1
|
Xu M, Corio SA, Warnica JM, Kuker EL, Lu A, Hirschi JS, Dong VM. Dynamic Kinetic Asymmetric Hydroacylation: Racemization by Soft Enolization. J Am Chem Soc 2025. [PMID: 40298317 DOI: 10.1021/jacs.5c01753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
We report a dynamic kinetic asymmetric transformation (DyKAT) of racemic aldehydes by Rh-catalyzed hydroacylation of acrylamides. This intermolecular hydroacylation generates 1,4-ketoamides with high enantio- and diastereoselectivity. DFT and experimental studies provide mechanistic insights and reveal an unexpected Rh-catalyzed pathway for aldehyde racemization. Our study represents a pioneering kinetic resolution by intermolecular hydroacylation and contributes to the growing field of stereoconvergent catalysis featuring C-C bond construction.
Collapse
Affiliation(s)
- Mengfei Xu
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Stephanie A Corio
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Josephine M Warnica
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Erin L Kuker
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Alexander Lu
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
2
|
Coto-Cid JM, Hornillos V, Fernández R, Lassaletta JM, de Gonzalo G. Chemoenzymatic Dynamic Kinetic Resolution of Atropoisomeric 2-(Quinolin-8-yl)benzylalcohols. J Org Chem 2025; 90:5120-5124. [PMID: 40203203 DOI: 10.1021/acs.joc.4c02996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The chemoenzymatic dynamic kinetic resolution of 2-(quinolin-8-yl)benzylalcohols using a combination of lipases and ruthenium catalysts is described. While CalB lipase performs highly selective enzymatic kinetic resolution, the combination with Shvo's or Bäckvall's catalysts promotes atropisomerization of the substrate via the reversible formation of configurationally labile aldehydes, thereby enabling a dynamic kinetic resolution. This synergistic approach was applied to the synthesis of a variety of heterobiaryl acetates in excellent yields and enantioselectivities.
Collapse
Affiliation(s)
- Juan M Coto-Cid
- Facultad de Química, Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Valentín Hornillos
- Facultad de Química, Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Rosario Fernández
- Facultad de Química, Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José M Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Gonzalo de Gonzalo
- Facultad de Química, Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
3
|
Wu Y, Zhu C. Changing the absolute configuration of atropisomeric bisnaphthols (BINOLs). Chem Commun (Camb) 2025; 61:5228-5233. [PMID: 40111747 DOI: 10.1039/d5cc01026h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Bisnaphthol (BINOL) is a ubiquitous core skeleton in versatile chiral catalysts and ligands for transition metals, and this representative atropisomeric structure also serves as a building block in various optically active natural products. Due to the high rotational barrier (∼40 kcal mol-1) in the neutral form of BINOL, it displays stable atropisomerism. Asymmetric catalysis using racemic BINOL substrates generally exhibits a kinetic resolution process, with reaction yields having to be below 50%. Dynamic kinetic resolution (DKR) combines kinetic resolution with a racemization process to push the ideal yield to 100%. A changing of the absolute configuration of BINOL has been observed since Brussee et al. did so in 1985, but its mechanism remains unknown. Recently, racemization strategies and a mechanism based on single-electron oxidation, producing a released radical-anion species as the key intermediate, have been clearly disclosed. In particular, deracemization of BINOLs achieved by using stochiometric amounts of a chiral amine or ammonium salt, and dynamic kinetic resolution in cooperation with biocatalysis, have been well established for accessing enantioenriched BINOL derivatives, as summarized and discussed in this review.
Collapse
Affiliation(s)
- Yun Wu
- Department of Pharmacy, Nantong Health College of Jiangsu Province, 288 Zhenxing East Road, Nantong, 226000, China
| | - Can Zhu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, China
| |
Collapse
|
4
|
Liu B, Liu Q, Wei G, Yang Z, He Q, Wang RH, Yang C, Zhang T, Kong X, Huang J, Liao W, Wang J, Tang L. Access to Chiral Dihydro-1,4-Benzoxazine-2-Carboxylates through NHC-Catalyzed Dynamic Kinetic Resolution. Org Lett 2025; 27:2340-2345. [PMID: 40000926 DOI: 10.1021/acs.orglett.5c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
A chiral carbene-catalyzed dynamic kinetic resolution for the facile synthesis of enantioenriched dihydro-1,4-benzoxazine-2-carboxylates is disclosed. The reaction conditions are mild, and a diversity of substituents are well-tolerated in this transformation. In addition, our methodology also provides an efficient strategy for building chiral chromane-2-carboxylate and 2,3-dihydro-1,4-benzodioxane-2-carboxylate. The optically pure products generated from this protocol can be easily derived as the key intermediates of chiral drugs and bioactive molecules.
Collapse
Affiliation(s)
- Bin Liu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Qinqin Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Guanbin Wei
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Zaihui Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Qing He
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Rong-Hua Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Chao Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
- Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Tianyuan Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Xiangkai Kong
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Jiayu Huang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Weike Liao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Jianta Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang 550004, China
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
5
|
Zhang MR, Wang HR, Shan HM, Xi LL, Lu CJ, Du XM, Sun C, Xu LP, Liu RR. Copper-catalysed dynamic kinetic asymmetric C-O cross-coupling to access chiral aryl oxime ethers and diaryl ethers. Nat Commun 2025; 16:2505. [PMID: 40082430 PMCID: PMC11906793 DOI: 10.1038/s41467-025-57804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
Dynamic kinetic resolution (DKR) has emerged as an elegant and powerful tool for enantioselective synthesis, enabling the transformation of racemic compounds into enantiomerically enriched products with theoretically quantitative yields. Despite its widespread success, the dynamic kinetic asymmetric C-O cross-coupling has presented significant challenges and remains unexplored. In this study, we report a dynamic kinetic asymmetric C-O cross-coupling of oximes and phenols via copper/BOX-catalysed enantioselective O-arylation with diaryliodonium salts. This method efficiently produces a wide range of inherently chiral oxime ethers, as well as axially chiral styrenes, with high yields and excellent regio- and enantioselectivities. Through controlled experiments and Density Functional Theory (DFT) studies, we have elucidated the dynamic kinetic resolution process and gained insights into the origins of regio- and enantioselectivity.
Collapse
Affiliation(s)
- Mei-Ru Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Hao-Ran Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Hui-Mei Shan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, China
| | - Long-Long Xi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Xiao-Man Du
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Che Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China.
- College of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
6
|
Rudzka A, Reiter T, Kroutil W, Borowiecki P. Bienzymatic Dynamic Kinetic Resolution of Secondary Alcohols by Esterification/Racemization in Water. Angew Chem Int Ed Engl 2025; 64:e202420133. [PMID: 39576712 DOI: 10.1002/anie.202420133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024]
Abstract
Dynamic kinetic resolution (DKR) is a key method used to prepare optically pure compounds in 100 % theoretical yield starting from racemic substrates by combining the interconversion of substrate enantiomers with an enantioselective transformation. Various chemoenzymatic DKR approaches have been developed to deracemize secondary alcohols, typically requiring an organic solvent to facilitate enantioselective acylation, primarily catalyzed by lipases, alongside racemization mediated by an achiral, non-enzymatic catalyst. Achieving both steps in an aqueous solution remained elusive. Herein, we report a DKR of racemic sec-alcohols in an aqueous solution requiring only two biocatalysts. The first key to success was to achieve fast racemization in a buffer employing a non-stereoselective variant of an alcohol dehydrogenase (Lk-ADH-Prince) via a hydrogen-borrowing oxidation-reduction sequence. Engineered variants of the acyltransferase from Mycobacterium smegmatis (MsAcT) enabled enantioselective acyl transfer in water. Besides the appropriate choice of the enzymes, identifying a suitable acyl donor was a second key to the success. The DKR was successfully demonstrated using (R)-selective MsAcT variants for a broad range of racemic (hetero)benzylic alcohols with 2,2,2-trifluoroethyl acetate as the acyl donor, yielding (R)-acetates with up to >99 % conv. and high-to-excellent optical purity (83-99.9 % ee). The (S)-acetates were accessible using a stereocomplementary (S)-selective MsAcT variant. Notably, substrate concentrations of up to 400 mM were tolerated in selected cases.
