1
|
Westawker LP, Bouley BS, Vura-Weis J, Mirica LM. Photochemistry of Ni(II) Tolyl Chlorides Supported by Bidentate Ligand Frameworks. J Am Chem Soc 2025. [PMID: 40354153 DOI: 10.1021/jacs.5c03770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Herein, we investigate the photoactivity of four NiII tolyl chloride complexes supported by either the new bidentate [2.2]pyridinophane (HN2) ligand or the traditional 4,4'-di-tert-butyl-2,2'-dipyridyl (tBubpy) ligand. Despite a change in the ligand framework, we observe similar quantum yields for the photodegradation of all four NiII complexes, while noting changes in their affinity for radical side reactivity and ability to stabilize the photogenerated mononuclear NiI species. Furthermore, changing from an ortho-tolyl to a para-tolyl group affects the geometry of the complexes and makes the Ni center more susceptible to side reactivity. By leveraging the newly developed HN2 ligand, a bidentate ligand that hinders axial interactions with the Ni center, we limit the radical side reactivity. Time-dependent density functional theory (TDDFT) and complete active space self-consistent field (CASSCF) calculations predict that all four complexes have accessible MLCTs that excite an electron from a Ni-aryl bonding orbital into a Ni-aryl antibonding orbital, initiating photolysis. By decreasing this energy gap and stabilizing the tetrahedral triplet excited state, we increase quantum yields of photoexcitation. Importantly, we characterize the photogenerated mononuclear NiI chloride species using X-band EPR spectroscopy and show that the HN2-supported NiI complexes do not undergo the deleterious dimerization and tetramerization observed for the (bpy)NiICl species. Overall, this study provides valuable insight into how the steric environment around the Ni center affects its photoactivity and demonstrates that such photoactivity is not unique to bipyridyl-supported Ni compounds.
Collapse
Affiliation(s)
- Luke P Westawker
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Bailey S Bouley
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
LeComte A, Sailer R, Mahato S, VandeVen W, Zhou W, Paterson AR, Desmau M, Ebrahim AM, Thomas F, Chiang L. Synthesis and Characterization of Co Complexes Coordinated by a Tetraanionic Bis(amidateanilido) Ligand. Inorg Chem 2025; 64:5986-5995. [PMID: 40100031 PMCID: PMC11962833 DOI: 10.1021/acs.inorgchem.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
The synthesis and characterization of a square planar CoII complex coordinated by the tetraanionic bis(amidateanilido) L4- ligand, 12-, and its corresponding one-electron oxidized forms 2-, 3, and 4+ are discussed herein. 12- undergoes aerobic oxidation to form 2-, a square planar S = 1 CoIII complex. This aerobic reactivity is attributed to a remarkably negative CoII/CoIII potential, as observed in its cyclic voltammogram, which is among the most negative CoII/CoIII couples reported. This supports the conclusion that the L4- ligation is strongly stabilizing to the oxidized CoIII center. The cyclic voltammogram of 2- also reveals that further oxidations are possible at mild potentials. Indeed, the stoichiometric addition of a suitable chemical oxidant yields a ligand-oxidized S = 1/2 CoIII complex, 3, while the addition of a further equivalent of the oxidant putatively yields 4+. The formation of the ligand oxidized species 3 suggests that bis(amidateanilido) ligation can further behave as a redox-active ligand upon additional oxidation.
Collapse
Affiliation(s)
- Avery LeComte
- Department
of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Rachel Sailer
- Department
of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Samyadeb Mahato
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Warren VandeVen
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Wen Zhou
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
- Department
of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Alisa R. Paterson
- Canadian
Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Morgane Desmau
- Canadian
Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Amani M. Ebrahim
- Canadian
Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Fabrice Thomas
- Univ.
Grenoble Alpes, DCM, CNRS, Grenoble 38000, CEDEX 9, France
| | - Linus Chiang
- Department
of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
| |
Collapse
|
3
|
Leung JJN, Bae DY, Moshood Y, Mirica LM. C-C and C-O bond formation reactivity of nickel complexes supported by the pyridinophane MeN3C ligand. Dalton Trans 2025; 54:5286-5292. [PMID: 40029120 DOI: 10.1039/d5dt00135h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The pyridinophane ligands RN3CX (X = H, Br) are well-established scaffolds that facilitate and stabilize nickel oxidative addition complexes to the proximal C(aryl)-X bond. In this study, we report the synthesis, detailed characterization, and reactivity of a series of NiII and NiIII complexes supported by the MeN3CX ligand. Our findings demonstrate that NiII complexes can be oxidized to readily yield well-defined NiIII species. Excitingly, the Ni-disolvento complexes exhibit catalytic trifluoroethoxylation to generate the C-O coupled product. In addition, the NiIII-halide complex undergoes transmetallation with a Grignard reagent and subsequent C-C reductive elimination, while the β-hydride elimination side reaction is suppressed, outperforming its NiII analogue.
