1
|
Xu B, Zhang Z, Dai M. Total Synthesis of (-)-Illisimonin A Enabled by Pattern Recognition and Olefin Transposition. J Am Chem Soc 2025; 147:17592-17597. [PMID: 40358547 PMCID: PMC12123608 DOI: 10.1021/jacs.5c05409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
We report an asymmetric total synthesis of (-)-illisimonin A, a sesquiterpene natural product with neurotrophic activity. Illisimonin A possesses a unique cage-like 5/5/5/5/5 pentacyclic scaffold containing a trans-pentalene and a norbornane, two highly strained and challenging structural motifs. It also contains seven contiguous fully substituted stereocenters, including three all-carbon quaternary centers, two of which are adjacent. Our synthesis exploits a pattern recognition strategy to identify a 5,6-fused bicyclic intermediate derived from (S)-carvone in two steps as the starting point and leverages five sequential olefin transposition reactions to decorate the bicyclic carbocycle. Other key steps include a tandem Mukaiyama hydration-translactonization to form the γ-butyrolactone and an intramolecular aldol cyclization to close the cage and finally deliver (-)-illisimonin A in 16 steps.
Collapse
Affiliation(s)
- Bo Xu
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Ziyao Zhang
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Mingji Dai
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
- Department
of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, Georgia30322, United States
| |
Collapse
|
2
|
Tanaka M, Szatmári I, Vécsei L. Quinoline Quest: Kynurenic Acid Strategies for Next-Generation Therapeutics via Rational Drug Design. Pharmaceuticals (Basel) 2025; 18:607. [PMID: 40430428 PMCID: PMC12114834 DOI: 10.3390/ph18050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Quinoline-derived metabolites exhibit notable chemical complexity. What causes minor structural alterations to induce significant changes in disease outcomes? Historically, eclipsed by more straightforward scaffolds, these chemicals serve as a dynamic hub in tryptophan metabolism, linking immunomodulation, excitotoxicity, and cancer. However, many of these compounds struggle to cross the blood-brain barrier, and we still do not fully understand how certain structural changes affect their bioavailability or off-target effects. Thus, contemporary research highlights halogenation, esterification, and computational modeling to enhance structure-activity relationships. SUMMARY This narrative review emphasizes the integration of rational drug design, multi-target ligands, and prodrug methods in enhancing quinoline scaffolds. We explore each molecule's therapeutic promise, refine each scaffold's design, and develop each derivative to maximize clinical utility. Translating these laboratory findings into clinical practice, however, remains a formidable challenge. CONCLUSIONS Through the synthesis of findings regarding NMDA receptor antagonism, improved oral bioavailability, and reduced metabolic instability, we demonstrate how single-site changes might modulate excitotoxicity and immunological signaling. Advancing quinoline-based medicines will yield significant advancements in neurology, psychiatry, and oncology. This enlarged framework fosters collaborative discovery, engages various audiences, and advances the field towards next-generation disease-modifying therapies. Robust preclinical validation, patient classification, and comprehensive toxicity evaluations are crucial stages for achieving these extensive endeavors and fostering future therapeutic discoveries globally.
Collapse
Affiliation(s)
- Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN–SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - László Vécsei
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Qiqige Q, Richmond E, Paciello R, Schelwies M, Lundgren RJ. Co(II)-catalyzed isomerization of enals using hydrogen atom transfer. Chem Commun (Camb) 2025; 61:6174-6177. [PMID: 40162998 DOI: 10.1039/d4cc06075j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
To develop a process for the synthesis of an enal acetate, the so called C5-acetate that is important in the industrial preparation of vitamin A, we show here that Co(II)-based hydrogen atom transfer catalysts under H2 promote such isomerizations in high yield with low catalyst loading (0.1 mol%). D-labelling studies suggest the enal isomerization process and catalyst activation by H2 to be reversible.
