1
|
Zhang DH, Li YC, You JC, Sima ZK, Qin HL, Yi ZQ, Huang YY. Catalyzed Asymmetric Michael Additions of 1-Pyrroline Esters with β-Fluoroalkyl Alkenyl Imides and Azodicarboxylates. Chemistry 2025:e202501256. [PMID: 40331488 DOI: 10.1002/chem.202501256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/08/2025]
Abstract
The asymmetric Michael addition reactions of 1-pyrroline esters with β-fluoroalkyl alkenyl imides and dialkyl azodicarboxylates catalyzed by the AgOAc/Ph-phosferrox or CuOAc/(R)-BINAP complex have been developed. A series of chiral 1,5,5-trisubstituted pyrroline ester derivatives have been obtained in 53%-90% yields with 80%-99% ee's and all > 20:1 dr. The gram-scale synthesis and synthetic application of the chiral trifluoromethylated 1-pyrroline adducts were exhibited: the pyrrolizidin-3-one analogue was first synthesized with 94% ee and > 20:1 dr through two steps of hydrolysis and reductive cyclization; the pyrrolidine and lactam derivatives were also successfully provided under the reducing conditions of NaBH3CN and Pd/C─H2, respectively.
Collapse
Affiliation(s)
- De-Hua Zhang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi-Chao Li
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Jin-Chen You
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Zong-Ku Sima
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Hua-Li Qin
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Zi-Qi Yi
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201210, China
| | - Yi-Yong Huang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
2
|
Yang L, Yang M, Wang Z, Zhao W. Iridium-Catalyzed Asymmetric Allylic Alkylation of Boron Enolates to Construct Acyclic All-Carbon Quaternary Stereocenters. Angew Chem Int Ed Engl 2025; 64:e202424141. [PMID: 39971716 DOI: 10.1002/anie.202424141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
Enolates are ubiquitous intermediates in organic synthesis. Among them, boron enolates exhibit distinctive reactivity patterns and selectivities due to the presence of a boron atom, making their synthesis highly attractive. Although methods for accessing ketone- or ester-derived boron enolates are well-developed, much less progress has been made in the development of aldehyde-derived boron enolates due to aldehydes' high tendency toward self-condensation. Therefore, the practical applications of aldehyde-derived boron enolates are significantly hindered. We present herein an efficient method for the preparation of aldehyde-derived boron enolates via the 1,2-hydroboration of ketenes with boranes, avoiding the use of acidic R2BCl/R2BOTf and bases and leading to improved functional group tolerance. Utilizing this convenient protocol, we developed an Ir-catalyzed asymmetric allylic alkylation of boron enolates, yielding a wide array of chiral aldehydes bearing acyclic all-carbon quaternary centers with high chemo-, regio-, and enantioselectivity, which are prevalent in various natural products and bioactive molecules. The synthetic utility and practicality of this method are demonstrated through gram-scale reactions and asymmetric syntheses of the ent-5HT1 A antagonist as well as biological activity studies in inhibiting the growth of plant pathogens.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Mengzhi Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, P. R. China
| | - Zhenchao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| |
Collapse
|
3
|
Han H, Yi W, Ding S, Ren X, Zhao B. Enantioselective Three-Component α-Allylic Alkylation of α-Amino Esters by Synergistic Photoinduced Pd/Carbonyl Catalysis. Angew Chem Int Ed Engl 2025; 64:e202418910. [PMID: 39551702 DOI: 10.1002/anie.202418910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Photoinduced excited-state Pd catalysis has emerged as an intriguing strategy for unlocking new reactivity potential of simple substrates. However, the related transformations are still limited and the enantiocontrol remains challenging. Organocatalysis displays unique capability in substrate activation and stereocontrol. Combination of organocatalysis and photoinduced excited-state Pd catalysis may provide opportunities to develop new enantioselective reactions from simple substrates. By applying cooperative triple catalysis including excited-state Pd catalysis, ground-state Pd catalysis, and carbonyl catalysis, we have successfully realized enantioselective α-allylic alkylation of α-amino esters with simple styrene and alkyl halide starting materials. The reaction allows rapid modular assembly of the three reaction partners into a variety of chiral quaternary α-amino esters in good yields with 90-99 % ee, without protecting group manipulations at the active NH2 group. The cooperation of the chiral pyridoxal catalyst and the chiral phosphine ligand accounts for the excellent chirality induction.