Collapse
Affiliation(s)
- Joshua Ji-Nung Leung
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Dae Young Bae
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Yusuff Moshood
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA.
| |
Collapse
|
4
|
Nguyen BX, VandeVen W, MacNeil GA, Zhou W, Paterson AR, Walsby CJ, Chiang L. High-Valent Ni and Cu Complexes of a Tetraanionic Bis(amidateanilido) Ligand. Inorg Chem 2023; 62:15180-15194. [PMID: 37676794 DOI: 10.1021/acs.inorgchem.3c02358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
High-valent metal species are often invoked as intermediates during enzymatic and synthetic catalytic cycles. Anionic donors are often required to stabilize such high-valent states by forming strong bonds with the Lewis acidic metal centers while decreasing their oxidation potentials. In this report, we discuss the synthesis of two high-valent metal complexes [ML]+ in which the NiIII and CuIII centers are ligated by a new tetradentate, tetraanionic bis(amidateanilido) ligand. [ML]+, obtained via chemical oxidation of ML, exhibits UV-vis-NIR, EPR, and XANES spectra characteristic of square planar, high-valent MIII species, suggesting the locus of oxidation for both [ML]+ is predominantly metal-based. This is supported by theoretical analyses, which also support the observed visible transitions as ligand-to-metal charge transfer transitions characteristic of square planar, high-valent MIII species. Notably, [ML]+ can also be obtained via O2 oxidation of ML due to its remarkably negative oxidation potentials (CuL/[CuL]+: -1.16 V, NiL/[NiL]+: -1.01 V vs Fc/Fc+ in MeCN). This demonstrates the exceptionally strong donating nature of the tetraanionic bis(amidateanilido) ligation and its ability to stabilize high-valent metal centers..
Collapse
Affiliation(s)
- Bach X Nguyen
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Wen Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Alisa R Paterson
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Charles J Walsby
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Linus Chiang
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
| |
Collapse
|
5
|
Hu CH, Kim ST, Baik MH, Mirica LM. Nickel-Carbon Bond Oxygenation with Green Oxidants via High-Valent Nickel Species. J Am Chem Soc 2023; 145:11161-11172. [PMID: 37183827 DOI: 10.1021/jacs.3c01012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Described herein is the synthesis of the NiII complex (tBuMe2tacn)NiII(cycloneophyl) (tBuMe2tacn = 1-tert-butyl-4,7-dimethyl-1,4,7-triazacyclononane, cycloneophyl = -CH2CMe2-o-C6H4-) and its reactivity with dioxygen and peroxides. The new tBuMe2tacn ligand is designed to enhance the oxidatively induced bond-forming reactivity of high-valent Ni intermediates. Tunable chemoselectivity for Csp2-O vs Csp2-Csp3 bond formation was achieved by selecting the appropriate solvent and reaction conditions. Importantly, the use of cumene hydroperoxide and meta-chloroperbenzoic acid suggests a heterolytic O-O bond cleavage upon reaction with (tBuMe2tacn)NiII(cycloneophyl). Mechanistic studies using isotopically labeled H2O2 support the generation of a high-valent Ni-oxygen species via an inner-sphere mechanism and subsequent reductive elimination to form the Csp2-O bond. Kinetic studies of the exceptionally fast Csp2-O bond-forming reaction reveal a first-order dependence on both (tBuMe2tacn)NiII(cycloneophyl) and H2O2, and thus an overall second-order reaction. Eyring analysis further suggests that the oxidation of the NiII complex by H2O2 is the rate-determining step, which can be modulated by the presence of coordinating solvents. Moreover, computational studies fully support the conclusions drawn from experimental results. Overall, this study reveals for the first time the ability to control the oxidatively induced C-C vs C-O bond formation reactions at a Ni center. Importantly, the described system merges the known organometallic reactivity of Ni with the biomimetic oxidative transformations resembling oxygenases and peroxidases, and involving high-valent metal-oxygen intermediates, which is a novel approach that should lead to unprecedented oxidative catalytic transformations.
Collapse
Affiliation(s)
- Chi-Herng Hu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Seoung-Tae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Characterization of paramagnetic states in an organometallic nickel hydrogen evolution electrocatalyst. Nat Commun 2023; 14:905. [PMID: 36807358 PMCID: PMC9938211 DOI: 10.1038/s41467-023-36609-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Significant progress has been made in the bioinorganic modeling of the paramagnetic states believed to be involved in the hydrogen redox chemistry catalyzed by [NiFe] hydrogenase. However, the characterization and isolation of intermediates involved in mononuclear Ni electrocatalysts which are reported to operate through a NiI/III cycle have largely remained elusive. Herein, we report a NiII complex (NCHS2)Ni(OTf)2, where NCHS2 is 3,7-dithia-1(2,6)-pyridina-5(1,3)-benzenacyclooctaphane, that is an efficient electrocatalyst for the hydrogen evolution reaction (HER) with turnover frequencies of ~3,000 s-1 and a overpotential of 670 mV in the presence of trifluoroacetic acid. This electrocatalyst follows a hitherto unobserved HER mechanism involving C-H activation, which manifests as an inverse kinetic isotope effect for the overall hydrogen evolution reaction, and NiI/NiIII intermediates, which have been characterized by EPR spectroscopy. We further validate the possibility of the involvement of NiIII intermediates by the independent synthesis and characterization of organometallic NiIII complexes.