Collapse
Affiliation(s)
- Aleksandra Rudzka
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Tamara Reiter
- Department of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Wolfgang Kroutil
- Department of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Field of Excellence BioHealth-, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| |
Collapse
|
7
|
Mou Q, Han Q, Tai H, Fang Y, Kim YY, Mu Y, Chen S, Huang L, Zhang Y, Jin LY, Huang Z, Lee M. Topology of Gemini-shaped Hexagonal Heterojunction for Efficient Stereoconvergent Transformation via Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2025; 64:e202417870. [PMID: 39455429 DOI: 10.1002/anie.202417870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
Despite recent advances in the combination of kinetic resolution and racemization for efficient stereoconvergent transformation, the poor stability and limited reaction activities of the products restrict their wide application in industrial production. To overcome these problems, Gemini-shaped hexagons with para-heterojunctions for one-dimensional and two-dimensional supramolecular polymers were designed via hydrogen-bonding adhesion by racemization catalyst 1 and kinetic resolution 2 in this work. The polymers from the assembly of Gemini-shaped hexagons exhibit rapid catalytic behaviour with efficient selectivity for the desired configuration in the synthesis of tertiary alcohols with contiguous stereocenters through dynamic kinetic resolution for the nanoscale heterojunctions of dissimilar catalysts. Among them, the developed 2D polymers gave outstanding enantioselectivities and diastereoselectivities (>99 % ee, 20 : 1 dr) through the cooperation of adjacent dissimilar catalysts. The heterojunctions varying dimensions and distances of dissimilar catalysts provide new insight for increasing the enantioselectivity of chiral organocatalysts.
Collapse
Affiliation(s)
- Qi Mou
- PCFM and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Qingqing Han
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University, Yan Bian Chao Xian Zu Zi Zhi Zhou, Yanji, 133002, P.R. China
| | - Hulin Tai
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University, Yan Bian Chao Xian Zu Zi Zhi Zhou, Yanji, 133002, P.R. China
| | - Yajun Fang
- PCFM and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Young Yong Kim
- Pohang Accelerator Laboratory, Postech, Pohang, Gyeongbuk, 37673, Korea
| | - Yingxiao Mu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shuixia Chen
- PCFM and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Liping Huang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yi Zhang
- PCFM and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Long Yi Jin
- National Demonstration Centre for Experimental Chemistry Education, Department of Chemistry, Yanbian University, Yan Bian Chao Xian Zu Zi Zhi Zhou, Yanji, 133002, P.R. China
| | - Zhegang Huang
- PCFM and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P.R. China
| | - Myongsoo Lee
- Department of Chemistry, Fudan University, Shanghai, 200438, P.R. China
| |
Collapse
|
8
|
Carubio RJ, Wang B, Ansorge‐Schumacher MB. Reaction Engineering for Asymmetric R-/ S-PAC Synthesis With Ephedrine or Pseudoephedrine Dehydrogenase in Pickering Emulsion. Eng Life Sci 2025; 25:e202400069. [PMID: 39990765 PMCID: PMC11842280 DOI: 10.1002/elsc.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/20/2024] [Accepted: 10/31/2024] [Indexed: 02/25/2025] Open
Abstract
The synthesis of enantiopure α-hydroxy ketones, particularly R- and S-phenylacetylcarbinol (PAC), represents an important process in the pharmaceutical industry, serving as a pivotal step in the production of drugs. Recently, two novel enzymes, ephedrine dehydrogenase (EDH) and pseudoephedrine dehydrogenase (PseDH), have been described. These enzymes enable the specific reduction of 1-phenyl-1,2-propanedione (PPD) to R-PAC and S-PAC, respectively. In this study, we transferred these enzymes into Pickering emulsions, which is an attractive reaction set-up for large-scale synthesis. The bioactive w/o Pickering emulsion (bioactive Pickering emulsion [BioPE]), in which methyl tert-butyl ether served as the continuous phase, was stabilized by silica nanoparticles. Formate dehydrogenase from Rhodococcus jostii was utilized for cofactor regeneration. Given the considerable complexity of the BioPE, this reaction system underwent a first-time application of design of experiment (DOE) for systematic engineering. A definitive screening design was employed to identify significant factors affecting space-time yield (STY) and conversion. Response surface methodology was used to optimize the conditions, resulting in the observation of a high STY of 4.2 g L⁻¹ h⁻¹ and a conversion of 83.2% for BioPE with EDH, and an STY of 4.4 g L⁻¹ h⁻¹ and a conversion of 64.5% for BioPE with PseDH.
Collapse
Affiliation(s)
| | - Bao‐Hsiang Wang
- Chair of Molecular BiotechnologyDresden University of TechnologyDresdenGermany
| | | |
Collapse
|
9
|
Diekamp J, Schmidt A, Holstein JJ, Strohmann C, Seidensticker T. Synthesis and catalytic testing of the first hydrophilic derivative of Shvo's catalyst. Chem Commun (Camb) 2024; 61:117-120. [PMID: 39620319 DOI: 10.1039/d4cc04390a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Although commonly applied in various reactions, Shvo's catalyst has not been modified towards solubility in highly polar solvents until now. Here, we report the straightforward synthesis of a disulfonate derivative of the complex, which allows to (transfer) (de-)hydrogenate aldehydes and ketones in aqueous solutions. A proof of principle for the recycling of the catalyst is also provided.
Collapse
Affiliation(s)
- Justus Diekamp
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany.
| | - Annika Schmidt
- TU Dortmund University, Inorganic Chemistry, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - Julian J Holstein
- TU Dortmund University, Inorganic Chemistry, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - Carsten Strohmann
- TU Dortmund University, Inorganic Chemistry, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - Thomas Seidensticker
- TU Dortmund University, Department for Biochemical and Chemical Engineering, Laboratory of Industrial Chemistry, Emil-Figge-Straße 66, 44227 Dortmund, Germany.
| |
Collapse
|
10
|
Wagner K, Hummel A, Yang J, Horino S, Kanomata K, Akai S, Gröger H. Protein Engineering of Lipase A from Candida Antarctica to Improve Esterification of Tertiary Alcohols. Chembiochem 2024; 25:e202400082. [PMID: 38670922 DOI: 10.1002/cbic.202400082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
Chiral tertiary alcohols are important organic compounds in science as well as in industry. However, their preparation in enantiomerically pure form is still a challenge due to their complex structure and steric hindrances compared with primary and secondary alcohols, so kinetic resolution could be an attractive approach. Lipase A from Candida antarctica (CAL-A) has been shown to catalyze the enantioselective esterification of various tertiary alcohols with excellent enantioselectivity but low activity. Here we report a mutagenesis study by rational design to improve CAL-A activity against tertiary alcohols. Single mutants of CAL-A were selected, expressed, immobilized and screened for esterification of the tertiary alcohol 1,2,3,4-tetrahydronaphthalen-1-ol. A double mutant V278S+S429G showed a 1.5-fold higher reaction rate than that of the wild type CAL-A, while maintaining excellent enantioselectivity.
Collapse
Affiliation(s)
- Karla Wagner
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Anke Hummel
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Jianing Yang
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Satoshi Horino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kyohei Kanomata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
11
|
Wang K, Wang W, Lou D, Zhang J, Chi C, Bäckvall JE, Sheng X, Zhu C. Overcoming the Limitations of Transition-Metal Catalysis in the Chemoenzymatic Dynamic Kinetic Resolution (DKR) of Atropisomeric Bisnaphthols. ACS CENTRAL SCIENCE 2024; 10:2099-2110. [PMID: 39634225 PMCID: PMC11613327 DOI: 10.1021/acscentsci.4c01370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
Chemoenzymatic dynamic kinetic resolution (DKR), combining a metal racemization catalyst with an enzyme, has emerged as an elegant solution to transform racemic substrates into enantiopure products, while compatibility of dual catalysis is the key issue. Conventional solutions have utilized presynthesized metal complexes with a fixed and bulky ligand to protect the metal from the enzyme system; however, this has been generally limited to anionic ligands. Herein, we report our strategy to solve the compatibility issue by employing a reliable ligand that firmly coordinates in situ to the metal. Such a reliable ligand offers π* orbitals, allowing additional metal-to-ligand d-π* back-donation, which can significantly enhance coordination effects between the ligand and metal. Therefore, we developed an efficient DKR method to access chiral BINOLs from racemic derivatives under dual copper and enzyme catalysis. In cooperation with lipase LPL-311-Celite, the DKR of BINOLs was successfully realized with a copper catalyst via in situ coordination of BCP (L8) to CuCl. A series of functionalized C 2- and C 1-symmetric chiral biaryls could be synthesized in high yields with good enantioselectivity. The racemization mechanism was proposed to involve a radical-anion intermediate, which allows the axial rotation with a dramatic decrease of the rotation barrier.
