1
|
Yao Y, Chen S, Yan C, Wang J, Liu J, Zhu WH, Fan C, Guo Z. Photo-Triggered Fluorescence Polyelectrolyte Nanoassemblies: Manipulate and Boost Singlet Oxygen in Photodynamic Therapy. Angew Chem Int Ed Engl 2025; 64:e202416963. [PMID: 39387351 DOI: 10.1002/anie.202416963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Photodynamic therapy (PDT) is a clinically approved therapeutic modality that has shown great potential for cancer treatment. However, there exist two major problems hindering PDT applications: the nonspecific phototoxicity requiring patients to stay in dark post-PDT, and the limited photodynamic efficiency. Herein, we report a photo-triggered porphyrin polyelectrolyte nanoassembling (photo-triggered PPN) strategy, in which porphyrin photosensitizer and photoswitchable energy accepter are assembled into polyelectrolyte micelles by a combined force of charge interaction and metal-ligand coordination. The polyelectrolyte-based PPN exhibits good biocompatibility, and bestows a unique "confining isolated" inner microenvironment for fully overcoming the π-π stacking of porphyrins with significant photodynamic efficiency (123-fold enhancement). Due to the high Förster resonance energy transfer (FRET) (91.5 %) between porphyrin and photoswitch in closed-form, we could use light as a specific trigger to modulate photoswitch between closed- and open-form, and manipulate the 1O2 generation in three stages: pre-PDT (quenching 1O2 generation), during PDT (activating 1O2 generation), and post-PDT (silencing 1O2 generation). This de novo strategy has for the first time realized remotely manipulating and boosting 1O2 generation in PDT, well resolving the critical and general challenges of limited photodynamic efficiency and side effects from nonspecific phototoxicity.
Collapse
Affiliation(s)
- Yongkang Yao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shangjun Chen
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianjun Liu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Huang HY, Xue RY, Xiao SX, Huang LT, Liao XW, Wang JT, Duan XM, Yu RJ, Xiong YS. AIE-based ruthenium complexes as photosensitizers for specifically photo-inactivate gram-positive bacteria. J Inorg Biochem 2025; 262:112755. [PMID: 39388808 DOI: 10.1016/j.jinorgbio.2024.112755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The emergence of multidrug-resistant bacterial have caused severe burden for public health. Particularly, Staphylococcus aureus as one of ESKAPE pathogens have induced various infectious diseases and resulted in increasing deaths. Developing new antibacterial agents is still urgent and challenging. Fortunately, in this study, based on aggregation-induced emission (AIE) ruthenium complexes were designed and synthesized, which realized the high efficiency of reactive oxygen species generation and remarkably killed S. aureus unlike conventional antibiotics action. Significantly, owing to good singlet oxygen production ability, Ru1 at only 4 μg/mL of concentration displayed good antibacterial photodynamic therapy effect upon white light irradiation and could deplete essential coenzyme NADH to disrupt intracellular redox balance. Also, the electrostatic interaction between Ru1 and bacteria enhanced the possibility of antibacterial. Under light irradiation, Ru1 could efficiently inhibit the biofilm growth and avoid the development of drug-resistant. Furthermore, Ru1 possessed excellent biocompatibility and displayed remarkable therapy effect in treating mice-wound infections in vivo. These findings indicated that AIE-based ruthenium complexes as new antibacterial agent had great potential in photodynamic therapy of bacteria and addressing the drug-resistance crisis.
Collapse
Affiliation(s)
- Hai-Yan Huang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Run-Yu Xue
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Su-Xin Xiao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Li-Ting Huang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Xiang-Wen Liao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Jin-Tao Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Xue-Min Duan
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Ru-Jian Yu
- School of life science, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China
| | - Yan-Shi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, PR China.
| |
Collapse
|
3
|
Zhou K, Du L, Ding R, Xu L, Shi S, Wang S, Wang Z, Zhang G, He G, Zhao Z, Tang BZ. Photocatalytic therapy via photoinduced redox imbalance in biological system. Nat Commun 2024; 15:10551. [PMID: 39632877 PMCID: PMC11618361 DOI: 10.1038/s41467-024-55060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
Redox balance is essential for sustaining normal physiological metabolic activities of life. In this study, we present a photocatalytic system to perturb the balance of NADH/NAD+ in oxygen-free conditions, achieving photocatalytic therapy to cure anaerobic bacterial infected periodontitis. Under light irradiation, the catalyst TBSMSPy+ can bind bacterial DNA and initiate the generation of radical species through a multi-step electron transfer process. It catalyzes the conversion from NADH to NAD+ (the turnover frequency up to 60.7 min-1), inhibits ATP synthesis, disrupts the energy supply required for DNA replication, and successfully accomplishes photocatalytic sterilization in an oxygen-free environment. The catalyst participates in the redox reaction, interfering with the balance of NADH/NAD+ contents under irradiation, so we termed this action as photoinduced redox imbalance. Additionally, animal experiments in male rats also validate that the TBSMSPy+ could effectively catalyze the NADH oxidation, suppress metabolism and stimulate osteogenesis. Our research substantiates the concept of photoinduced redox imbalance and the application of photocatalytic therapy, further advocating the development of such catalyst based on photoinduced redox imbalance strategy for oxygen-free phototherapy.