Collapse
|
7
|
The once-elusive Ni(IV) species is now a potent candidate for challenging organic transformations. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Grau BW, Neuhauser A, Aghazada S, Meyer K, Tsogoeva SB. Iron-Catalyzed Olefin Metathesis: Recent Theoretical and Experimental Advances. Chemistry 2022; 28:e202201414. [PMID: 35770829 PMCID: PMC9826008 DOI: 10.1002/chem.202201414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Indexed: 01/11/2023]
Abstract
The "metathesis reaction" is a straightforward and often metal-catalyzed chemical reaction that transforms two hydrocarbon molecules to two new hydrocarbons by exchange of molecular fragments. Alkane, alkene and alkyne metathesis have become an important tool in synthetic chemistry and have provided access to complex organic structures. Since the discovery of industrial olefin metathesis in the 1960s, many modifications have been reported; thus, increasing scope and improving reaction selectivity. Olefin metathesis catalysts based on high-valent group six elements or Ru(IV) have been developed and improved through ligand modifications. In addition, significant effort was invested to realize olefin metathesis with a non-toxic, bio-compatible and one of the most abundant elements in the earth's crust; namely, iron. First evidences suggest that low-valent Fe(II) complexes are active in olefin metathesis. Although the latter has not been unambiguously established, this review summarizes the key advances in the field and aims to guide through the challenges.
Collapse
Affiliation(s)
- Benedikt W. Grau
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebiger-Straße, 1091058ErlangenGermany
| | - Alexander Neuhauser
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebiger-Straße, 1091058ErlangenGermany
| | - Sadig Aghazada
- Inorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstrasse 191058ErlangenGermany
- Department of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 1–58093ZürichSwitzerland
| | - Karsten Meyer
- Inorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstrasse 191058ErlangenGermany
| | - Svetlana B. Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebiger-Straße, 1091058ErlangenGermany
| |
Collapse
|
9
|
Kaur S, Bera M, Santra A, Munshi S, Sterbinsky GE, Wu T, Moonshiram D, Paria S. Effect of Redox-Inactive Metal Ion-Nickel(III) Interactions on the Redox Properties and Proton-Coupled Electron Transfer Reactivity. Inorg Chem 2022; 61:14252-14266. [PMID: 36041064 DOI: 10.1021/acs.inorgchem.2c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mononuclear nickel(II) and nickel(III) complexes of a bisamidate-bisalkoxide ligand, (NMe4)2[NiII(HMPAB)] (1) and (NMe4)[NiIII(HMPAB)] (2), respectively, have been synthesized and characterized by various spectroscopic techniques including X-ray crystallography. The reaction of redox-inactive metal ions (Mn+ = Ca2+, Mg2+, Zn2+, Y3+, and Sc3+) with 2 resulted in 2-Mn+ adducts, which was assessed by an array of spectroscopic techniques including X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and reactivity studies. The X-ray structure of Ca2+ coordinated to Ni(III) complexes, 2-Ca2+T, was determined and exhibited an average Ni-Ca distance of 3.1253 Å, close to the metal ions' covalent radius. XAS analysis of 2-Ca2+ and 2-Y3+ in solution further revealed an additional coordination to Ca and Y in the 2-Mn+ adducts with shortened Ni-M distances of 2.15 and 2.11 Å, respectively, implying direct bonding interactions between Ni and Lewis acids (LAs). Such a short interatomic distance between Ni(III) and M is unprecedented and was not observed before. EPR analysis of 2 and 2-Mn+ species, moreover, displayed rhombic signals with gav > 2.12 for all complexes, supporting the +III oxidation state of Ni. The NiIII/NiII redox potential of 2 and 2-Mn+ species was determined, and a plot of E1/2 of 2-Mn+ versus pKa of [M(H2O)n]m+ exhibited a linear relationship, implying that the NiIII/NiII potential of 2 can be tuned with different redox-inactive metal ions. Reactivity studies of 2 and 2-Mn+ with different 4-X-2,6-ditert-butylphenol (4-X-DTBP) and other phenol derivatives were performed, and based on kinetic studies, we propose the involvement of a proton-coupled electron transfer (PCET) pathway. Analysis of the reaction products after the reaction of 2 with 4-OMe-DTBP showed the formation of a Ni(II) complex (1a) where one of the alkoxide arms of the ligand is protonated. A pKa value of 24.2 was estimated for 1a. The reaction of 2-Mn+ species was examined with 4-OMe-DTBP, and it was observed that the k2 values of 2-Mn+ species increase by increasing the Lewis acidity of redox-inactive metal ions. However, the obtained k2 values for 2-Mn+ species are much lower compared to the k2 value for 2. Such a variation of PCET reactivity between 2 and 2-Mn+ species may be attributed to the interactions between Ni(III) and LAs. Our findings show the significance of the secondary coordination sphere effect on the PCET reactivity of Ni(III) complexes and furnish important insights into the reaction mechanism involving high-valent nickel species, which are frequently invoked as key intermediates in Ni-mediated enzymatic reactions, solar-fuel catalysis, and biomimetic/synthetic transformation reactions.