Collapse
Affiliation(s)
- Haohao Han
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Wuqi Yi
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Shaojie Ding
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xinyi Ren
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
4
|
Liu J, Dong Z, Cao WB, Zheng C, You SL. Interrupting Associative π-σ-π Isomerization Enables Z-Retentive Asymmetric Tsuji-Trost Reaction. J Am Chem Soc 2025; 147:2776-2785. [PMID: 39772700 DOI: 10.1021/jacs.4c15635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The asymmetric Tsuji-Trost reaction has been extensively studied due to its importance in establishing stereogenic centers, often adjacent to an E-olefin moiety in organic molecules. The generally preferential formation of chiral E-olefin products is believed to result from the thermodynamically more stable syn-π-allylpalladium intermediate. The rapid associative π-σ-π isomerization makes it challenging to synthesize chiral Z-olefin products via the transient anti-π-allylpalladium intermediate. Herein, we report a strategy for regulating associative π-σ-π isomerization by tuning the steric bulkiness of the ligands, allylic leaving groups, and counteranions. The utilization of a Pd catalyst derived from chiral phosphoramidite ligands interrupts the associative π-σ-π isomerization, enabling a highly efficient Z-retentive asymmetric Tsuji-Trost reaction toward an array of α-amino acid derivatives bearing a Z-olefin motif in high yields (up to 95%) and excellent stereoselectivity (up to 99% ee and >19:1 Z/E) with low catalyst loading (0.1 mol %). The mechanistic insights and the design strategy reported in this work pave the way for rational developments of Z-retentive asymmetric Tsuji-Trost-type reactions.
Collapse
Affiliation(s)
- Jiandong Liu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zhongkang Dong
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Bin Cao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Shanghai-Hong Kong Joint Laboratory of Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
5
|
Liang C, Liu ZQ, Lin M, Huang XM, Xiong SQ, Zhang X, Li QH, Liu TL. Rhodium-Catalyzed Synthesis of Trifluoromethyl-Containing Allylic Alcohols Via Z-Alkenyl Transfer with High Stereochemistry Retention. Org Lett 2024; 26:10665-10670. [PMID: 39651549 DOI: 10.1021/acs.orglett.4c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Herein, we report the rhodium-catalyzed Z-alkenyl transfer from tertiary allylic alcohols to aryl trifluoromethyl ketones, which provided an efficient way of preparation of trifluoromethyl-containing Z-allylic alcohols via β-Z-alkenyl elimination. The key Z-alkenyl-rhodium species were generated with a high degree of stereochemical retention. This reaction featured a broad substrate scope and good functional tolerance and would offer a fascinating approach for the synthesis of Z-alkenes.
Collapse
Affiliation(s)
- Cheng Liang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Min Lin
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue-Mei Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Si-Qi Xiong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Liu TF, Yao Y, Lu CD. Enantioselective Formal 1,2-Diamination of Ketenes with Iminosulfinamides: Asymmetric Synthesis of Unnatural α,α-Disubstituted α-Amino Acid Derivatives. Org Lett 2024. [PMID: 38602315 DOI: 10.1021/acs.orglett.4c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
A method was developed for the enantioselective formal 1,2-diamination of disubstituted ketenes using iminosulfinamides as nitrogen sources. The protocol involves the addition of lithium iminosulfinamides to ketenes to form N-iminosulfinyl amide metalloenolates. These metalloenolates then undergo a [2,3]-sigmatropic rearrangement to yield unnatural α,α-disubstituted α-amino acid derivatives with high enantiopurity. The chirality present at the sulfur atom in the iminosulfinamides is effectively transferred to α carbon of the resulting products, facilitating the highly enantioselective amination of ketenes.
Collapse
Affiliation(s)
- Teng-Fei Liu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Yun Yao
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Chong-Dao Lu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| |
Collapse
|