1
|
Choi H, Shin SJ, Bae G, Cho J, Han MH, Sougrati MT, Jaouen F, Lee KS, Oh HS, Kim H, Choi CH. Space Charge, Modulating the Catalytic Activity of Single-Atom Metal Catalysts. J Am Chem Soc 2025; 147:13220-13228. [PMID: 40228163 DOI: 10.1021/jacs.4c17413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Potential-induced electrode charging is a prerequisite to initiate electrochemical reactions at the electrode-electrolyte interface. The 'interface space charge' could dramatically alter the reaction environment and the charge density of the active site, both of which potentially affect the electrochemical activity. However, our understanding of the electrocatalytic role of space charge has been limited. Here, we separately modulate the amount of space charge (characterized by the areal density, σ) with maintaining the electrochemical potential for the oxygen reduction reaction (ORR) at the same level, by exploiting the unique structural feature of MeNC. We reveal that changes in σ control the ORR activity, which is computationally explained by the inductive polarization of the charge density at the active sites, affecting their turnover rates. To guide catalyst design including the space charge effect, we develop a new descriptor, explaining the activity trend in various metal centers and pH conditions using a single volcano. These findings offer fresh insights into the role of space charge in electrocatalysis, providing a new framework for optimizing catalyst design and performance.
Collapse
Affiliation(s)
- Hansol Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seung-Jae Shin
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Geunsu Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsic Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Man Ho Han
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | | | - Frédéric Jaouen
- ICGM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Kug-Seung Lee
- Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Feuerstein L, Bas EE, Golze D, Heine T, Oschatz M, Weidinger IM. Nitrile Groups as Build-In Molecular Sensors for Interfacial Effects at Electrocatalytically Active Carbon-Nitrogen Materials. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23996-24004. [PMID: 40200634 DOI: 10.1021/acsami.5c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Electrocatalytic reactions are influenced by various interfacial phenomena including nonspecific interaction forces. For many examples, their contributions to the catalytic cycle have yet to be identified. Noncovalent interactions between the electrode and the electrolyte can be described by the local electric field environment at the interface and are experimentally accessible based on the Vibrational Stark Effect. We herein present a carbon-based C2N-type electrocatalyst that is active for the hydrogen evolution reaction and that contains nitrile functions as Stark reporter groups. With this system, we expand the range of electrocatalytically active systems suitable for electrochemical Stark spectroscopy while taking a step away from pure model systems. The stretching mode ν(C≡N) was analyzed via experimental and calculated Raman spectroscopy, revealing a defect character of the inherent CN groups. The ν(C≡N) peak position was furthermore studied via in situ electrochemical Raman spectroscopy. At noncatalytic conditions, a linear dependence between an applied electric potential and ν(C≡N) peak shift is observed, resulting in a red-shift at a more negative potential. At catalytic conditions, deviations from the linearity occur, and a semipermanent blue-shift of the CN peak is observed after electrocatalysis, implying a restructuring of the electrochemical double layer and therefore a change in the local electric field environment due to the catalytic turnover and the associated interfacial processes.