Collapse
Affiliation(s)
- Simarjeet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aakash Santra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - George E Sterbinsky
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Tianpin Wu
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Griego L, Woods TJ, Mirica LM. A five-coordinate Ni(I) complex supported by 1,4,7-triisopropyl-1,4,7-triazacyclononane. Chem Commun (Camb) 2022; 58:7360-7363. [PMID: 35708524 DOI: 10.1039/d2cc02516g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An isolated Ni(II)-nitrosyl complex supported by the bulky tridentate 1,4,7-triisopropyl-1,4,7-triazacyclononane (iPr3TACN) ligand was obtained from the reaction of a Ni(II) dimethyl complex with NOPF6, suggesting the in situ formation of a Ni(I) species that reacts with the resulting NO product. Use of a π-acceptor ancillary isocyanide ligand led to the isolation and characterization of an uncommon 5-coordinate Ni(I) complex supported by the iPr3TACN ligand and tert-butylisocyanide.
Collapse
Affiliation(s)
- Leonel Griego
- Department of Chemistry University of Illinois at Urbana Champaign 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Toby J Woods
- Department of Chemistry University of Illinois at Urbana Champaign 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Liviu M Mirica
- Department of Chemistry University of Illinois at Urbana Champaign 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA.
| |
Collapse
|
11
|
Ting SI, Williams WL, Doyle AG. Oxidative Addition of Aryl Halides to a Ni(I)-Bipyridine Complex. J Am Chem Soc 2022; 144:5575-5582. [PMID: 35298885 DOI: 10.1021/jacs.2c00462] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The oxidative addition of aryl halides to bipyridine- or phenanthroline-ligated nickel(I) is a commonly proposed step in nickel catalysis. However, there is a scarcity of complexes of this type that both are well-defined and undergo oxidative addition with aryl halides, hampering organometallic studies of this process. We report the synthesis of a well-defined Ni(I) complex, [(CO2Etbpy)NiICl]4 (1). Its solution-phase speciation is characterized by a significant population of monomer and a redox equilibrium that can be perturbed by π-acceptors and σ-donors. 1 reacts readily with aryl bromides, and mechanistic studies are consistent with a pathway proceeding through an initial Ni(I) → Ni(III) oxidative addition to form a Ni(III) aryl species. Such a process was demonstrated stoichiometrically for the first time, affording a structurally characterized Ni(III) aryl complex.
Collapse
Affiliation(s)
- Stephen I Ting
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Wendy L Williams
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
Deciphering the mechanism of the Ni-photocatalyzed C‒O cross-coupling reaction using a tridentate pyridinophane ligand. Nat Commun 2022; 13:1313. [PMID: 35288558 PMCID: PMC8921334 DOI: 10.1038/s41467-022-28948-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/10/2022] [Indexed: 01/23/2023] Open
Abstract
Photoredox nickel catalysis has emerged as a powerful strategy for cross-coupling reactions. Although the involvement of paramagnetic Ni(I)/Ni(III) species as active intermediates in the catalytic cycle has been proposed, a thorough spectroscopic investigation of these species is lacking. Herein, we report the tridentate pyridinophane ligands RN3 that allow for detailed mechanistic studies of the photocatalytic C–O coupling reaction. The derived (RN3)Ni complexes are active catalysts under mild conditions and without an additional photocatalyst. We also provide direct evidence for the key steps involving paramagnetic Ni species in the proposed catalytic cycle: the oxidative addition of an aryl halide to a Ni(I) species, the ligand exchange/transmetalation at a Ni(III) center, and the C–O reductive elimination from a Ni(III) species. Overall, the present work suggests the RN3 ligands are a practical platform for mechanistic studies of Ni-catalyzed reactions and for the development of new catalytic applications. Mechanistic knowledge of photocatalytic nickel reactions is lacking, particularly with regards to the identities and oxidation states of key intermediates. Here the authors report a class of tridentate ligands that enables in-depth study of a representative cross-coupling reaction, wherein evidence for multiple intermediates in a Ni(I/III) cycle is presented.