Collapse
Affiliation(s)
- Kun Wang
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Wei Wang
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
- National
Center of Technology Innovation for Synthetic Biology and Key Laboratory
of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, P.R. China
| | - Dingkai Lou
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Jie Zhang
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Changli Chi
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Xiang Sheng
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P.R. China
- National
Center of Technology Innovation for Synthetic Biology and Key Laboratory
of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, P.R. China
| | - Can Zhu
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| |
Collapse
|
12
|
Zhu ZY, Shi M, Li CL, Gao YF, Shen XY, Ding XW, Chen FF, Xu JH, Chen Q, Zheng GW. An Engineered Imine Reductase for Highly Diastereo- and Enantioselective Synthesis of β-Branched Amines with Contiguous Stereocenters. Angew Chem Int Ed Engl 2024; 63:e202408686. [PMID: 39118193 DOI: 10.1002/anie.202408686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
β-Branched chiral amines with contiguous stereocenters are valuable building blocks for preparing various biologically active molecules. However, their asymmetric synthesis remains challenging. Herein, we report a highly diastereo- and enantioselective biocatalytic approach for preparing a broad range of β-branched chiral amines starting from their corresponding racemic ketones. This involves a dynamic kinetic resolution-asymmetric reductive amination process catalyzed using only an imine reductase. Four rounds of protein engineering endowed wild-type PocIRED with higher reactivity, better stereoselectivity, and a broader substrate scope. Using the engineered enzyme, various chiral amine products were synthesized with up to >99.9 % ee, >99 : 1 dr, and >99 % conversion. The practicability of the developed biocatalytic method was confirmed by producing a key intermediate of tofacitinib in 74 % yield, >99.9 % ee, and 98 : 2 dr at a challenging substrate loading of 110 g L-1. Our study provides a highly capable imine reductase and a protocol for developing an efficient biocatalytic dynamic kinetic resolution-asymmetric reductive amination reaction system.
Collapse
Affiliation(s)
- Zhen-Yu Zhu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Min Shi
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Chen-Lin Li
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Yun-Fei Gao
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Xin-Yuan Shen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Xu-Wei Ding
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Fei-Fei Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Jian-He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| | - Gao-Wei Zheng
- Laboratory of Biocatalysis and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, PR China
| |
Collapse
|
13
|
McLoughlin EC, Twamley B, O'Boyle NM. Candidaantarctica Lipase B mediated kinetic resolution: A sustainable method for chiral synthesis of antiproliferative β-lactams. Eur J Med Chem 2024; 276:116692. [PMID: 39068864 DOI: 10.1016/j.ejmech.2024.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Biocatalysis is a valuable industrial approach in active pharmaceutical ingredient (API) manufacturing for asymmetric induction and synthesis of chiral APIs. Herein, we investigated synthesis of a panel of microtubule-destabilising antiproliferative β-lactam enantiomers employing a commercially available immobilised Candida antarctica lipase B enzyme together with methanol and MTBE. The β-lactam ring remained intact during chiral kinetic resolution reactions, plausibly due to a bulky N-1 phenyl substituent on the β-lactam ring substrate. The predominant reaction mediated by CAL-B was methanol catalysed conversion of the β-lactam 3-acetoxy substituent to a 3-hydroxyl group, with preferential methanolysis of the 3S, 4S enantiomer. The unreacted substrate underwent progressive enantioenrichment to the 3R, 4R enantiomer. Substitution patterns on the B ring C3 meta position of the β-lactam scaffold greatly affected the rate of reaction. Halo substituents (fluoro-, chloro- and bromo-) reduced the rate of conversion compared to unsubstituted analogues, which in turn increased enantiomeric excess (ee). Ee values up to 86 % for the 3S, 4S 3-hydroxyl enantiomer were achieved. A double resolution approach for unreacted substrate yielded high ee values (>99 %) for the 3R, 4R 3-acetoxy enantiomer. CAL-B mediated methanolysis is a more sustainable method for resolution of racemic antiproliferative β-lactams compared to a previous technique of chiral diastereomeric resolution. Yields of β-lactams obtained using CAL-B are far superior than previously described, which will facilitate progression toward pre-clinical and clinical development. Biocatalysis is a useful tool in the toolbox of the medicinal chemist.
Collapse
Affiliation(s)
- Eavan C McLoughlin
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin 2, D02 R590, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Niamh M O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin 2, D02 R590, Ireland.
| |
Collapse
|
14
|
Zhu H, Manchado A, Omar Farah A, McKay AP, Cordes DB, Cheong PHY, Kasten K, Smith AD. Isothiourea-Catalysed Acylative Dynamic Kinetic Resolution of Tetra-substituted Morpholinone and Benzoxazinone Lactols. Angew Chem Int Ed Engl 2024; 63:e202402908. [PMID: 38713293 DOI: 10.1002/anie.202402908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The development of methods to allow the selective acylative dynamic kinetic resolution (DKR) of tetra-substituted lactols is a recognised synthetic challenge. In this manuscript, a highly enantioselective isothiourea-catalysed acylative DKR of tetra-substituted morpholinone and benzoxazinone-derived lactols is reported. The scope and limitations of this methodology have been developed, with high enantioselectivity and good to excellent yields (up to 89 %, 99 : 1 er) observed across a broad range of substrate derivatives incorporating substitution at N(4) and C(2), di- and spirocyclic substitution at C(5) and C(6), as well as benzannulation (>35 examples in total). The DKR process is amenable to scale-up on a 1 g laboratory scale. The factors leading to high selectivity in this DKR process have been probed through computation, with an N-C=O⋅⋅⋅isothiouronium interaction identified as key to producing ester products in highly enantioenriched form.
Collapse
Affiliation(s)
- Haoxiang Zhu
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Alejandro Manchado
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008, Salamanca, Spain
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA
| | - Aidan P McKay
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
15
|
Arango-Daza JC, Rivero-Crespo MA. Multi-Catalytic Metal-Based Homogeneous-Heterogeneous Systems in Organic Chemistry. Chemistry 2024; 30:e202400443. [PMID: 38958991 DOI: 10.1002/chem.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
The combination of metal-based homogeneous and heterogeneous catalysts in the same reaction media is a powerful, yet relatively unexplored approach in organic chemistry. This strategy can address important limitations associated with purely homogeneous or heterogeneous catalysis such as the incompatibility of different catalytic species in solution, or the limited tunability of solid catalysts, respectively. Moreover, the facile reusability of the solid catalyst, contributes to increase the overall sustainability of the process. As a result, this semi-heterogeneous multi-catalytic approach has unlocked significant advances in organic chemistry, improving existing reactions and even enabling the discovery of novel transformations, exemplified by the formal alkane metathesis. This concept article aims to showcase the benefits of this strategy through the exploration of diverse relevant examples from the literature, hoping to spur research on new metal-based homogeneous-heterogeneous catalyst combinations that will result in reactivity challenging to achieve by conventional homogeneous or heterogeneous catalysis alone.
Collapse
Affiliation(s)
- Juan Camilo Arango-Daza
- Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
| | - Miguel A Rivero-Crespo
- Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Organic Chemistry, Stockholm University, 114 18, Stockholm, Sweden
| |
Collapse
|
16
|
Zhou L, Li C, Dong L, Liu Y, He Y, Liu G, Bai J, Ma L, Jiang Y. Construction of Multi-Enzyme Integrated Catalysts for Deracemization of Cyclic Chiral Amines. Chembiochem 2024; 25:e202400346. [PMID: 38775416 DOI: 10.1002/cbic.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/19/2024] [Indexed: 07/13/2024]
Abstract
Multi-enzyme cascade catalysis has become an important technique for chemical reactions used in manufacturing and scientific study. In this research, we designed a four-enzyme integrated catalyst and used it to catalyse the deracemization reaction of cyclic chiral amines, where monoamine oxidase (MAO) catalyses the enantioselective oxidation of 1-methyl-1,2,3,4-tetrahydroisoquinoline (MTQ), imine reductase (IRED) catalyses the stereo selective reduction of 1-methyl-3,4-dihydroisoquinoline (MDQ), formate dehydrogenase (FDH) is used for the cyclic regeneration of cofactors, and catalase (CAT) is used for decomposition of oxidative reactions. The four enzymes were immobilized via polydopamine (PDA)-encapsulated dendritic organosilica nanoparticles (DONs) as carriers, resulting in the amphiphilic core-shell catalysts. The hydrophilic PDA shell ensures the dispersion of the catalyst in water, and the hydrophobic DON core creates a microenvironment with the spatial confinement effect of the organic substrate and the preconcentration effect to enhance the stability of the enzymes and the catalytic efficiency. The core-shell structure improves the stability and reusability of the catalyst and rationally arranges the position of different enzymes according to the reaction sequence to improve the cascade catalytic performance and cofactor recovery efficiency.
Collapse
Affiliation(s)
- Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Chunliu Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Lele Dong
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Guanhua Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jing Bai
- College of Food Science and Biology, Hebei University of Science & Technology, 26 Yuxiang Street, Yuhua District, Shijiazhuang, 050018, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
17
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
18
|
Wang TT, Cao J, Li X. Synthesis of N-N Axially Chiral Pyrrolyl-oxoisoindolin via Isothiourea-Catalyzed Acylative Dynamic Kinetic Resolution. Org Lett 2024; 26:6179-6184. [PMID: 39023300 DOI: 10.1021/acs.orglett.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of methods for the asymmetric synthesis of N-N axial chirality remains elusive and challenging. Here, we disclose a method for the construction of N-N axially chiral pyrrolyl-oxoisoindolins along with central chirality via the isothiourea (ITU)-catalyzed acylative dynamic kinetic resolution (DKR). Axial chirality was introduced into the acylative DKR of hemiaminals for the first time. This protocol features mild conditions with excellent yields and enantioselectivities.
