1
|
Jazani A, Yilmaz G, Baumer M, Sobieski J, Bernhard S, Matyjaszewski K. Unraveling the Roles of Amines in Atom Transfer Radical Polymerization in the Dark. J Am Chem Soc 2025; 147:12562-12573. [PMID: 40173322 PMCID: PMC12006995 DOI: 10.1021/jacs.4c18496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Multidentate amines have been widely used as ligands (L) for Cu-catalysts in atom transfer radical polymerization (ATRP) and as electron donors in photochemically induced polymerizations. However, mechanistic aspects of the role of amines in ATRP in the dark have remained elusive. Herein, the structure-activity relationship and the related electron transfer reactions with Br-CuII/L complexes and/or with alkyl bromides (R-Br) were investigated for 25 amines. Amines function as electron donors and reducing agents for Br-CuII/L complexes via an outer sphere electron transfer (OSET) mechanism, enabling slow but continuous generation of CuI/L activators and inducing controlled ATRP. However, two amines, diazabicyclo(5.4.0)undec-7-ene (DBU) and 1,1,3,3-tetramethylguanidine (TMG), reduced Br-CuII/L faster, suggesting an inner sphere electron transfer (ISET) process. ATRP, starting with initial deactivators (Br-CuII/L) species, proceeded in the dark in the presence of an excess of tertiary amines, such as tris[2-(dimethylamino)ethyl]amine (Me6TREN), 1,4-diazabicyclo[2.2.2]octane (DABCO), and TMG at room temperature and afforded polymers with low dispersities (Đ ≤ 1.15). With copper(II) triflate complex (CuII/L+2, -(OTf)2), which has a more positive reduction potential, ATRP proceeded at room temperature with several inexpensive secondary and tertiary amines including triethylamine (TEA) and dimethylethanolamine (DMAE). Interestingly, multidentate amines also served as direct R-Br activators at elevated temperatures (60 °C). In all cases, chains were initiated with R-Br and not by the amine radical cations as byproducts of electron transfer. Amines also enabled ATRP in the presence of residual air in flasks with a large headspace, underpinning them as a robust and accessible reducing agent for practical applications.
Collapse
Affiliation(s)
| | | | - Mitchell Baumer
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Julian Sobieski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
Chen JF, Gao QX, Tian Y, Tao SP, Shi B, Yao H, Wei TB, Chen P, Lin Q. Photoinduced Stable Circularly Polarized Luminescent Radicals From a Triphenylamine-Attached Planar Chiral Pillar[5]Arene. Chemistry 2025:e202500771. [PMID: 40192269 DOI: 10.1002/chem.202500771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Photoinduced organic radicals with unique luminescent properties are highly sought-after due to their important prospects in synthetic chemistry and materials science. However, the current development of organic free radicals, including photoinduced ones, is significantly limited and faces challenges related to stability and poor luminescence behavior. Taking advantage of the photoelectric activity of triarylamine, we herein describe an unusual luminescent radical, which can be rapidly generated by UV irradiation of a solid-state triarylamine-functionalized π-conjugated pillar[5]arene (EtP5NN) in air, accompanied by luminescent color switching from bluish-violet to sky-blue. The persistent radicals within EtP5NN with a half-life of 12.7 h suggest that the pillar[5]arene skeleton straightforwardly improves the stability of radicals. The sterically bulky triarylamine groups inhibit the racemization of planar chiral pillar[5]arene and allow the optical resolution of this system. The enhancement of circularly polarized luminescence (CPL) is triggered by UV irradiation of the enantiomers (pS/pR-EtP5NN) in the solid state.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, People's Republic of China
| | - Qing-Xiu Gao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, People's Republic of China
| | - Yu Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, China
| | - Shao-Ping Tao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, People's Republic of China
| | - Bingbing Shi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, People's Republic of China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, People's Republic of China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, People's Republic of China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
3
|
Kaur R, Singh P. Catalase-like activity of perylene diimide based radical anion: Chromogenic substrate for achieving glucose sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125438. [PMID: 39612535 DOI: 10.1016/j.saa.2024.125438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
In this work, perylene diimide based radical anion (PH2-) is synthesized and characterized using optical, NOBF4 methods; cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The PH2- is stable for 120 min (2 h) in oxygenated environment and 273 min (4.5 h) in hypoxic conditions. The PH2- showed catalase-like activity to reduce H2O2 to H2O with turn-over number (TON) = 20 and turn-over frequency (TOF) = 40 h-1. The catalase-like activity can be measured using optical and electrochemical methods by monitoring the changes at 726 nm (absorbance); 585 nm (emission) and at 0.27 V. We were able to quantitatively monitor the ultra low-level concentrations of the H2O2 as low as 320 fM (absorbance) and 200 fM (emission). Moreover, PH2- could be used as a chromogenic and fluorogenic substrate for monitoring the low-level concentrations of the glucose using GOx based biochemical assay. We have demonstrated the development and validation of the glucose assay kit for the detection of glucose as low as 3.6/2.8 nM in aqueous medium and 6.2/5.6 nM in blood serum.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, Pb., India
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, Pb., India.