Collapse
|
13
|
Cloutier JP, Zamani F, Zargarian D. Aerobic oxidation-functionalization of the aryl moiety in van Koten's pincer complex (NCN)Ni( ii)Br: relevance to carbon–heteroatom coupling reactions promoted by high-valent nickel species. NEW J CHEM 2022. [DOI: 10.1039/d1nj05162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treating the pincer complex (NCN)NiBr with protic substrates HX (X = OH, OR, or NR2) under aerobic conditions leads to C–X functionalization of the pincer ligand. The crucial importance of aerobic conditions for the success of this coupling reaction implies the formation of high-valent intermediates during the course of the reaction.
Collapse
Affiliation(s)
| | - Fahimeh Zamani
- Département de chimie, Université de Montréal, Montréal (Québec), H3C 3J7, Canada
| | - Davit Zargarian
- Département de chimie, Université de Montréal, Montréal (Québec), H3C 3J7, Canada
| |
Collapse
|
14
|
Magallon C, Griego L, Hu CH, Company A, Ribas X, Mirica LM. Organometallic Ni(II), Ni(III), and Ni(IV) Complexes Relevant to Carbon-Carbon and Carbon-Oxygen Bond Formation Reactions. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01486b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and spectroscopic and structural characterization of well-defined organometallic Ni(II) and Ni(III) complexes bearing the PyNMe3 ligand - a tetradentate N-based macrocyclic ligand which coordinates to the metal center...
Collapse
|
15
|
Panza N, Tseberlidis G, Caselli A, Vicente R. Recent progresses in the chemistry of 12-membered pyridine-containing tetraazamacrocycles: From synthesis to catalysis. Dalton Trans 2022; 51:10635-10657. [DOI: 10.1039/d2dt00597b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article provides an overview (non-comprehensive) on recent developments regarding pyridine-containing 12-membered tetraazamacrocycles with pyclen or Py2N2 backbones and their metal complexes from 2017 to the present. Firstly, the synthesis...
Collapse
|
16
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 654] [Impact Index Per Article: 163.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
17
|
He H, Ye Z, Shimizu D, Sumra I, Zhang Y, Liang Z, Zeng Y, Xu L, Osuka A, Ke Z, Jiang HW. Formation of Stable Ni III N-Confused Porphyrins Aided by a 3-Ethoxy Group. Chemistry 2021; 28:e202103272. [PMID: 34672400 DOI: 10.1002/chem.202103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/08/2022]
Abstract
We report the synthesis, characterization, and reactivities of two stable NiIII N-confused porphyrin (NCP) complexes. Metalation of 3-OEt NCP 1 with NiCl2 ⋅ 6H2 O in CHCl3 /EtOH gave 3-OEt NiII NCP 3 initially, which was easily oxidized in air to form the NiIII complex of NCP inner C-oxide 4. Bis-ethoxy-modified NiIII complex 5 was synthesized by oxidation of 3 with PIFA in ethanol and CHCl3 . The structures of 4 and 5 were determined by single-crystal X-ray diffraction analysis. An unusually long NiIII -C bond (2.170(9) Å) was observed in 4. The g-factor (g>2.1) observed in the EPR spectra of 4 and 5 further confirmed that they are paramagnetic NiIII complexes. Comparative experiments showed that the 3-ethoxy group plays an important role in the formation of 4 and 5. Reduction of 4 and 5 with NaBH4 regenerated complex 3.
Collapse
Affiliation(s)
- Huowang He
- School of Chemistry, South China Normal University and Key Laboratory of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zongren Ye
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Daiki Shimizu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Idrees Sumra
- School of Chemistry, South China Normal University and Key Laboratory of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yihuan Zhang
- School of Chemistry, South China Normal University and Key Laboratory of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhengyu Liang
- School of Chemistry, South China Normal University and Key Laboratory of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yingyu Zeng
- School of Chemistry, South China Normal University and Key Laboratory of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ling Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of Application and Assemble of Organic Functional molecules, Hunan Normal University, Changsha, 410081, P. R. China
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Hua-Wei Jiang
- School of Chemistry, South China Normal University and Key Laboratory of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
18
|
Abstract
AbstractNickel-catalyzed cross-coupling and photoredox catalytic reactions has found widespread utilities in organic synthesis. Redox processes are key intermediate steps in many catalytic cycles. As a result, it is pertinent to measure and document the redox potentials of various nickel species as precatalysts, catalysts, and intermediates. The redox potentials of a transition-metal complex are governed by its oxidation state, ligand, and the solvent environment. This article tabulates experimentally measured redox potentials of nickel complexes supported on common ligands under various conditions. This review article serves as a versatile tool to help synthetic organic and organometallic chemists evaluate the feasibility and kinetics of redox events occurring at the nickel center, when designing catalytic reactions and preparing nickel complexes.1 Introduction1.1 Scope1.2 Measurement of Formal Redox Potentials1.3 Redox Potentials in Nonaqueous Solution2 Redox Potentials of Nickel Complexes2.1 Redox Potentials of (Phosphine)Ni Complexes2.2 Redox Potentials of (Nitrogen)Ni Complexes2.3 Redox Potentials of (NHC)Ni Complexes
Collapse
|
19
|
Fuchigami K, Watson MB, Tran GN, Rath NP, Mirica LM. Synthesis and Reactivity of (N2P2)Ni Complexes Stabilized by a Diphosphonite Pyridinophane Ligand. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kei Fuchigami
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Michael B. Watson
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Giang N. Tran
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nigam P. Rath