Collapse
Affiliation(s)
- Tong-Tong Wang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Cao
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
19
|
Gröger H, Horino S, Kanomata K, Akai S. Strategies to Design Chemocatalytic Racemization of Tertiary Alcohols: State of the Art & Utilization for Dynamic Kinetic Resolution. Chemistry 2024; 30:e202304028. [PMID: 38580616 DOI: 10.1002/chem.202304028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
The synthesis of enantiomerically pure tertiary alcohols is an important issue in organic synthesis of a range of pharmaceuticals including molecules such as the anti-HIV drug Efavirenz. A conceptually elegant approach to such enantiomers is the dynamic kinetic resolution of racemic tertiary alcohols, which, however, requires efficient racemization strategies. The racemization of tertiary alcohols is particularly challenging due to various side reactions that can occur because of their high tendency for elimination reactions. In the last few years, several complementary catalytic concepts for racemization of tertiary alcohols have been developed, characterized by efficient racemization and suppression of unwanted side-reactions. Besides resins bearing sulfonic acid moieties and a combination of boronic acid and oxalic acid as heterogeneous and homogeneous Brønsted-acids, respectively, immobilized oxovanadium and piperidine turned out to be useful catalysts. The latter two catalysts, which have already been applied to different types of substrates, also have proven good compatibility with lipase, thus leading to the first two examples of chemoenzymatic dynamic kinetic resolution of tertiary alcohols. In this review, the difficulties in racemizing tertiary alcohols are specifically described, and the recently developed complementary concepts to overcome these hurdles are summarized.
Collapse
Affiliation(s)
- Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Horino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kyohei Kanomata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
20
|
Ran L, Lin Y, Su G, Yang Z, Teng H. Co-Immobilization of ADH and GDH on Metal-Organic-Framework: An Effective Biocatalyst for Asymmetric Reduction of Ketones. Chembiochem 2024; 25:e202400147. [PMID: 38629211 DOI: 10.1002/cbic.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Indexed: 05/22/2024]
Abstract
Chiral alcohols are not only important building blocks of various bioactive natural compounds and pharmaceuticals, but can serve as synthetic precursors for other valuable organic chemicals, thus the synthesis of these products is of great importance. Bio-catalysis represents one effective way to obtain these molecules, however, the weak stability and high cost of enzymes often hinder its broad application. In this work, we designed a biological nanoreactor by embedding alcohol dehydrogenase (ADH) and glucose dehydrogenase (GDH) in metal-organic-framework ZIF-8. The biocatalyst ADH&GDH@ZIF-8 could be applied to the asymmetric reduction of a series of ketones to give chiral alcohols in high yields (up to 99 %) and with excellent enantioselectivities (>99 %). In addition, the heterogeneous biocatalyst could be recycled and reused at least four times with slight activity decline. Moreover, E. coli containing ADH and GDH was immobilized by ZIF-8 to form biocatalyst E. coli@ZIF-8, which also exhibits good catalytic behaviours. Finally, the chiral alcohols are further converted to marketed drugs (R)-Fendiline, (S)-Rivastigmine and NPS R-568 respectively.
Collapse
Affiliation(s)
- Lu Ran
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yu Lin
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Guorong Su
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zhenyan Yang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Huailong Teng
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
21
|
Chen J, Min L, Meng F, Fu Y, Liu J, Zhang Y. Chemoenzymatic Dynamic Kinetic Resolution Protocol with an Immobilized Oxovanadium as a Racemization Catalyst. J Org Chem 2024; 89:6694-6703. [PMID: 38695196 DOI: 10.1021/acs.joc.3c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
An excellent compatible and cost-effective dynamic kinetic resolution (DKR) protocol has been developed by combining a novel immobilized oxovanadium racemization catalyst onto cheap diatomite (V-D) with an immobilized lipase LA resolution catalyst onto a macroporous resin (LA-MR). V-D was prepared via grinding immobilization, which may become a promising alternative for the immobilization of metals, especially precious metals due to its low cost, high efficiency, easy separation, and large reaction interface. The DKR afforded high yield (96.1%), e.e. (98.67%), and Sel (98.28%) under optimal conditions established using response surface methodology as follows: the amount of V-D 10.83 mg, reaction time 51.2 h, and temperature 48.1 °C, respectively, indicating that all the reactions in the DKR were coordinated very well. The DKR protocol was also found to have high stability up to six reuses. V-D exhibited excellent compatibility with LA-MR because the lipase immobilized onto MR did not physically contact with the vanadium species immobilized onto diatomite, thus avoiding inactivation. Considering that lipase, oxovanadium, diatomite, and MR used are relatively inexpensive, and the adsorption or grinding immobilization is simple, the LA-V-MD DKR by coupling LA-MR with V-D is a cost-effective and promising protocol for chiral secondary alcohols.
Collapse
Affiliation(s)
- Jiarui Chen
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Lingqin Min
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Fanxu Meng
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yiwen Fu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Junhong Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yuanyuan Zhang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mailbox 70, 53 Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
22
|
Chen C, Peng Y, Wei Y, Liu M, Wang Y, Xiong S, Li H, He Q. New methods for resolution of hydroxychloroquine by forming diastereomeric salt and adding chiral mobile phase agent on RP-HPLC. Chirality 2024; 36:e23672. [PMID: 38693625 DOI: 10.1002/chir.23672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Hydroxychloroquine (HCQ), 2-([4-([7-Chloro-4-quinolyl]amino)pentyl]ethylamino)ethanol, exhibited significant biological activity, while its side effects cannot be overlooked. The RP-HPLC enantio-separation was investigated for cost-effective and convenient optical purity analysis of HCQ. The thermodynamic resolution of Rac-HCQ, driven by enthalpy and entropy, was achieved on the C18 column using Carboxymethyl-β-cyclodextrin (CM-β-CD) as the chiral mobile phase agent (CMPA). The effects of CCM-β-CD, pH, and triethylamine (TEA) V% on the enantio-separation process were explored. Under the optimum conditions at 24°C, the retention times for the two enantiomers weret R 1 = 29.39 min $$ {t}_{R1}=29.39\ \min $$ andt R 2 = 32.42 min $$ {t}_{R2}=32.42\ \min $$ , resulting inR s = 1.87 $$ {R}_s=1.87 $$ . The resolution via diastereomeric salt formation of Rac-HCQ was developed to obtain the active pharmaceutical ingredient of single enantiomer S-HCQ. Di-p-Anisoyl-L-Tartaric Acid (L-DATA) was proved effective as the resolution agent for Rac-HCQ. Surprisingly, it was found that refluxing time was a key fact affecting the resolution efficiency, which meant the kinetic dominate during the process of the resolution. Four factors-solvent volume, refluxing time, filtration temperature, and molar ratio-were optimized using the single-factor method and the response surface method. Two cubic models were established, and the reliability was subsequently verified. Under the optimal conditions, the less soluble salt of 2L-DATA:S-HCQ was obtained with a yield of 96.9% and optical purity of 63.0%. The optical purity of this less soluble salt increases to 99.0% with a yield of 74.2% after three rounds recrystallization.
Collapse
Affiliation(s)
- Chen Chen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yangfeng Peng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yongming Wei
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Mengyuan Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Siqi Xiong
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Huiyi Li
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Quan He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
23
|
Ran L, Chen Y, Zhu Y, Cai H, Pang H, Yan D, Xiang Y, Teng H. Covalent Organic Frameworks Based Photoenzymatic Nano-reactor for Asymmetric Dynamic Kinetic Resolution of Secondary Amines. Angew Chem Int Ed Engl 2024; 63:e202319732. [PMID: 38367015 DOI: 10.1002/anie.202319732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Bio-catalysis represents a highly efficient and stereoselective method for the synthesis of valuable chiral compounds, however, the poor stability and limited reaction types of free enzymes restrict their wide application in industrial production. In this work, to overcome these problems, a multifunctional photoenzymatic nanoreactor CALB@COF-Ir was developed through the encapsulation of Candida antarctica lipase B (CALB) in a photosensitive covalent organic framework COF-Ir. This bio-nanocluster serves as efficient catalysts in asymmetric dynamic kinetic resolution (DKR) of secondary amines to give a series of chiral amines in high yields (up to 99 %) and enantioselectivities (up to 99 % ee). The well-designed COF-Ir not only acts as safety cover to prevent CALB from deactivation but promotes racemization of secondary amines via photo-induced hydrogen atom transfer (HAT) process. Photoelectric characterization and TDDFT calculation revealed that (ppy)2Ir units in COF-Ir play crucial role in this photocatalytic system which enhance its photo-redox properties through facilitating the separation between photoelectrons (e-) and holes (h+). Furthermore, the heterogeneous photoenzymatic nanoreactor could be recycled for five rounds with slight decline of catalytic reactivity.