Collapse
Grants
- 52003228 National Natural Science Foundation of China (National Science Foundation of China)
- 52273197 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China (2023YFB3810001), Shenzhen Key Laboratory of Functional Aggregate Materials (ZDSYS 20211021111400001), Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ 2021324134613038, KQTD 20210811090142053, JCYJ20220818103007014, GJHZ 20210705141810031), the Innovation and Technology Commission (ITC-CNERC14SC01), the Open Fund of Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (2021-kllma-08), Guangzhou 510640, China (South China University of Technology). Guangzhou Science and Technology Planning Project (202201010439). Guangdong Basic and Applied Basic Research Foundation (2023A1515110346, 2021A1515110826). Guangzhou Science and Technology Planning Project (202201010439).
Collapse
Affiliation(s)
- Kun Zhou
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Rui Ding
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Letian Xu
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, China
| | - Shuai Shi
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Siyuan Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Zaiyu Wang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Guoqing Zhang
- University of Science and Technology of China, Hefei, Anhui, China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
- AIE Institute, Guangzhou Development District, Huangpu, Guangdong, China.
| |
Collapse
|
4
|
Xie Z, Cao B, Zhao J, Liu M, Lao Y, Luo H, Zhong Z, Xiong X, Wei W, Zou T. Ion Pairing Enables Targeted Prodrug Activation via Red Light Photocatalysis: A Proof-of-Concept Study with Anticancer Gold Complexes. J Am Chem Soc 2024; 146:8547-8556. [PMID: 38498689 DOI: 10.1021/jacs.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photocatalysis has found increasing applications in biological systems, for example, in localized prodrug activation; however, high-energy light is usually required without giving sufficient efficiency and target selectivity. In this work, we report that ion pairing between photocatalysts and prodrugs can significantly improve the photoactivation efficiency and enable tumor-targeted activation by red light. This is exemplified by a gold-based prodrug (1d) functionalized with a morpholine moiety. Such a modification causes 1d to hydrolyze in aqueous solution, forming a cationic species that tightly interacts with anionic photosensitizers including Eosin Y (EY) and Rose Bengal (RB), along with a significant bathochromic shift of absorption tailing to the far-red region. As a result, a high photoactivation efficiency of 1d by EY or RB under low-energy light was found, leading to an effective release of active gold species in living cells, as monitored by a gold-specific biosensor (GolS-mCherry). Importantly, the morpholine moiety, with pKa ∼6.9, in 1d brings in a highly pH-sensitive and preferential ionic interaction under a slightly acidic condition over the normal physiological pH, enabling tumor-targeted prodrug activation by red light irradiation in vitro and in vivo. Since a similar absorption change was found in other morpholine/amine-containing clinic drugs, photocages, and precursors of reactive labeling intermediates, it is believed that the ion-pairing strategy could be extended for targeted activation of different prodrugs and for mapping of an acidic microenvironment by low-energy light.
Collapse
Affiliation(s)
- Zhiying Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Education Sciences, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Moyi Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuhan Lao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hejiang Luo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhi Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaolin Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Chen J, Chen R, Chau CV, Sedgwick AC, Xue Q, Chen T, Zeng S, Chen N, Wong KKY, Song L, Ren Y, Yang J, Sessler JL, Liu C. Targeted Cyclo[8]pyrrole-Based NIR-II Photoacoustic Tomography Probe for Suppression of Orthotopic Pancreatic Tumor Growth and Intra-abdominal Metastases. J Am Chem Soc 2024; 146:4620-4631. [PMID: 38330912 DOI: 10.1021/jacs.3c11666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Pancreatic cancer is highly lethal. New diagnostic and treatment modalities are desperately needed. We report here that an expanded porphyrin, cyclo[8]pyrrole (CP), with a high extinction coefficient (89.16 L/g·cm) within the second near-infrared window (NIR-II), may be formulated with an αvβ3-specific targeting peptide, cyclic-Arg-Gly-Asp (cRGD), to form cRGD-CP nanoparticles (cRGD-CPNPs) with promising NIR-II photothermal (PT) therapeutic and photoacoustic (PA) imaging properties. Studies with a ring-array PA tomography system, coupled with analysis of control nanoparticles lacking a targeting element (CPNPs), revealed that cRGD conjugation promoted the delivery of the NPs through abnormal vessels around the tumor to the solid tumor core. This proved true in both subcutaneous and orthotopic pancreatic tumor mice models, as confirmed by immunofluorescent studies. In combination with NIR-II laser photoirradiation, the cRGD-CPNPs provided near-baseline tumor growth inhibition through PTT both in vitro and in vivo. Notably, the combination of the present cRGD-CPNPs and photoirradiation was found to inhibit intra-abdominal metastases in an orthotopic pancreatic tumor mouse model. The cRGD-CPNPs also displayed good biosafety profiles, as inferred from PA tomography, blood analyses, and H&E staining. They thus appear promising for use in combined PA imaging and PT therapeutic treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rui Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, China
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Calvin V Chau
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street A5300, Austin, Texas 78712-1224, United States
| | - Adam C Sedgwick
- Department of Chemistry, Kings College London, 7 Trinity Street, London SE1 1DB, U.K
| | - Qiang Xue
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tao Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Silue Zeng
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ningbo Chen
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Kenneth K Y Wong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Liang Song
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaguang Ren
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian Yang
- Department of Hepatobiliary Surgery I, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, China
| | - Jonathan L Sessler
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street A5300, Austin, Texas 78712-1224, United States
| | - Chengbo Liu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|