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121-4400, United States
| | - Liviu M. Mirica
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
Jin S, Kim J, Kim D, Park JW, Chang S. Electrolytic C–H Oxygenation via Oxidatively Induced Reductive Elimination in Rh Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Seongho Jin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jung-Woo Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
21
|
Nishimura T, Ando Y, Shinokubo H, Miyake Y. Cationic Nickel(II) Pyridinophane Complexes: Synthesis, Structures and Catalytic Activities for C–H Oxidation. CHEM LETT 2021. [DOI: 10.1246/cl.210074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsubasa Nishimura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Yuki Ando
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Yoshihiro Miyake
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
22
|
He YT, Karimata A, Gladkovskaya O, Khaskin E, Fayzullin RR, Sarbajna A, Khusnutdinova JR. C–C Bond Elimination from High-Valent Mn Aryl Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yu-Tao He
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495 Japan
| | - Ayumu Karimata
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495 Japan
| | - Olga Gladkovskaya
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495 Japan
| | - Eugene Khaskin
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495 Japan
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Abir Sarbajna
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495 Japan
| | - Julia R. Khusnutdinova
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495 Japan
| |
Collapse
|
23
|
Budnikova YH. Electrochemical Insight into Mechanisms and Metallocyclic Intermediates of C-H Functionalization. CHEM REC 2021; 21:2148-2163. [PMID: 33629800 DOI: 10.1002/tcr.202100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Transition metal-catalyzed C-H activation has emerged as a powerful tool in organic synthesis and electrosynthesis as well as in the development of new methodologies for producing fine chemicals. In order to achieve efficient and selective C-H functionalization, different strategies have been used to accelerate the C-H activation step, including the incorporation of directing groups in the substrate that facilitate coordination to the catalyst. In this review, we try to underscore that the understanding the mechanisms of the catalytic cycle and the reactivity or redox activity of the key metal cyclic intermediates in these reactions is the basis for controlling the selectivity of synthesis and electrosynthesis. Combination of the electrosynthesis and voltammetry with traditional synthetic and physico-chemical methods allows one to achieve selective transformation of C-H bonds to functionalized C-C or C-X (X=heteroatom or halogen) bonds which may encourage organic chemists to use it in the future more often. The possibilities and the benefits of electrochemical techniques are analyzed and summarized.
Collapse
Affiliation(s)
- Yulia H Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088, Kazan, Russia.,Kazan National Research Technological University, Karl Marx street, 68, 420015, Kazan, Russia
| |
Collapse
|
24
|
Dong M, Jia Y, Zhou W, Gao J, Lv X, Luo F, Zhang Y, Liu S. A photoredox/nickel dual-catalytic strategy for benzylic C–H alkoxylation. Org Chem Front 2021. [DOI: 10.1039/d1qo01421h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reported herein is a photoredox/nickel dual-catalyzed benzylic C–H alkoxylation and the protocol features broad substrate scope and excellent functional group compatibility.
Collapse
Affiliation(s)
- Min Dong
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Yuqi Jia
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Wei Zhou
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Jinlai Gao
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Xiaoqing Lv
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Fan Luo
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yongqiang Zhang
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shihui Liu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| |
Collapse
|
25
|
Le Vaillant F, Reijerse EJ, Leutzsch M, Cornella J. Dialkyl Ether Formation at High-Valent Nickel. J Am Chem Soc 2020; 142:19540-19550. [PMID: 33143423 PMCID: PMC7677934 DOI: 10.1021/jacs.0c07381] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/15/2022]
Abstract
In this article, we investigated the I2-promoted cyclic dialkyl ether formation from 6-membered oxanickelacycles originally reported by Hillhouse. A detailed mechanistic investigation based on spectroscopic and crystallographic analysis revealed that a putative reductive elimination to forge C(sp3)-OC(sp3) using I2 might not be operative. We isolated a paramagnetic bimetallic NiIII intermediate featuring a unique Ni2(OR)2 (OR = alkoxide) diamond-like core complemented by a μ-iodo bridge between the two Ni centers, which remains stable at low temperatures, thus permitting its characterization by NMR, EPR, X-ray, and HRMS. At higher temperatures (>-10 °C), such bimetallic intermediate thermally decomposes to afford large amounts of elimination products together with iodoalkanols. Observation of the latter suggests that a C(sp3)-I bond reductive elimination occurs preferentially to any other challenging C-O bond reductive elimination. Formation of cyclized THF rings is then believed to occur through cyclization of an alcohol/alkoxide to the recently forged C(sp3)-I bond. The results of this article indicate that the use of F+ oxidants permits the challenging C(sp3)-OC(sp3) bond formation at a high-valent nickel center to proceed in good yields while minimizing deleterious elimination reactions. Preliminary investigations suggest the involvement of a high-valent bimetallic NiIII intermediate which rapidly extrudes the C-O bond product at remarkably low temperatures. The new set of conditions permitted the elusive synthesis of diethyl ether through reductive elimination, a remarkable feature currently beyond the scope of Ni.
