characteristics of a light-driven information ratchet. This is enabled by the dual-role of the imine linkage as both the photochromic and dynamic covalent bond. This work highlights the ability and application of these imines to drive systems to NESSs, thus offering a novel approach in the field of systems chemistry.
Collapse
Affiliation(s)
- Jiarong Wu
- Institut
für Organische Chemie, Universität
Würzburg, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Universität
Würzburg, Würzburg 97074, Germany
| | - Jake L. Greenfield
- Institut
für Organische Chemie, Universität
Würzburg, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Universität
Würzburg, Würzburg 97074, Germany
| |
Collapse
|
15
|
Perera S, Shaurya A, Baptiste M, Zavalij PY, Isaacs L. Acyclic Cucurbit[n]uril Receptors Function as Solid State Sequestrants for Organic Micropollutants. Angew Chem Int Ed Engl 2024; 63:e202407169. [PMID: 38661568 DOI: 10.1002/anie.202407169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
The accumulation of organic micropollutants (OMP) in aquatic systems is a major societal problem that can be addressed by approaches including nanofiltration, flocculation, reverse osmosis and adsorptive methods using insoluble materials (e.g. activated carbon, MOFs, nanocomposites). More recently, polymeric versions of supramolecular hosts (e.g. cyclodextrins, calixarenes, pillararenes) have been investigated as OMP sequestrants. Herein, we report our study of the use of water insoluble dimethylcatechol walled acyclic cucurbit[n]uril (CB[n]) hosts as solid state sequestrants for a panel of five OMPs. A series of hosts (H1-H4) were synthesized by reaction of glycoluril oligomer (monomer-tetramer) with 3,6-dimethylcatechol and fully characterized by spectroscopic means and x-ray crystallography. The solid hosts sequester OMPs from water with removal efficiencies exceeding 90 % in some cases. The removal efficiencies of the new hosts parallel the known molecular recognition properties of analogous water soluble acyclic CB[n]. OMP uptake by solid host occurs rapidly (≈120 seconds). Head-to-head comparison with CB[6] in batch-mode separation and DARCO activated carbon in flow-through separation mode show that tetramer derived host (H4) performs very well under identical conditions. The work establishes insoluble acyclic CB[n]-type receptors as a promising new platform for OMP sequestration.
Collapse
Affiliation(s)
- Suvenika Perera
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Alok Shaurya
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Michael Baptiste
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, 8051 Regents Dr., College Park, MD 20742, United States
| |
Collapse
|
16
|
Jupiter I, Loya JD, Lutz N, Sittinger PM, Reinheimer EW, Campillo-Alvarado G. Confinement and Separation of Benzene from an Azeotropic Mixture Using a Chlorinated B←N Adduct. CRYSTAL GROWTH & DESIGN 2024; 24:5883-5888. [PMID: 39044733 PMCID: PMC11261595 DOI: 10.1021/acs.cgd.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
Separations of azeotropic mixtures are typically carried out using energy-demanding processes (e.g., distillation). Here, we report the capacity of a self-assembled chlorinated boronic ester-based adduct to confine acetonitrile and benzene in channels upon crystallization. The solvent confinement occurs via a combination of hydrogen bonding and [π···π] interactions. Quantitative separation of benzene from an azeotropic 1:1 mixture of a benzene/acetonitrile (v/v), and methanol is achieved through crystallization with the chlorinated adduct by complementary [C-H···O] and [C-H···π] interactions. Inclusion behavior is rationalized by molecular modeling and crystallographic analysis. The chlorinated boronic ester adduct shows the potential of modularity via isosteric substitution for the separation of challenging chemical mixtures (e.g., azeotropes).