Collapse
Affiliation(s)
- Linda Feuerstein
- Chair of Electrochemistry, Technische Universität Dresden, Zellescher Weg 19, Dresden 01069, Germany
| | - Ekin Esme Bas
- Chair of Theoretical Chemistry, Technische Universität Dresden, Bergstrasse 66c, Dresden 01069, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, HZDR, Bautzner Landstrasse 400, Dresden 01328, Germany
- Center for Advanced Systems Understanding, CASUS, Untermarkt 20, Görlitz 02826, Germany
| | - Dorothea Golze
- Chair of Theoretical Chemistry, Technische Universität Dresden, Bergstrasse 66c, Dresden 01069, Germany
| | - Thomas Heine
- Chair of Theoretical Chemistry, Technische Universität Dresden, Bergstrasse 66c, Dresden 01069, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, HZDR, Bautzner Landstrasse 400, Dresden 01328, Germany
- Center for Advanced Systems Understanding, CASUS, Untermarkt 20, Görlitz 02826, Germany
- Department of Chemistry, Yonsei University and ibs-cnm, Seodaemun-gu Seoul 120-749, Republic of Korea
| | - Martin Oschatz
- Center for Energy and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, Jena 07743, Germany
- Institute for Technical Chemistry and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, Jena 07743, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, Jena 07743, Germany
| | - Inez M Weidinger
- Chair of Electrochemistry, Technische Universität Dresden, Zellescher Weg 19, Dresden 01069, Germany
| |
Collapse
|
3
|
Du W, Zhao B, Lun Y, Hu Y, Geng Y, Zhou Y, Zhao X, Wang X. Fabrication of Silicon Surface Microstructures via Vortex Femtosecond Laser Irradiation for Reusable Substrates in SERS Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410480. [PMID: 39901630 DOI: 10.1002/smll.202410480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/27/2025] [Indexed: 02/05/2025]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a key technique in analytical chemistry because of its exceptional sensitivity and specificity for detecting a broad spectrum of substances. Herein, a silicon (Si) substrate fabricated using vortex femtosecond laser beams in ambient air is proposed as an innovative, highly sensitive, and reusable platform for advanced SERS applications. The substrate has composite nanostructures adorned with bush-like formations on top of the elongated structures, which is a direct consequence of the orbital angular momentum of the vortex beam. Simulations conducted using COMSOL provide valuable insights into the distribution of hot spots and electromagnetic field across the substrate surface after gold nanoparticles deposition, underscoring the superior SERS detection capabilities of the fabricated substrate using vortex beams as compared to those processed by Gaussian beams. The vortex-fabricated substrate possesses remarkable reusability, stability, and time-resistance. It exhibited outstanding detection performance for malachite green and microcystin-LR, achieving limits of detection values of 3.91 pM and 2.69 pg·mL-1, respectively. Therefore, the Si substrates fabricated using a vortex femtosecond laser beam is an ideal candidate for advancing SERS sensors to new heights.
Collapse
Affiliation(s)
- Wenhan Du
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430072, China
| | - Bing Zhao
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430072, China
| | - Yinghao Lun
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430072, China
| | - Yueming Hu
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430072, China
| | - Yuanhai Geng
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430072, China
| | - Yifan Zhou
- School of Microelectronics, Hubei University, Wuhan, 430062, China
| | - Xiaona Zhao
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430072, China
| | - Xuan Wang
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Xu G, Wang T. Practical Applications of Grand-canonical Electronic Structure Calculations in Electrochemical Simulation. J Phys Chem Lett 2025; 16:1470-1477. [PMID: 39895225 DOI: 10.1021/acs.jpclett.4c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Modeling electrified interfaces has long been a great challenge in electrochemistry. In recent years, the grand-canonical treatment for electrons has gradually been developed, and its combination with density functional theory has been widely used to simulate electrochemical processes on an atomistic scale. In this Perspective, we aim to discuss several practical applications of this powerful technique after a short review of necessary fundamentals. We will begin with capacitor-based parametrization method of grand-canonical calculated results. If considering the electrodes under different applied potentials as different materials, the parametrization can be viewed as a kind of "quadratic scaling relation", which might reduce the overall computational costs by data postanalysis rather than algorithm development. Following an example of the abnormal potential-independent energetic curve within the bandgap area, we turn the topic to the semiconducting electrodes. Meanwhile, the specific behaviors of the bandgap also indicate that besides the reaction thermodynamics and kinetics, the detailed electronic structure of the system can also be well described by the grand-canonical treatment on electrons. Several possibilities for further applications are proposed correspondingly and summarized at the end of paper. We believe that the grand-canonical treatment for electronic structure calculations can greatly enrich our understanding of the fundamental mechanisms under electrochemical environments.
Collapse
Affiliation(s)
- Gaomou Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Zhejiang Baima Lake Laboratory, Division of Solar Energy Conversion and Catalysis, Westlake University, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
5
|
Long Z, Meng J, Weddle LR, Videla PE, Menzel JP, Cabral DGA, Liu J, Qiu T, Palasz JM, Bhattacharyya D, Kubiak CP, Batista VS, Lian T. The Impact of Electric Fields on Processes at Electrode Interfaces. Chem Rev 2025; 125:1604-1628. [PMID: 39818737 PMCID: PMC11826898 DOI: 10.1021/acs.chemrev.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025]
Abstract
The application of external electric fields to influence chemical reactions at electrode interfaces has attracted considerable interest in recent years. However, the design of electric fields to achieve highly efficient and selective catalytic systems, akin to the optimized fields found at enzyme active sites, remains a significant challenge. Consequently, there has been substantial effort in probing and understanding the interfacial electric fields at electrode/electrolyte interfaces and their effect on adsorbates. In this review, we examine recent advances in experimental, computational, and theoretical studies of the interfacial electric field, the origin of the vibrational Stark effect of adsorbates on electrode surfaces, and the effects of electric fields on reactions at electrode/electrolyte interfaces. We also discuss recent advances in control of charge transfer and chemical reactions using magnetic fields. Finally, we outline perspectives on key areas for future studies.