Collapse
Affiliation(s)
- Franck Le Vaillant
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Edward J. Reijerse
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34−36, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
26
|
Jacob SI, Douair I, Wu G, Maron L, Ménard G. A tetranuclear nickel cluster isolated in multiple high-valent states. Chem Commun (Camb) 2020; 56:8182-8185. [PMID: 32293617 DOI: 10.1039/d0cc01699c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a series of high-valent tetranuclear nickel clusters isolated from the chemical oxidation of an all Ni(ii) ([Ni4]) neutral cluster. Electrochemical analysis of [Ni4] reveals three reversible sequential oxidations at 0.248 V (1e-), 0.678 V (1e-), and 0.991 V (2e-) vs. Fc/Fc+ corresponding to mono-, di-, and tetra-oxidized species, [Ni4]+, [Ni4]2+, [Ni4]4+, respectively. Using spectroscopic, crystallographic, magnetometric, and computational techniques, we assign the primary loci of oxidations to the Ni centers in each case, thus resulting in the isolation of the first tetranuclear all-Ni(iii) cluster, [Ni4]4+.
Collapse
Affiliation(s)
- Samuel I Jacob
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | | | | | | | | |
Collapse
|
27
|
Takahashi T, Kurahashi T, Matsubara S. Nickel-Catalyzed Intermolecular Carbobromination of Alkynes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshifumi Takahashi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takuya Kurahashi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
28
|
Nebra N. High-Valent Ni III and Ni IV Species Relevant to C-C and C-Heteroatom Cross-Coupling Reactions: State of the Art. Molecules 2020; 25:molecules25051141. [PMID: 32143336 PMCID: PMC7179250 DOI: 10.3390/molecules25051141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
Ni catalysis constitutes an active research arena with notable applications in diverse fields. By analogy with its parent element palladium, Ni catalysts provide an appealing entry to build molecular complexity via cross-coupling reactions. While Pd catalysts typically involve a M0/MII redox scenario, in the case of Ni congeners the mechanistic elucidation becomes more challenging due to their innate properties (like enhanced reactivity, propensity to undergo single electron transformations vs. 2e− redox sequences or weaker M–Ligand interaction). In recent years, mechanistic studies have demonstrated the participation of high-valent NiIII and NiIV species in a plethora of cross-coupling events, thus accessing novel synthetic schemes and unprecedented transformations. This comprehensive review collects the main contributions effected within this topic, and focuses on the key role of isolated and/or spectroscopically identified NiIII and NiIV complexes. Amongst other transformations, the resulting NiIII and NiIV compounds have efficiently accomplished: i) C–C and C–heteroatom bond formation; ii) C–H bond functionalization; and iii) N–N and C–N cyclizative couplings to forge heterocycles.
Collapse
Affiliation(s)
- Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
29
|
Roy P, Bour JR, Kampf JW, Sanford MS. Catalytically Relevant Intermediates in the Ni-Catalyzed C(sp 2)-H and C(sp 3)-H Functionalization of Aminoquinoline Substrates. J Am Chem Soc 2019; 141:17382-17387. [PMID: 31618019 DOI: 10.1021/jacs.9b09109] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This Article describes the synthesis and characterization of cyclometalated aminoquinoline NiII σ-aryl and σ-alkyl complexes that have been proposed as key intermediates in Ni-catalyzed C-H functionalization reactions. These NiII complexes serve as competent catalysts for the C-H functionalization of aminoquinoline derivatives with I2. They also react stoichiometrically with I2 to form either aryl iodides or β-lactams within minutes at room temperature. Furthermore, they react with AgI salts at -30 °C to afford isolable five-coordinate NiIII species. The NiIII σ-aryl complexes proved inert toward C(sp2)-I bond-forming reductive elimination under all conditions examined (up to 140 °C in DMF). In contrast, a NiIII σ-alkyl analogue underwent C(sp3)-N bond-forming reductive elimination at 140 °C in DMF to afford a β-lactam product. However, despite the ability of this latter NiIII species to participate in stoichiometric product formation, the complex was not a competent catalyst for β-lactam formation. Overall, these results suggest against the intermediacy of NiIII species in these C-H functionalization reactions.