Collapse
Affiliation(s)
- Isabella
J. Jupiter
- Department
of Chemistry, Reed College, Portland, Oregon 97202-8199, United
States
| | - Jesus Daniel Loya
- Department
of Chemistry, Reed College, Portland, Oregon 97202-8199, United
States
| | - Nicholas Lutz
- Department
of Chemistry, Reed College, Portland, Oregon 97202-8199, United
States
| | - Paulina M. Sittinger
- Department
of Chemistry, Reed College, Portland, Oregon 97202-8199, United
States
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | | | | |
Collapse
|
17
|
Pausch T, David T, Fleck-Kunde T, Pols H, Gurke J, Schmidt BM. Multifold Post-Modification of Macrocycles and Cages by Isocyanate-Induced Azadefluorination Cyclisation. Angew Chem Int Ed Engl 2024; 63:e202318362. [PMID: 38294139 DOI: 10.1002/anie.202318362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
We present the multiple post-modification of organic macrocycles and cages, introducing functional groups into two- and three-dimensional supramolecular scaffolds bearing fluorine substituents, which opens up new possibilities in multi-step supramolecular chemistry employing the vast chemical space of readily available isocyanates. The mechanism and scope of the reaction that proceeds after isocyanate addition to the benzylamine motif via an azadefluorination cyclisation (ADFC) were investigated using DFT calculations, and a series of aromatic isocyanates with different electronic properties were tested. The compounds show excellent chemical stability and were fully characterised. They can be used for subsequent cross-coupling reactions, and ADFC can be used directly to generate cross-linked membranes from macrocycles or cages when using ditopic isocyanates. Single-crystal X-ray (SC-XRD) analysis shows the proof of the formation of the desired supramolecular entity together with the connectivity predicted by calculations and from 19F NMR shifts, allowing the late-stage functionalisation of self-assembled macrocycles and cages by ADFC.
Collapse
Affiliation(s)
- Tobias Pausch
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Tim David
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Tom Fleck-Kunde
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hendrik Pols
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Johannes Gurke
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Bernd M Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
18
|
He Y, Zhou J, Li Y, Yang YD, Sessler JL, Chi X. Fluorinated Nonporous Adaptive Cages for the Efficient Removal of Perfluorooctanoic Acid from Aqueous Source Phases. J Am Chem Soc 2024; 146:6225-6230. [PMID: 38386658 DOI: 10.1021/jacs.3c14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) accumulate in water resources and pose serious environmental and health threats due to their nonbiodegradable nature and long environmental persistence times. Strategies for the efficient removal of PFAS from contaminated water are needed to address this concern. Here, we report a fluorinated nonporous adaptive crystalline cage (F-Cage 2) that exploits electrostatic interaction, hydrogen bonding, and F-F interactions to achieve the efficient removal of perfluorooctanoic acid (PFOA) from aqueous source phases. F-Cage 2 exhibits a high second-order kobs value of approximately 441,000 g mg-1 h-1 for PFOA and a maximum PFOA adsorption capacity of 45 mg g-1. F-Cage 2 can decrease PFOA concentrations from 1500 to 6 ng L-1 through three rounds of flow-through purification, conducted at a flow rate of 40 mL h-1. Elimination of PFOA from PFOA-loaded F-Cage 2 is readily achieved by rinsing with a mixture of MeOH and saturated NaCl. Heating at 80 °C under vacuum then makes F-Cage 2 ready for reuse, as demonstrated across five successive uptake and release cycles. This work thus highlights the potential utility of suitably designed nonporous adaptive crystals as platforms for PFAS remediation.
Collapse
Affiliation(s)
- Yanlei He
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianqiao Zhou
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi Li
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu-Dong Yang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Xiaodong Chi
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
19
|
Kumar N. Exclusive ion recognition using host-guest sandwich complexes. Phys Chem Chem Phys 2024; 26:3152-3158. [PMID: 38189478 DOI: 10.1039/d3cp05070j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Ion recognition in porous aqueous media utilizing polyethers involves the formation of 1 : 1 and higher-order host-guest complexes. The effectiveness of these interactions relies on the optimal size of the host cavity to encapsulate the guest ions. While liquid/liquid extraction based on host-guest interactions offers higher specificity in metal ion extraction, it results in the co-extraction of unwanted coordinating solvents and counter-anions. Therefore, an improved protocol is required by which the ion can be selectively trapped within the host cavity and simultaneously decrease the guest coordination with the outside environment. This study delves into the microscopic mechanisms underpinning the exclusive ion recognition through the formation of 2 : 1 host-guest sandwich complexes, which reduce metal coordination with solvent or counter-ions, ensuring selectivity. Our analysis shows that ions with a radius larger than the host cavity, such as cesium (Cs+), form stable host-guest sandwich complexes at elevated host concentrations. In this study, we performed molecular dynamics simulations to investigate the microscopic details of Cs+ interactions with open-chain and preorganized polyethers, namely podand, crown, and cryptand in electrolyte media. Our findings reveal that the formation of stable Cs+-crown sandwich complexes significantly reduces Cs+ coordination with H2O and NO3-. This loss of solute coordination leads to exclusivity in bound metal ions, offering a potential strategy for efficient solvent extraction.
Collapse
Affiliation(s)
- Nitesh Kumar
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA.
| |
Collapse
|