Collapse
Affiliation(s)
- Qiqige Qiqige
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Edward Richmond
- BASF SE, Synthesis & Homogeneous Catalysis, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany.
| | - Rocco Paciello
- BASF SE, Synthesis & Homogeneous Catalysis, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany.
| | - Mathias Schelwies
- BASF SE, Synthesis & Homogeneous Catalysis, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany.
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
4
|
Blank L, Kim J, Daniliuc CG, Goetzinger A, Müller MA, Schütz J, Wuestenberg B, Gilmour R. Deconjugative Photoisomerization of Cyclic Enones. J Am Chem Soc 2025; 147:10023-10030. [PMID: 40053914 DOI: 10.1021/jacs.5c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
The deconjugative isomerization of α,β-unsaturated carbonyl compounds enables regioisomeric products to be forged with simultaneous Umpolung of alkene reactivity. Although highly enabling, the endergonic nature of the net process coupled with governing regioselectivity outcomes, renders it challenging. Innovations in the positional isomerization of linear species, often by light-triggered activation, have re-energized this area. However, the deconjugative isomerization of cyclic enones is underdeveloped and often associated with impractical reaction conditions, limited substrate scopes, and a lack of mechanistic clarity. Herein, we report an operationally simple photochemical isomerization of cyclic enones using near-UV (372 nm) irradiation with catalytic amounts of Brønsted acid (HCl). This platform enables exocyclic deconjugative isomerization of a diverse array of enones including α-isophorone (a key intermediate in a variety of industrial processes), terpenoids and steroids. Mechanistic studies reveal the pivotal role of the solvent as a key mediator in the isomerization, where sequential hydrogen atom transfer (HAT) and reverse-HAT (RHAT) are proposed to be operational.
Collapse
Affiliation(s)
- Lukas Blank
- Institute for Organic Chemistry, University of Münster, Corrensstraβe 36, Münster 48149, Germany
| | - Jungwon Kim
- Department of Chemistry, Gyeongsang National University, 501, Jinju 52828, Republic of Korea
| | - Constantin G Daniliuc
- Institute for Organic Chemistry, University of Münster, Corrensstraβe 36, Münster 48149, Germany
| | | | | | - Jan Schütz
- DSM-Firmenich AG, Wurmisweg 576, Kaiseraugst 4303, Switzerland
| | | | - Ryan Gilmour
- Institute for Organic Chemistry, University of Münster, Corrensstraβe 36, Münster 48149, Germany
| |
Collapse
|
5
|
Schoch T, Alkhamayseh O, Herndon N, Lantz E, Fleske T, Weaver JD. Dynamically Generated Carbenium Species via Photoisomerization of Cyclic Alkenes: Mild Friedel-Crafts Alkylation. J Org Chem 2025; 90:3762-3768. [PMID: 40042214 PMCID: PMC11915380 DOI: 10.1021/acs.joc.5c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The torsional strain of trans-configured medium-sized (6-8) cycloalkenes imparts substantial potential energy efficiently toward ionic additions through generated reactive carbenium species. These reactions have been underexplored due to a historical necessity for harsh ultraviolet irradiation. We report here the Friedel-Crafts (FC) type reactivity of arylcycloalkenes (ACs) and π-nucleophiles for the first time with weak Brønsted acid and visible light energy transfer catalysis. Following optimizations using p-fluorophenyl cyclohexene as the AC and 2-methylfuran as the nucleophile, model conditions were obtained to probe the respective influence of the acid catalyst, aryl component of AC, nucleophile, and alicyclic component of AC on the desired FC reactivity. Each parameter was found to critically influence the course of the reaction. Ultimately, a mild, visible light-driven method for the preparation of a variety of 1,1-diarylcyclohexane and 4,4-diarylpiperidine derivatives that is mechanistically distinct from and complementary to other methods of preparation is outlined.