Collapse
Affiliation(s)
- Lu Ran
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yu Chen
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yanqiu Zhu
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Huanyu Cai
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Huaji Pang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Dingce Yan
- Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yonggang Xiang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Huailong Teng
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
24
|
Qiao L, Zhang J, Jiang Y, Ma B, Chen H, Gao P, Zhang P, Wang A, Sheldon RA. Near-infrared light-driven asymmetric photolytic reduction of ketone using inorganic-enzyme hybrid biocatalyst. Int J Biol Macromol 2024; 264:130612. [PMID: 38447845 DOI: 10.1016/j.ijbiomac.2024.130612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Effective photolytic regeneration of the NAD(P)H cofactor in enzymatic reductions is an important and elusive goal in biocatalysis. It can, in principle, be achieved using a near-infrared light (NIR) driven artificial photosynthesis system employing H2O as the sacrificial reductant. To this end we utilized TiO2/reduced graphene quantum dots (r-GQDs), combined with a novel rhodium electron mediator, to continuously supply NADPH in situ for aldo-keto reductase (AKR) mediated asymmetric reductions under NIR irradiation. This upconversion system, in which the Ti-O-C bonds formed between r-GQDs and TiO2 enabled efficient interfacial charge transfer, was able to regenerate NADPH efficiently in 64 % yield in 105 min. Based on this, the pharmaceutical intermediate (R)-1-(3,5-bis(trifluoromethyl)phenyl)ethan-1-ol was obtained, in 84 % yield and 99.98 % ee, by reduction of the corresponding ketone. The photo-enzymatic system is recyclable with a polymeric electron mediator, which maintained 66 % of its original catalytic efficiency and excellent enantioselectivity (99.9 % ee) after 6 cycles.
Collapse
Affiliation(s)
- Li Qiao
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jing Zhang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yongjian Jiang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Bianqin Ma
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Haomin Chen
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Peng Gao
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Pengfei Zhang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Anming Wang
- Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education, College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa; Department of Biotechnology, Section BOC, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
25
|
O'Connell A, Barry A, Burke AJ, Hutton AE, Bell EL, Green AP, O'Reilly E. Biocatalysis: landmark discoveries and applications in chemical synthesis. Chem Soc Rev 2024; 53:2828-2850. [PMID: 38407834 DOI: 10.1039/d3cs00689a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Biocatalysis has become an important tool in chemical synthesis, allowing access to complex molecules with high levels of activity and selectivity and with low environmental impact. Key discoveries in protein engineering, bioinformatics, recombinant technology and DNA sequencing have contributed towards the rapid acceleration of the field. This tutorial review explores enzyme engineering strategies and high-throughput screening approaches that have been applied for the discovery and development of enzymes for synthetic application. Landmark developments in the field are discussed and have been carefully selected to highlight the diverse synthetic applications of enzymes within the pharmaceutical, agricultural, food and chemical industries. The design and development of artificial biocatalytic cascades is also examined. This tutorial review will give readers an insight into the landmark discoveries and milestones that have helped shape and grow this branch of catalysis since the discovery of the first enzyme.
Collapse
Affiliation(s)
- Adam O'Connell
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Amber Barry
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ashleigh J Burke
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Amy E Hutton
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Elizabeth L Bell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Elaine O'Reilly
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
26
|
Mou K, Guo Y, Xu W, Li D, Wang Z, Wu Q. Stereodivergent Protein Engineering of Fatty Acid Photodecarboxylase for Light-Driven Kinetic Resolution of Sec-Alcohol Oxalates. Angew Chem Int Ed Engl 2024; 63:e202318374. [PMID: 38195798 DOI: 10.1002/anie.202318374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Stereodivergent engineering of one enzyme to create stereocomplementary variants for synthesizing optically pure molecules with tailor-made (R) or (S) configurations on an optional basis is highly desirable and challenging. This study aimed to engineer fatty acid photodecarboxylase from Chlorella variabilis (CvFAP) using the focused rational iterative site-specific mutagenesis (FRISM) strategy to obtain two highly stereocomplementary variants with excellent selectivity (both giving products with up to 99 % e.e.). These variants were used for the CvFAP-catalyzed light-driven kinetic resolution of oxalates or oxamic acids prepared from the corresponding sec-alcohols or amines, providing a new biotransformation process for preparing chiral sec-alcohols and amines. Molecular dynamics simulation, kinetic data and transient spectra revealed the source of selectivity. This study represents the first example of the kinetic resolution of sec-alcohols or amines catalyzed by a pair of stereocomplementary CvFAPs.
Collapse
Affiliation(s)
- Kaihao Mou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Yue Guo
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Danyang Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Zhiguo Wang
- Institute of Aging Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
27
|
Han M, Liu C, Li X, Jiang J, Liu Z, Hu L. Regio- and Enantioselective Construction of Tetrazole Hemiaminal Esters and Related Prodrugs via Biocatalytic Dynamic Kinetic Resolution. J Org Chem 2024; 89:1465-1472. [PMID: 38251869 DOI: 10.1021/acs.joc.3c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Enzyme-catalyzed dynamic kinetic resolution was applied to the one-pot regio- and enantioselective synthesis of 2,5-disubstituted tetrazole hemiaminal esters, among which 72% of the products were obtained in excellent enantiopurities (99% ees). Tunable stereoselectivity was achieved by using different types of enzymes during the synthesis of a key intermediate for a clinic drug candidate. Successful preparation of tetrazole ester prodrugs and high catalyst recyclability further demonstrated the potential practical application of this protocol.
Collapse
Affiliation(s)
- Maochun Han
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Changming Liu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xinyu Li
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jingyu Jiang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ziliang Liu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lei Hu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
28
|
Han SW, Jang Y, Kook J, Jang J, Shin JS. Reprogramming biocatalytic futile cycles through computational engineering of stereochemical promiscuity to create an amine racemase. Nat Commun 2024; 15:49. [PMID: 38169460 PMCID: PMC10761954 DOI: 10.1038/s41467-023-44218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Repurposing the intrinsic properties of natural enzymes can offer a viable solution to current synthetic challenges through the development of novel biocatalytic processes. Although amino acid racemases are ubiquitous in living organisms, an amine racemase (AR) has not yet been discovered despite its synthetic potential for producing chiral amines. Here, we report the creation of an AR based on the serendipitous discovery that amine transaminases (ATAs) can perform stereoinversion of 2-aminobutane. Kinetic modeling revealed that the unexpected off-pathway activity results from stereochemically promiscuous futile cycles due to incomplete stereoselectivity for 2-aminobutane. This finding motivated us to engineer an S-selective ATA through in silico alanine scanning and empirical combinatorial mutations, creating an AR with broad substrate specificity. The resulting AR, carrying double point mutations, enables the racemization of both enantiomers of diverse chiral amines in the presence of a cognate ketone. This strategy may be generally applicable to a wide range of transaminases, paving the way for the development of new-to-nature racemases.
Collapse
Affiliation(s)
- Sang-Woo Han
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Department of Biotechnology, Konkuk University, Chungju, South Korea
| | - Youngho Jang
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jihyun Kook
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jeesu Jang
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jong-Shik Shin
- Department of Biotechnology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
| |
Collapse
|
29
|
Ričko S, Bitsch RS, Kaasik M, Otevřel J, Højgaard Madsen M, Keimer A, Jørgensen KA. Enantioconvergent 6π Electrocyclization Enabled by Photoredox Racemization. J Am Chem Soc 2023; 145:20913-20926. [PMID: 37753541 DOI: 10.1021/jacs.3c06227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
This study presents a novel photoredox-enabled enantioconvergent catalytic strategy used to construct chiral 2H-1,3-benzoxazines via an unprecedented oxa-6π electrocyclization utilizing racemic α-substituted glycinates as substrates. The approach leverages a cobalt-based chiral Lewis acid catalyst, which promotes the transformation under thermal or photoredox conditions. While the thermal reaction selectively converts only the (S)-configured glycinates into enantioenriched 2H-1,3-benzoxazines (up to 96:4 e.r.), the addition of 0.5 mol % of a commercially available iridium photocatalyst under visible light irradiation transforms the reaction into an enantioconvergent process. Detailed mechanistic and time course studies of optically pure α-deuterated substrates revealed the presence of an enantiospecific kinetic isotope effect, which helped to clarify the role of both the photo- and chiral Lewis acid catalyst in the reaction sequence. In this dual catalytic system, the photocatalyst promotes a dynamic interconversion between the substrate enantiomers─a process not accessible via ground-state chemistry─while the chiral Lewis acid selectively transforms only the (S)-configured substrates. Further mechanistic evidence for the proposed mechanism is provided by linear free energy relationship analysis, which suggests that the stereodetermining step involves a 6π electrocyclization under both thermal and photoredox conditions.