Collapse
Affiliation(s)
- Pronay Roy
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - James R Bour
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Jeff W Kampf
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Melanie S Sanford
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
30
|
Ruhs NP, Khusnutdinova JR, Rath NP, Mirica LM. Mononuclear Organometallic Pd(II), Pd(III), and Pd(IV) Complexes Stabilized by a Pyridinophane Ligand with a C-Donor Group. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicholas P. Ruhs
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130-4899, United States
| | - Julia R. Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University, Coordination Chemistry and Catalysis Unit, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Nigam P. Rath
- Department of Chemistry and Biochemistry, One University Boulevard, University of Missouri-St. Louis, St. Louis, Missouri 63121-4400, United States
| | - Liviu M. Mirica
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Sarbajna A, He YT, Dinh MH, Gladkovskaya O, Rahaman SMW, Karimata A, Khaskin E, Lapointe S, Fayzullin RR, Khusnutdinova JR. Aryl–X Bond-Forming Reductive Elimination from High-Valent Mn–Aryl Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abir Sarbajna
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Yu-Tao He
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Minh Hoan Dinh
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Olga Gladkovskaya
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - S. M. Wahidur Rahaman
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Ayumu Karimata
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Eugene Khaskin
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Sébastien Lapointe
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Julia R. Khusnutdinova
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 Japan
| |
Collapse
|
32
|
Bour JR, Ferguson DM, McClain EJ, Kampf JW, Sanford MS. Connecting Organometallic Ni(III) and Ni(IV): Reactions of Carbon-Centered Radicals with High-Valent Organonickel Complexes. J Am Chem Soc 2019; 141:8914-8920. [PMID: 31136162 DOI: 10.1021/jacs.9b02411] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper describes the one-electron interconversions of isolable NiIII and NiIV complexes through their reactions with carbon-centered radicals (R•). First, model NiIII complexes are shown to react with alkyl and aryl radicals to afford NiIV products. Preliminary mechanistic studies implicate a pathway involving direct addition of a carbon-centered radical to the NiIII center. This is directly analogous to the known reactivity of NiII complexes with R•, a step that is commonly implicated in catalysis. Second, a NiIV-CH3 complex is shown to react with aryl and alkyl radicals to afford C-C bonds via a proposed SH2-type mechanism. This pathway is leveraged to enable challenging H3C-CF3 bond formation under mild conditions. Overall, these investigations suggest that NiII/III/IV sequences may be viable redox pathways in high-oxidation-state nickel catalysis.
Collapse
Affiliation(s)
- James R Bour
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Devin M Ferguson
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Edward J McClain
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Jeff W Kampf
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Melanie S Sanford
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
33
|
Rajpurohit J, Shukla P, Kumar P, Das C, Vaidya S, Sundararajan M, Shanmugam M, Shanmugam M. Stabilizing Terminal Ni(III)-Hydroxide Complex Using NNN-Pincer Ligands: Synthesis and Characterization. Inorg Chem 2019; 58:6257-6267. [PMID: 31009214 DOI: 10.1021/acs.inorgchem.9b00466] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of [Ni(COD)2] (COD; cyclooctadiene) in THF with the NNN-pincer ligand bis(imino)pyridyl (L1) reveals a susceptibility to oxidation in an inert atmosphere ([O2] level <0.5 ppm), resulting in a transient Ni:dioxygen adduct. This reactive intermediate abstracts a hydrogen atom from THF and stabilizes an uncommon Ni(III) complex. The complex is crystallographically characterized by a molecular formula of [NiIII(L1··)2-(OH)] (1). Various isotopically labeled experiments (16O/18O) assertively endorse the origin of terminal oxygen based ligand in 1 due to the activation of molecular dioxygen. The presence of proton bound to the terminal oxygen in 1 is well supported by NMR, IR spectroscopy, DFT calculations, and hydrogen atom transfer (HAT) reactions promoted by 1. The observation of shakeup satellite peaks for the primary photoelectron lines of Ni(2p) in the X-ray photoelectron spectroscopy (XPS) unambiguously confirms the paramagnetic signature associated with the distorted square planar nickel ion, which is consistent with the trivalent oxidation state assigned for the nickel ion in 1. The variable temperature magnetic susceptibility data of 1 shows dominant antiferromagnetic interactions exist among the paramagnetic centers, resulting in an overall S = 1/2 ground state. Variable temperature X-band EPR studies performed on 1 show evidence for the S = 1/2 ground state, which is consistent with magnetic data. The unusual g-tensor extracted for the ground state S = 1/2 is analyzed under a strong exchange limit of spin-coupled centers. The electronic structure predicted for 1 is in good agreement with theoretical calculations.
Collapse
Affiliation(s)
- Jitendrasingh Rajpurohit
- Department of Chemistry , Indian Institute of Technology Bombay , Powai - 400076 , Mumbai , Maharashtra , India
| | - Pragya Shukla
- Department of Chemistry , Indian Institute of Technology Bombay , Powai - 400076 , Mumbai , Maharashtra , India
| | - Pardeep Kumar
- Department of Chemistry , Indian Institute of Technology Bombay , Powai - 400076 , Mumbai , Maharashtra , India
| | - Chinmoy Das
- Department of Chemistry , Indian Institute of Technology Bombay , Powai - 400076 , