1
|
Yang L, Zhan Z, Zhao L, Zhang C, Wang S, Hu W, Zhu G. Efficient construction of high-quality sulfonated porous aromatic frameworks by optimizing the swelling state of porous structures. Chem Sci 2025; 16:775-783. [PMID: 39634581 PMCID: PMC11613706 DOI: 10.1039/d4sc05329j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Conventional post-modification methods usually face the fundamental challenge of balancing the high content of functional groups and large surface area for porous organic polymers (POPs). The reason, presumably, stems from ineffective and insufficient swelling of the porous structure of POP materials, which is detrimental to mass transfer and modification of functional groups, especially with large-sized ones. It is important to note that significant differences exist in the porous structures of POP materials in a solvent-free state after thermal activation and solvent swelling state. Herein, we propose that the improvement of the swelling state of the porous structure of POP materials is more conducive to obtaining high-quality sulfonated POP materials, and employ a one-pot modification strategy for preparing sulfonated porous aromatic frameworks (PAFs) to prove the proposal. These results show that the specific surface area of the resulting polymer is 580 m2 g-1 with a sulfur content of up to 13.2 wt%, which is superior to most sulfonated porous materials and the control sample. More importantly, we have also shown that the same conclusion is reached by performing similar treatments on hyper-crosslinked polymers (HCPs) and conjugated microporous polymers (CMPs), proving that our hypothesis is effective and feasible when compared to the conventional post-sulfonation method. The excellent hydrophilicity, rich content of sulfonic acid groups, high specific surface area and hierarchical pore structure make the resulting polymer an ideal adsorbent for micro-pollutants in water. The maximum adsorption capacities for Rhodamine B (RhB), Methylene Blue (MB), Tetracycline (TC) and Ciprofloxacin (CIP) are 1075 mg g-1, 1020 mg g-1, 826 mg g-1 and 1134 mg g-1, respectively. This study not only demonstrates the preparation of efficient sulfonated porous adsorbents for the efficient removal of cationic dyes and antibiotics but also illustrates an effective method for constructing high-quality functional POP materials by optimizing the swelling state of the porous structure.
Collapse
Affiliation(s)
- Lulu Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 China
| | - Zhen Zhan
- Department of Applied Physics, The Hong Kong Polytechnic University Kowloon 999077 Hong Kong SAR China
| | - Lin Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 China
| | - Chengxin Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 China
- School of Materials Science and Engineering, Shenyang Ligong University Shenyang 110159 China
| | - Shaolei Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 China
| | - Wei Hu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 China
| |
Collapse
|
2
|
Cheng C, Liu Y, Sheng G, Jiang X, Kang X, Jiang C, Liu Y, Zhu Y, Cui Y. Construction of Benzoxazine-linked One-Dimensional Covalent Organic Frameworks Using the Mannich Reaction. Angew Chem Int Ed Engl 2024; 63:e202403473. [PMID: 38829678 DOI: 10.1002/anie.202403473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Covalent polymerization of organic molecules into crystalline one-dimensional (1D) polymers is effective for achieving desired thermal, optical, and electrical properties, yet it remains a persistent synthetic challenge for their inherent tendency to adopt amorphous or semicrystalline phases. Here we report a strategy to synthesize crystalline 1D covalent organic frameworks (COFs) composing quasi-conjugated chains with benzoxazine linkages via the one-pot Mannich reaction. Through [4+2] and [2+2] type Mannich condensation reactions, we fabricated stoichiometric and sub-stoichiometric 1D covalent polymeric chains, respectively, using doubly and singly linked benzoxazine rings. The validity of their crystal structures has been directly visualized through state-of-the-art cryogenic low-dose electron microscopy techniques. Post-synthetic functionalizations of them with a chiral MacMillan catalyst produce crystalline organic photocatalysts that demonstrated excellent catalytic and recyclable performance in light-driven asymmetric alkylation of aldehydes, affording up to 94 % enantiomeric excess.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Guan Sheng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xinru Jiang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Haro Mares NB, Döller SC, Wissel T, Hoffmann M, Vogel M, Buntkowsky G. Structures and Dynamics of Complex Guest Molecules in Confinement, Revealed by Solid-State NMR, Molecular Dynamics, and Calorimetry. Molecules 2024; 29:1669. [PMID: 38611950 PMCID: PMC11013127 DOI: 10.3390/molecules29071669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
This review gives an overview of current trends in the investigation of confined molecules such as water, small and higher alcohols, carbonic acids, ethylene glycol, and non-ionic surfactants, such as polyethylene glycol or Triton-X, as guest molecules in neat and functionalized mesoporous silica materials employing solid-state NMR spectroscopy, supported by calorimetry and molecular dynamics simulations. The combination of steric interactions, hydrogen bonds, and hydrophobic and hydrophilic interactions results in a fascinating phase behavior in the confinement. Combining solid-state NMR and relaxometry, DNP hyperpolarization, molecular dynamics simulations, and general physicochemical techniques, it is possible to monitor these confined molecules and gain deep insights into this phase behavior and the underlying molecular arrangements. In many cases, the competition between hydrogen bonding and electrostatic interactions between polar and non-polar moieties of the guests and the host leads to the formation of ordered structures, despite the cramped surroundings inside the pores.
Collapse
Affiliation(s)
- Nadia B. Haro Mares
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| | - Sonja C. Döller
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| | - Till Wissel
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| | - Markus Hoffmann
- Department of Chemistry and Biochemistry, State University of New York at Brockport, Brockport, NY 14420, USA
| | - Michael Vogel
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, D-64289 Darmstadt, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| |
Collapse
|
4
|
Winterstein SF, Bettermann M, Timm J, Marschall R, Senker J. Thermodynamically Stable Functionalization of Microporous Aromatic Frameworks with Sulfonic Acid Groups by Inserting Methylene Spacers. Molecules 2024; 29:1666. [PMID: 38611945 PMCID: PMC11013227 DOI: 10.3390/molecules29071666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
Porous aromatic frameworks (PAFs) are an auspicious class of materials that allow for the introduction of sulfonic acid groups at the aromatic core units by post-synthetic modification. This makes PAFs promising for proton-exchange materials. However, the limited thermal stability of sulfonic acid groups attached to aromatic cores prevents high-temperature applications. Here, we present a framework based on PAF-303 where the acid groups were added as methylene sulfonic acid side chains in a two-step post-synthetic route (SMPAF-303) via the intermediate chloromethylene PAF (ClMPAF-303). Elemental analysis, NMR spectroscopy, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy were used to characterize both frameworks and corroborate the successful attachment of the side chains. The resulting framework SMPAF-303 features high thermal stability and an ion-exchange capacity of about 1.7 mequiv g-1. The proton conductivity depends strongly on the adsorbed water level. It reaches from about 10-7 S cm-1 for 33% RH to about 10-1 S cm-1 for 100% RH. We attribute the strong change to a locally alternating polarity of the inner surfaces. The latter introduces bottleneck effects for the water molecule and oxonium ion diffusion at lower relative humidities, due to electrolyte clustering. When the pores are completely filled with water, these bottlenecks vanish, leading to an unhindered electrolyte diffusion through the framework, explaining the conductivity rise.
Collapse
Affiliation(s)
- Simon F. Winterstein
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Michael Bettermann
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Jana Timm
- Physical Chemistry III, Department of Chemistry, University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany (R.M.)
| | - Roland Marschall
- Physical Chemistry III, Department of Chemistry, University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth, Germany (R.M.)
| | - Jürgen Senker
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|