Collapse
Affiliation(s)
- Sebastijan Ričko
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| | - René Slot Bitsch
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mikk Kaasik
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jan Otevřel
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Anna Keimer
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
30
|
Hao R, Zhang M, Tian D, Lei F, Qin Z, Wu T, Yang H. Bottom-Up Synthesis of Multicompartmentalized Microreactors for Continuous Flow Catalysis. J Am Chem Soc 2023; 145:20319-20327. [PMID: 37676729 DOI: 10.1021/jacs.3c04886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The bottom-up assembly of biomimetic multicompartmentalized microreactors for use in continuous flow catalysis remains a grand challenge because of the structural instability or the absence of liquid microenvironments to host biocatalysts in the existing systems. Here, we address this challenge using a strategy that combines stepwise Pickering emulsification with interface-confined cross-linking. Our strategy allows for the fabrication of robust multicompartmentalized liquid-containing microreactors (MLMs), whose interior architectures can be exquisitely tuned in a bottom-up fashion. With this strategy, enzymes and metal catalysts can be separately confined in distinct subcompartments of MLMs for processing biocatalysis or chemo-enzymatic cascade reactions. As exemplified by the enzyme-catalyzed kinetic resolution of racemic alcohols, our systems exhibit a durability of 2000 h with 99% enantioselectivity. Another Pd-enzyme-cocatalyzed dynamic kinetic resolution of amines further demonstrates the versatility and long-term operational stability of our MLMs in continuous flow cascade catalysis. This study opens up a new way to design efficient biomimetic multicompartmental microreactors for practical applications.
Collapse
Affiliation(s)
- Ruipeng Hao
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ming Zhang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Danping Tian
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Fu Lei
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhiqin Qin
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Tao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Hengquan Yang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
31
|
Wang JW, Li Z, Liu D, Zhang JY, Lu X, Fu Y. Nickel-Catalyzed Remote Asymmetric Hydroalkylation of Alkenyl Ethers to Access Ethers of Chiral Dialkyl Carbinols. J Am Chem Soc 2023; 145:10411-10421. [PMID: 37127544 DOI: 10.1021/jacs.3c02950] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Site- and enantio-selective alkyl-alkyl bond formation is privileged in the retrosynthetic analysis due to the universality of sp3-hybridized carbon atoms in organic molecules. Herein, we report a nickel-catalyzed remote asymmetric hydroalkylation of alkenyl ethers via synchronous implementation of alkene isomerization and enantioselective C(sp3)-C(sp3) bond formation. Regression analysis of catalyst structure-activity relationships accelerates the rational ligand modification through modular regulation. This reaction has several advantages for synthesizing chiral dialkyl carbinols and their ether derivatives, including the broad substrate scope, good functional group tolerance, excellent regioselectivity (>20:1 regioisomeric ratio), and high enantioselectivity (up to 95% enantiomeric excess).
Collapse
Affiliation(s)
- Jia-Wang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhen Li
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Deguang Liu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Jun-Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Xi Lu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Fu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
32
|
Chen T, Peng Y, Qiu M, Yi C, Xu Z. Protein-supported transition metal catalysts: Preparation, catalytic applications, and prospects. Int J Biol Macromol 2023; 230:123206. [PMID: 36638614 DOI: 10.1016/j.ijbiomac.2023.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
The immobilization of transition metal catalysts onto supports enables their easier recycling and improves catalytic performance. Protein supports not only support and stabilize transition metal catalysts but also enable the incorporation of biocompatibility and enzymatic catalysis into these catalysts. Consequently, the engineering of protein-supported transition metal catalysts (PTMCs) has emerged as an effective approach to improving their catalytic performance and widening their catalytic applications. Here, we review the recent development of the preparation and applications of PTMCs. The preparation of PTMCs will be summarized and discussed in terms of the types of protein supports, including proteins, protein assemblies, protein-polymer conjugates, and cross-linked proteins. Then, their catalytic applications including organic synthesis, photocatalysis, polymerization, and biomedicine, will be surveyed and compared. Meanwhile, the established catalytic structures-function relationships will be summarized. Lastly, the remaining issues and prospects will be discussed. By surveying a wide range of PTMCs, we believe that this review will attract a broad readership and stimulate the development of PTMCs.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
33
|
Lu CJ, Xu Q, Feng J, Liu RR. The Asymmetric Buchwald-Hartwig Amination Reaction. Angew Chem Int Ed Engl 2023; 62:e202216863. [PMID: 36535894 DOI: 10.1002/anie.202216863] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Over the past few decades, the Buchwald-Hartwig reaction has emerged as a powerful tool for forging C-N bonds, and has been vital to the pharmaceuticals, materials, and catalysis fields. However, asymmetric Buchwald-Hartwig amination reactions for constructing centered chirality, planar chirality, and axial chirality remain in their infancy owing to limited substrate scope and laggard ligand design. The recent surge in interest in the synthesis of C-N/N-N atropisomers, has witnessed a renaissance in asymmetric Buchwald-Hartwig amination chemistry as the first practical protocol for the preparation of C-N atropisomers. This review highlights reported asymmetric Buchwald-Hartwig amination protocols and provides a brief overview of their chemical practicality.
Collapse
Affiliation(s)
- Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Qi Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| |
Collapse
|
34
|
Liu Y, Guo N, Kong W, Gao S, Liu G, Zhou L, Gao J, Jiang Y. Magnetic wrinkled organosilica-based metal-enzyme integrated catalysts for enhanced chemoenzymatic catalysis. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
35
|
Li P, Zhu J, Zhang H, Wang L, Wang S, Zhang M, Wu J, Yang L, Xu G. Preparation of Coupling Catalyst HamZIF-90@Pd@CALB with Tunable Hollow Structure for Efficient Dynamic Kinetic Resolution of 1-Phenylethylamine. Molecules 2023; 28:922. [PMID: 36770588 PMCID: PMC9920346 DOI: 10.3390/molecules28030922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Chiral amines are essential components for many pharmaceuticals and agrochemicals. However, the difficulty in obtaining enantiomerically pure amines limits their application. In this study, hollow amorphous ZIF-90 (HamZIF-90) materials were prepared by template engraving, and chemical-enzyme coupling catalysts (HamZIF-90@Pd@CALB) were constructed for the chiral resolution of 1-phenylethylamine. Different from conventional materials, HamZIF-90 had tunable hollow structures by altering its central node zinc ion concentrations, and the embedded hydrogel template gave it more pore structures, which facilitated the loading of enzyme molecules and Pd nanoparticles (NPs). The establishment of the coupling catalysts shortened the mass transfer distance of the reactant molecules between the metal nanoparticles and the enzyme catalyst in the dynamic kinetic resolution (DKR) reaction, resulting in 98% conversion of 1-phenylethylamine and 93% selectivity of Sel.R-amide. The proposal of this idea provided a good idea for future tailor-made MOFs loaded with chemical and enzyme coupled catalyst.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gang Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
36
|
González-Granda S, Albarrán-Velo J, Lavandera I, Gotor-Fernández V. Expanding the Synthetic Toolbox through Metal-Enzyme Cascade Reactions. Chem Rev 2023; 123:5297-5346. [PMID: 36626572 DOI: 10.1021/acs.chemrev.2c00454] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The combination of metal-, photo-, enzyme-, and/or organocatalysis provides multiple synthetic solutions, especially when the creation of chiral centers is involved. Historically, enzymes and transition metal species have been exploited simultaneously through dynamic kinetic resolutions of racemates. However, more recently, linear cascades have appeared as elegant solutions for the preparation of valuable organic molecules combining multiple bioprocesses and metal-catalyzed transformations. Many advantages are derived from this symbiosis, although there are still bottlenecks to be addressed including the successful coexistence of both catalyst types, the need for compatible reaction media and mild conditions, or the minimization of cross-reactivities. Therefore, solutions are here also provided by means of catalyst coimmobilization, compartmentalization strategies, flow chemistry, etc. A comprehensive review is presented focusing on the period 2015 to early 2022, which has been divided into two main sections that comprise first the use of metals and enzymes as independent catalysts but working in an orchestral or sequential manner, and later their application as bionanohybrid materials through their coimmobilization in adequate supports. Each part has been classified into different subheadings, the first part based on the reaction catalyzed by the metal catalyst, while the development of nonasymmetric or stereoselective processes was considered for the bionanohybrid section.