Collapse
Affiliation(s)
- Timothy Schoch
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Osaid Alkhamayseh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Nathan Herndon
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Erik Lantz
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Tyler Fleske
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jimmie D Weaver
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
6
|
Mukherjee K, Cheung KPS, Gevorgyan V. Photoinduced Pd-Catalyzed Direct Sulfonylation of Allylic C-H Bonds. Angew Chem Int Ed Engl 2025; 64:e202413646. [PMID: 39287933 DOI: 10.1002/anie.202413646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Allylic sulfones are valuable motifs due to their medicinal and biological significance and their versatile chemical reactivities. While direct allylic C-H sulfonylation represents a straightforward and desirable approach, these methods are primarily restricted to terminal alkenes, leaving the engagement of the internal counterparts a formidable challenge. Herein we report a photocatalytic approach that accommodates both cyclic and acyclic internal alkenes with diverse substitution patterns and electronic properties. Importantly, the obtained allylic sulfones can be readily diversified into a wide range of products, thus enabling formal alkene transposition and all-carbon quaternary center formation through the sequential C-H functionalization.
Collapse
Affiliation(s)
- Kallol Mukherjee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| |
Collapse
|
7
|
Zhao G, Khosravi A, Sharma S, Musaev DG, Ngai MY. Cobalt-Hydride-Catalyzed Alkene-Carboxylate Transposition (ACT) of Allyl Carboxylates. J Am Chem Soc 2024; 146:31391-31399. [PMID: 39530786 DOI: 10.1021/jacs.4c12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The alkene-carboxylate transposition (ACT) of allyl carboxylates is one of the most atom-economic and synthetically reliable transformations in organic chemistry, as allyl carboxylates are versatile synthetic intermediates. Classic ACT transformations, including [3,3]-sigmatropic rearrangement and transition metal-catalyzed allylic rearrangement, typically yield 1,2-alkene/1,3-acyloxy shifted products through a two-electron process. However, position-altered ACT to produce distinct 1,3-alkene/1,2-acyloxy shifted products remains elusive. Here, we report the first cobalt-hydride-catalyzed ACT of allyl carboxylates, enabling access to these unprecedented 1,3-alkene/1,2-acyloxy shifted products via a 1,2-radical migration (RaM) strategy. This transformation demonstrates broad functional group tolerance, is suitable for late-stage modification of complex molecules, and is amenable to gram-scale synthesis. It also expands the reaction profiles of both allyl carboxylates and cobalt catalysis. Preliminary experimental and computational studies suggest a mechanism involving metal-hydride hydrogen atom transfer (MHAT) and the 1,2-RaM process. This reaction is expected to serve as the basis for the development of versatile Co-H-catalyzed transformations of allyl carboxylates, generating a wide array of valuable building blocks for synthetic, medicinal, and materials chemistry.
Collapse
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Arman Khosravi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sahil Sharma
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Lou SJ, Wang P, Wen X, Mishra A, Cong X, Zhuo Q, An K, Nishiura M, Luo Y, Hou Z. ( Z)-Selective Isomerization of 1,1-Disubstituted Alkenes by Scandium-Catalyzed Allylic C-H Activation. J Am Chem Soc 2024; 146:26766-26776. [PMID: 39303300 DOI: 10.1021/jacs.4c06899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The isomerization of 1,1-disubstituted alkenes through 1,3-hydrogen shift is an atom-efficient route for synthesizing trisubstituted alkenes, which are important moieties in many natural products, pharmaceuticals, and organic materials. However, this reaction often encounters regio- and stereoselectivity challenges, typically yielding E/Z-mixtures of the alkene products or thermodynamically favored (E)-alkenes. Herein, we report the (Z)-selective isomerization of 1,1-disubstituted alkenes to trisubstituted (Z)-alkenes via the regio- and stereospecific activation of an allylic C-H bond. The key to the success of this unprecedented transformation is the use of a sterically demanding half-sandwich scandium catalyst in combination with a bulky quinoline compound, 2-tert-butylquinoline. Deuterium-labeling experiments and density functional theory (DFT) calculations have revealed that 2-tert-butylquinoline not only facilitates the C═C bond transposition through hydrogen shuttling but also governs the regio- and stereoselectivity due to the steric hindrance of the tert-butyl group. This protocol enables the synthesis of diverse (Z)-configured acyclic trisubstituted alkenes and endocyclic trisubstituted alkenes from readily accessible 1,1-disubstituted alkenes. It offers an efficient and selective route for preparing a new family of synthetically challenging (Z)-trisubstituted alkenes with broad substrate scope, 100% atom efficiency, high regio- and stereoselectivity, and an unprecedented reaction mechanism.