Collapse
Affiliation(s)
- Zhuoran Long
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jinhui Meng
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Lydia R. Weddle
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Pablo E. Videla
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jan Paul Menzel
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Delmar G. A. Cabral
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jinchan Liu
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Tianyin Qiu
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Joseph M. Palasz
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | | | - Clifford P. Kubiak
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Victor S. Batista
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Lake WR, Meng J, Dawlaty JM, Lian T, Hammes-Schiffer S. Electro-inductive Effects and Molecular Polarizability for Vibrational Probes on Electrode Surfaces. J Phys Chem Lett 2024; 15:9100-9104. [PMID: 39197102 DOI: 10.1021/acs.jpclett.4c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
A microscopic understanding of electric fields and molecular polarization at interfaces will aid in the design of electrocatalytic systems. Herein, variants of 4-mercaptobenzonitrile are designed to test different schemes for breaking the continuous conjugation between a gold electrode surface and a nitrile group. Periodic density functional theory calculations predict applied potential dependencies of the CN vibrational frequencies similar to those observed experimentally. The CN frequency response decreased more when the conjugation was broken between the benzene ring and the nitrile group than between the electrode and the benzene ring, highlighting molecular polarizability effects. The systems with continuous or broken conjugation are dominated by electro-inductive effects or through-space electrostatic effects, respectively. Analysis of the fractional charge transfer between the electrode and the molecule as well as the occupancy of the CN antibonding orbital provides further insights. Balancing the effects of molecular polarizability, electro-induction, and through-space electrostatics has broad implications for electrocatalyst design.
Collapse
Affiliation(s)
- William R Lake
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jinhui Meng
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
Streu K, Hunsberger S, Patel J, Wan X, Daly CA. Development of a universal method for vibrational analysis of the terminal alkyne C≡C stretch. J Chem Phys 2024; 160:074106. [PMID: 38364010 DOI: 10.1063/5.0185580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/07/2024] [Indexed: 02/18/2024] Open
Abstract
The terminal alkyne C≡C stretch has a large Raman scattering cross section in the "silent" region for biomolecules. This has led to many Raman tag and probe studies using this moiety to study biomolecular systems. A computational investigation of these systems is vital to aid in the interpretation of these results. In this work, we develop a method for computing terminal alkyne vibrational frequencies and isotropic transition polarizabilities that can easily and accurately be applied to any terminal alkyne molecule. We apply the discrete variable representation method to a localized version of the C≡C stretch normal mode. The errors of (1) vibrational localization to the terminal alkyne moiety, (2) anharmonic normal mode isolation, and (3) discretization of the Born-Oppenheimer potential energy surface are quantified and found to be generally small and cancel each other. This results in a method with low error compared to other anharmonic vibrational methods like second-order vibrational perturbation theory and to experiments. Several density functionals are tested using the method, and TPSS-D3, an inexpensive nonempirical density functional with dispersion corrections, is found to perform surprisingly well. Diffuse basis functions are found to be important for the accuracy of computed frequencies. Finally, the computation of vibrational properties like isotropic transition polarizabilities and the universality of the localized normal mode for terminal alkynes are demonstrated.
Collapse
Affiliation(s)
- Kristina Streu
- Department of Chemistry, Haverford College, 370 Lancaster Ave., Haverford, Pennsylvania 19041, USA
| | - Sara Hunsberger
- Department of Chemistry, Haverford College, 370 Lancaster Ave., Haverford, Pennsylvania 19041, USA
| | - Jeanette Patel
- Department of Chemistry, Haverford College, 370 Lancaster Ave., Haverford, Pennsylvania 19041, USA
| | - Xiang Wan
- Department of Mathematics and Statistics, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, Illinois 60660, USA
| | - Clyde A Daly
- Department of Chemistry, Haverford College, 370 Lancaster Ave., Haverford, Pennsylvania 19041, USA
| |
Collapse
|