Collapse
Affiliation(s)
- Sergio González-Granda
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
37
|
Chemoenzymatic Protocol for the Synthesis of Enantiopure β-Blocker (S)-Bisoprolol. Catalysts 2022. [DOI: 10.3390/catal13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The β-blocker (S)-bisoprolol hemifumarate has been synthesised in 96% enantiomeric excess with 19% total yield in a six-step synthesis. A transesterification reaction of the racemic chlorohydrin 1-chloro-3-(4-((2-isopropoxyethoxy)methyl)phenoxy)propan-2-ol catalysed by lipase B from Candida antarctica resulted in the R-chlorohydrin in high enantiomeric purity. Reaction of this building block with isopropylamine in methanol gave (S)-bisoprolol, and further reaction with fumaric acid gave (S)-bisoprolol fumarate in 96% ee. Specific rotation value confirmed the absolute configuration of the enantiopure drug.
Collapse
|
38
|
Knaus T, Corrado ML, Mutti FG. One-Pot Biocatalytic Synthesis of Primary, Secondary, and Tertiary Amines with Two Stereocenters from α,β-Unsaturated Ketones Using Alkyl-Ammonium Formate. ACS Catal 2022; 12:14459-14475. [PMID: 36504913 PMCID: PMC9724091 DOI: 10.1021/acscatal.2c03052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/20/2022] [Indexed: 11/11/2022]
Abstract
The efficient asymmetric catalytic synthesis of amines containing more than one stereogenic center is a current challenge. Here, we present a biocatalytic cascade that combines ene-reductases (EReds) with imine reductases/reductive aminases (IReds/RedAms) to enable the conversion of α,β-unsaturated ketones into primary, secondary, and tertiary amines containing two stereogenic centers in very high chemical purity (up to >99%), a diastereomeric ratio, and an enantiomeric ratio (up to >99.8:<0.2). Compared with previously reported strategies, our strategy could synthesize two, three, or even all four of the possible stereoisomers of the amine products while precluding the formation of side-products. Furthermore, ammonium or alkylammonium formate buffer could be used as the only additional reagent since it acted both as an amine donor and as a source of reducing equivalents. This was achieved through the implementation of an NADP-dependent formate dehydrogenase (FDH) for the in situ recycling of the NADPH coenzyme, thus leading to increased atom economy for this biocatalytic transformation. Finally, this dual-enzyme ERed/IRed cascade also exhibits a complementarity with the recently reported EneIRED enzymes for the synthesis of cyclic six-membered ring amines. The ERed/IRed method yielded trans-1,2 and cis-1,3 substituted cyclohexylamines in high optical purities, whereas the EneIRED method was reported to yield one cis-1,2 and one trans-1,3 enantiomer. As a proof of concept, when 3-methylcyclohex-2-en-1-one was converted into secondary and tertiary chiral amines with different amine donors, we could obtain all the four possible stereoisomer products. This result exemplifies the versatility of this method and its potential for future wider utilization in asymmetric synthesis by expanding the toolbox of currently available dehydrogenases via enzyme engineering and discovery.
Collapse
Affiliation(s)
- Tanja Knaus
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Maria L. Corrado
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Francesco G. Mutti
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
39
|
Green Dynamic Kinetic Resolution—Stereoselective Acylation of Secondary Alcohols by Enzyme-Assisted Ruthenium Complexes. Catalysts 2022. [DOI: 10.3390/catal12111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dynamic kinetic resolution allows for the synthesis of enantiomerically pure asymmetric alcohols. Cyclopentadienyl-derived ruthenium catalysts were immobilized with an ionic liquid, [BMIM][NTf2], on multiwall carbon nanotubes and used for the racemization of chiral secondary alcohols. This successful approach was combined with the enantioselective enzymatic acylation of secondary alcohols (1-phenylethanol and 1-(1-naphthyl)ethanol) using Novozyme® 435. The resulting catalytic system of the ruthenium racemization catalysts and enzymatic acylation led to chiral esters being obtained by dynamic kinetic resolution. The immobilized catalytic system in the ionic liquid gave the same activity of >96% yield within 6 h and a selectivity of 99% enantiomeric excess as the homogeneous system, while allowing for the convenient separation of the desired products from the catalyst. Additionally, the process can be regarded as green, since the efficient reuse of the catalytic system was demonstrated.
Collapse
|
40
|
Mathebula NP, Sheldon RA, Bode ML. Lipase-Catalysed Enzymatic Kinetic Resolution of Aromatic Morita-Baylis-Hillman Derivatives by Hydrolysis and Transesterification. Chembiochem 2022; 23:e202200435. [PMID: 36049111 PMCID: PMC9828654 DOI: 10.1002/cbic.202200435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Indexed: 01/12/2023]
Abstract
Acylated Morita-Baylis-Hillman (MBH) adducts were synthesised and subjected to enzymatic kinetic resolution (EKR) by hydrolysis employing various lipase enzymes: from P. fluorescens, P. cepacia (PCL), C. antarctica A (CAL-A), C. antarctica B (CAL-B) and Novozyme 435. In a number of instances enantiopure Morita-Baylis-Hillman acetates or butyrates and their corresponding hydrolysed MBH adducts were obtained with ee values of >90 %, at ca. 50 % conversion, corresponding to enantiomeric ratio (E) values of >200. Enantioselective transesterification reactions on MBH adducts was achieved using acyl anhydrides in THF or the greener organic solvent 2-MeTHF in the presence of CAL-A. This is the first report of successful lipase-catalysed EKR of aromatic MBH adducts by transesterification in organic medium.
Collapse
Affiliation(s)
- Nompumelelo P. Mathebula
- Molecular Sciences Institute School of ChemistryUniversity of the Witwatersrand Private Bag X3, PO WITSJohannesburg2050South Africa
| | - Roger A. Sheldon
- Molecular Sciences Institute School of ChemistryUniversity of the Witwatersrand Private Bag X3, PO WITSJohannesburg2050South Africa,Department of Biotechnology Section BOCDelft University of Technologyvan der Maasweg 92629 HZDelftThe Netherlands
| | - Moira L. Bode
- Molecular Sciences Institute School of ChemistryUniversity of the Witwatersrand Private Bag X3, PO WITSJohannesburg2050South Africa
| |
Collapse
|
41
|
Wang J, Peng Y, Xu J, Wu Q. Deracemization of racemic alcohols combining photooxidation and biocatalytic reduction. Org Biomol Chem 2022; 20:7765-7769. [PMID: 36165209 DOI: 10.1039/d2ob01386j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We described a cascade reaction for deracemization of racemic alcohols combining photooxidation and enzymatic reduction under mild conditions without the isolation of intermediate ketones. Using different ketoreductases, a variety of racemic alcohols can be successfully converted into (R)- or (S)-enantiomers in high yields (up to 95%) and stereoselectivity (up to 99%).
Collapse
Affiliation(s)
- Jianfeng Wang
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China. .,Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Yongzhen Peng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
42
|
Tan Z, Zhang X, Xu M, Fu Y, Zhuang W, Li M, Wu X, Ying H, Ouyang P, Zhu C. Cooperative chemoenzymatic synthesis of N-heterocycles via synergizing bio- with organocatalysis. SCIENCE ADVANCES 2022; 8:eadd1912. [PMID: 36070374 PMCID: PMC9451157 DOI: 10.1126/sciadv.add1912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Inspired by Nature's ingenuity, considerable progress has been made in recent years to develop chemoenzymatic processes by the integration of environmentally friendly feature of biocatalysis with versatile reactivity of chemocatalysis. However, the current types of chemoenzymatic processes are relatively few and mostly rely on metal catalysts. Here, we report a previously unexplored cooperative chemoenzymatic system for the synthesis of N-heterocycles. Starting from alcohols and amines, benzimidazole, pyrazine, quinazoline, indole, and quinoline can be obtained in excellent yields in water with O2 as the terminal oxidant. Synthetic bridged flavin analog is served as a bifunctional organocatalyst for the regeneration of cofactor nicotinamide adenine dinucleotide in the bioprocess and oxidative cyclodehydrogenation in the chemoprocess. Compared to the classical acceptorless dehydrogenative coupling strategy, being metal and base free, requiring only water as solvent, and not needing atmosphere protection were observed for the present method, exhibiting a favorable green and sustainable alternative.
Collapse
Affiliation(s)
- Zhuotao Tan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| | - Xiaowang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Mengjiao Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yaping Fu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ming Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaojin Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- National Engineering Research Center for Biotechnology, Nanjing, China
| |
Collapse
|
43
|
Green Chemo-Enzymatic Protocols for the Synthesis of Enantiopure β-Blockers (S)-Esmolol and (S)-Penbutolol. Catalysts 2022. [DOI: 10.3390/catal12090980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The β-blocker (S)-esmolol, has been synthesized in 97% enantiomeric excess and 26% total yield in a four-step synthesis, with a transesterification step of the racemic chlorohydrin methyl 3-(4-(3-chloro-2-hydroxypropoxy)phenyl)propanoate, catalysed by lipase B from Candida antarctica from Syncozymes, Shanghai, China. The β-blocker (S)-penbutolol, has been synthesized in 99% enantiomeric excess and in 22% total yield. The transesterification step of the racemic chlorohydrin 1-chloro-3-(2-cyclopentylphenoxy)propan-2-ol was catalyzed by the same lipase as used for the esmolol building block. We have used different bases for the deprotonation step of the starting phenols, and vinyl butanoate as the acyl donor in the transesterification reactions. The reaction times for the kinetic resolution steps catalysed by the lipase varied from 23 to 48 h, and were run at 30–38 °C. Specific rotation values confirmed the absolute configuration of the enantiopure drugs, however, an earlier report of the specific rotation value of (S)-esmolol is not consistent with our measured specific rotation values, and we here claim that our data are correct. Compared to the previously reported syntheses of these two enantiopure drugs, we have replaced toluene or dichloromethane with acetonitrile, and replaced the flammable acetyl chloride with lithium chloride. We have also reduced the amount of epichlorohydrin and bases, and identified dimeric byproducts in order to obtain higher yields.
Collapse
|
44
|
Naapuri JM, Losada‐Garcia N, Rothemann RA, Pichardo MC, Prechtl MHG, Palomo JM, Deska J. Cascade Catalysis Through Bifunctional Lipase Metal Biohybrids for the Synthesis of Enantioenriched O-Heterocycles from Allenes. ChemCatChem 2022; 14:e202200362. [PMID: 36246043 PMCID: PMC9544965 DOI: 10.1002/cctc.202200362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/20/2022] [Indexed: 11/25/2022]
Abstract
Lipase/metal nanobiohybrids, generated by growth of silver or gold nanoparticles on protein matrixes are used as highly effective dual-activity heterogeneous catalysts for the production of enantiomerically enriched 2,5-dihydrofurans from allenic acetates in a one-pot cascade process combining a lipase-mediated hydrolytic kinetic resolution with a metal-catalyzed allene cycloisomerization. Incorporating a novel strategy based on enzyme-polymer bioconjugates in the nanobiohybrid preparation enables excellent conversions in the process. Candida antarctica lipase B (CALB) in combination with a dextran-based polymer modifier (DexAsp) proved to be most efficient when merged with silver nanoparticles. A range of hybrid materials were produced, combining Ag or Au metals with Thermomyces lanuginosus lipase (TLL) or CALB and its DexAsp or polyethyleneimine polymer bioconjugates. The wider applicability of the biohybrids is demonstrated by their use in allenic alcohol cyclizations, where a variety of dihydrofurans are obtained using a CALB/gold nanomaterial. These results underline the potential of the nanobiohybrid catalysis as promising approach to intricate one-pot synthetic strategies.
Collapse
Affiliation(s)
- Janne M. Naapuri
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio 100560HelsinkiFinland
- Department of ChemistryAalto UniversityKemistintie 102150EspooFinland
- Instituto de Catalisis y Petroleoquimica (ICP)CSICC/ Marie Curie 228049MadridSpain
| | - Noelia Losada‐Garcia
- Instituto de Catalisis y Petroleoquimica (ICP)CSICC/ Marie Curie 228049MadridSpain
| | | | | | - Martin H. G. Prechtl
- Instituto Superior TécnicoUniversidade de LisboaAv. Rovisco Pais 11049-001LisboaPortugal
| | - Jose M. Palomo
- Instituto de Catalisis y Petroleoquimica (ICP)CSICC/ Marie Curie 228049MadridSpain
| | - Jan Deska
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio 100560HelsinkiFinland
- Department of ChemistryAalto UniversityKemistintie 102150EspooFinland
| |
Collapse
|
45
|
Hao Y, Zhang T, Tian D, Hao X, Zhang X, Yang H. Tri-templating Synthesis of Multilevel Mesoporous Silica Microspheres with a Complex Interior Structure for Efficient CO 2 Capture and Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9421-9430. [PMID: 35849727 DOI: 10.1021/acs.langmuir.2c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multilevel porous architectures with microscopic shape control and tailor-made complex structures offer great potential for various innovative applications, but their elaborate design and synthesis have remained a scientific and technological challenge. Herein, we report a simple and effective tri-templating method, in which microscale Pickering droplets, nanoscale polystyrene colloids (PS), and molecular cetyltrimethylammonium chloride micelles are synchronously employed, for the fabrication of such micro-nanohierarchical mesoporous silica microspheres. In this protocol, Pickering droplet-directed interfacial sol-gel growth and its spatially confined surfactant assembly-directed sol-gel coating on PS suspensions are coupled together, enabling the successful formation of structured mesoporous silica that consists of numerous nanocompartments enclosed by a permeable shell. By varying the quantity of PS colloidal templates, rational regulation of the complex interior structure is achieved. Also, ascribed to the multilevel arrangement, this peculiar architecture not only shows desirable fast mass transport of external molecules but also possesses easy handling ability. After loading with tetraethylenepentamine or enzyme species, the yielded microspherical CO2 sorbents or immobilized biocatalysts, respectively, exhibit enhanced CO2 capture capacity and enzymatic catalysis efficiency. Notably, taking advantage of their microscopic characteristics, the immobilized biocatalysts could be ideally packed in a fixed-bed reactor for long-term continuous-flow enzymatic reactions. This tri-templating strategy provides a new synthetic route to access other multilevel microscopic materials with fascinating complex structures and paves a way to promote their practical applications.
Collapse
Affiliation(s)
- Yajuan Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Tianyu Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Danping Tian
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiaoting Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiaoming Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
46
|
Ma Y, Li T, Tan Z, Ma L, Liu H, Zhu L. Chemoenzymatic conversion of glycerol to lactic acid and glycolic acid. BIORESOUR BIOPROCESS 2022; 9:75. [PMID: 38647569 PMCID: PMC10992446 DOI: 10.1186/s40643-022-00561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/26/2022] [Indexed: 11/10/2022] Open
Abstract
Catalytic valorization of raw glycerol derived from biodiesel into high-value chemicals has attracted great attention. Here, we report chemoenzymatic cascade reactions that convert glycerol to lactic acid and glycolic acid. In the enzymatic step, a coenzyme recycling system was developed to convert glycerol into 1,3-dihydroxyacetone (DHA) with a yield of 92.3% in potassium phosphate buffer (300 mM, pH 7.1) containing 100 mM glycerol, 2 mM NAD+, 242 U/mL glycerol dehydrogenase-GldA and NADH oxidase-SpNoxK184R at 30 °C. Subsequently, NaOH or NaClO2 catalyzes the formation of lactic acid and glycolic acid from DHA. The high yield of lactic acid (72.3%) and glycolic acid (78.2%) verify the benefit of the chemoenzymatic approaches.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, No 9, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Tianzhen Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Zijian Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, No 9, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin, 300457, China
| | - Haifeng Liu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources, Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, Jiangsu, China.
| | - Leilei Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
47
|
DeHovitz JS, Hyster TK. Photoinduced Dynamic Radical Processes for Isomerizations, Deracemizations, and Dynamic Kinetic Resolutions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jacob S. DeHovitz
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Todd K. Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
48
|
Zhang X, Ma W, Zhang J, Tang W, Xue D, Xiao J, Sun H, Wang C. Asymmetric Ruthenium‐Catalyzed Hydroalkylation of Racemic Allylic Alcohols for the Synthesis of Chiral Amino Acid Derivatives. Angew Chem Int Ed Engl 2022; 61:e202203244. [DOI: 10.1002/anie.202203244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Wei Ma
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
- School of Basic Medical Science Ningxia Medical University Yinchuan 750004 China
| | - Jinyu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| |
Collapse
|
49
|
Gao Y, Zhang B, Levy L, Zhang HJ, Chi H, Baran PS. Ni-Catalyzed Enantioselective Dialkyl Carbinol Synthesis via Decarboxylative Cross-Coupling: Development, Scope, and Applications. J Am Chem Soc 2022; 144:10992-11002. [PMID: 35671374 PMCID: PMC9800071 DOI: 10.1021/jacs.2c04358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The first enantioselective decarboxylative Negishi-type alkylations of α-oxy carboxylic acids are reported via the intermediacy of redox-active esters (RAEs). This transformation enables a radical-based retrosynthesis of seemingly trivial enantiopure dialkyl carbinols. This article includes a discussion of the history of such couplings, the retrosynthetic ramifications of such a coupling, the development of general conditions, and an extensive series of applications that vividly demonstrate how it can simplify synthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Phil S. Baran
- Corresponding Author: Phil S. Baran − Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States;
| |
Collapse
|
50
|
Kavi M, Özdemir A, Dertli E, Şahin E. Optimization of Biocatalytic Production of Enantiopure (S)-1-(4-Methoxyphenyl) Ethanol with Lactobacillus senmaizuke Using the Box–Behnken Design-Based Model. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|