Collapse
Affiliation(s)
- Shao-Jie Lou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Pan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xin Wen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kun An
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- PetroChina Petrochemical Research Institute, Beijing 102206, China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Wang CH, Guo JD, Yu JX, Qiao J, Chen B, Tung CH, Wu LZ. Photocatalytic Cross-Coupling of Aldehydes and Alkenes for Aryl Vinyl Ketones by a Single Catalyst. Org Lett 2024; 26:6927-6932. [PMID: 39106055 DOI: 10.1021/acs.orglett.4c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Herein is the first example of photocatalytic cross-coupling of alkenes with aldehydes by a single catalyst without an external photosensitizer and any additives. Irradiation of the aromatic aldehyde and cobaloxime catalyst results in the formation of an acyl radical, which undergoes radical addition with alkene or indole and subsequently β-H elimination to afford alkenyl ketone. The reaction features cheap and readily available raw materials, a broad substrate scope, and mild conditions, even for late-stage derivatization of bioactive compounds.
Collapse
Affiliation(s)
- Chen-Hong Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jia-Dong Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ji-Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jia Qiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Zhong J, Wang X, Luo M, Zeng X. Chromium-Catalyzed Alkene Isomerization with Switchable Selectivity. Org Lett 2024; 26:3124-3129. [PMID: 38592221 DOI: 10.1021/acs.orglett.4c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We report a single additive-responsive chromium-catalyzed system for selectively producing either of two different internal alkene isomers. The chromium catalyst, in the presence of HBpin/LiOtBu, enables the isomerization of alkenes over multiple carbon atoms to give the most thermodynamically stable isomers. The same catalyst allows for the selective isomerization of terminal alkenes over one carbon atom without an additive, exhibiting efficient and controllable alkene transposition selectivity.
Collapse
Affiliation(s)
- Jiaoyue Zhong
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xuelan Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Meiming Luo
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
11
|
Wang J, Dong B, Zhang M, Deng Y, Jian X, Li Z, Liu Y. Ultrafast Imaging of Jahn-Teller Distortion and the Correlated Proton Migration in Photoionized Cyclopropane. J Am Chem Soc 2024; 146:10443-10450. [PMID: 38530937 DOI: 10.1021/jacs.3c13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The Jahn-Teller (JT) distortion is one of the fundamental processes in molecules and condensed phase matters. For photoionized organic molecules with high symmetry, the JT effect leads to geometric instability in certain electron configurations and thus has a significant effect on the subsequent isomerization and proton migration processes. Utilizing the femtosecond pump-probe Coulomb explosion method, we probe the isomerization dynamics process of a monovalent cyclopropane cation (C3H6+) caused by proton migration and reveal the relationship between proton migration and JT distortion. We found that the C3H6+ cation evolves from the D3h symmetric equilateral triangle geometry either to the acute triangle via two elongated C-C bonds (JT1) or to the obtuse triangle via a single elongated C-C bond (JT2). The JT1 pathway does not involve proton migration, while the JT2 pathway drives proton migration and can be mapped into the indirect dissociation channel of Coulomb explosion. The time-resolved experiment indicates that the delay time between those two JT pathways can be as large as ∼600 fs. After the JT distortion, the cyclopropane cation undergoes a subsequent structural evolution, which brings a greater variety of dissociation channels.
Collapse
Affiliation(s)
- Jiguo Wang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Bowen Dong
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Ming Zhang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yongkai Deng
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Xiaopeng Jian
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
| |
Collapse
|