| |
Collapse
|
4
|
Sobieski J, Gorczyński A, Jazani AM, Yilmaz G, Matyjaszewski K. Better Together: Photoredox/Copper Dual Catalysis in Atom Transfer Radical Polymerization. Angew Chem Int Ed Engl 2025; 64:e202415785. [PMID: 39611372 DOI: 10.1002/anie.202415785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Indexed: 11/30/2024]
Abstract
Photomediated Atom Transfer Radical Polymerization (photoATRP) is an activator regeneration method, which allows for the controlled synthesis of well-defined polymers via light irradiation. Traditional photoATRP is often limited by the need for high-energy ultraviolet or violet light. These could negatively affect the control and selectivity of the polymerization, promote side reactions, and may not be applicable to biologically relevant systems. This drawback can be circumvented by an introduction of the catalytic amount of photocatalysts, which absorb visible and/or NIR light and, therefore, controlled, regenerative ATRP can be performed with the dual-catalytic cycle. Herein, a critical summary of recent developments in the field of dual-catalysis concerning Cu-catalyzed ATRP is provided. Contributions of involved species are examined mechanistically, followed by challenges and future directions towards the next generation of advanced functional macromolecular materials.
Collapse
Affiliation(s)
- Julian Sobieski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
| | - Adam Gorczyński
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Arman Moini Jazani
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
| | - Gorkem Yilmaz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, United States
| |
Collapse
|
5
|
Kaur R, Kumar S, Liu S, Kumar K, Chen J, Singh P. Modified perylene diimide for femto molar level detection of glucose: smartphone-assisted colorimetric glucose detection kits. J Mater Chem B 2024; 12:12007-12016. [PMID: 39435673 DOI: 10.1039/d4tb01879f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
In this report, a functionalized hydroxyphenyl benzothiazole (HBT) derivative has been synthesized and anchored onto the perylene diimide (PDI) core at the -bay position (PHI). PHI has been explored for the generation of radical anions (PH1˙-) and dianions (PH12-) in 20% HEPES buffer-DMSO solution using H2S as a sacrificial electron donor. The PH1˙- has a half-life (t1/2) of 1.5 h and 3 h in oxygenated and hypoxic conditions, respectively. The formation of radical anions has been confirmed by optical (absorbance and fluorescence) methods, cyclic voltammetry (CV), differential pulse voltammetry (DPV), and femtosecond transient absorbance spectroscopy along with current-voltage (I-V) and NOBF4 studies. The PH1˙- showed peroxidase-like activity for the reduction of H2O2 as low as 170 fmol L-1 (fM) giving a colour change from sea green to pink. The biochemical assay which consists of PH1˙-+ GOx has been further utilized as a glucose sensor. Upon addition of glucose (0-8 nM) in the biochemical assay, the in-situ produced H2O2 (after oxidation of glucose with GOx) oxidized PH1˙- to PH1 giving a sea green to pink colorimetric read out along with a decrease in the absorption intensities at 720, 815, 880 and 950 nm and the emergence of absorption intensity at 541 nm. The lowest limit of detection is 85 fM. We also explored this biochemical assay for the detection of 860 fM of glucose in a 10% blood serum. Similarly, fluorometric, CV and DPV studies were carried out for the detection of glucose using this biochemical assay. The smartphone-assisted RGB colour analyser showed large variations in the red colour and this RGB based colour differentiation can be used for the detection of 1 nM of glucose.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, India.
| | - Sanjeev Kumar
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, India.
| | - Siyu Liu
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Kapil Kumar
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, India.
| |
Collapse
|
6
|
Carroll JA, Pashley-Johnson F, Frisch H, Barner-Kowollik C. Photochemical Action Plots Reveal Red-shifted Wavelength-dependent Photoproduct Distributions. Chemistry 2024; 30:e202304174. [PMID: 38267371 DOI: 10.1002/chem.202304174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Photochemical action plots are a powerful tool for mapping photochemical reaction outcomes wavelength-by-wavelength. Typically, they map either the depletion of a reactant or the formation of a specific product as a function of wavelength. Herein, we exploit action plots to simultaneously map the formation of several photochemical products from a single chromophore. We demonstrate that the wavelength-resolved mapping of two reaction products formed during the irradiation of a chalcone species not only shows wavelength dependence - exhibiting the typical strong red-shift of the photochemical reactivity compared to the absorbance spectrum of the chromophore - but also a strong wavelength selectivity with remarkably different product distributions resulting from different irradiation wavelengths.
Collapse
Affiliation(s)
- Joshua A Carroll
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Fred Pashley-Johnson
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Faculty of Science, Ghent University, Krijgslaan 281 (S4-Bis), 9000, Ghent, Belgium
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Insitute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|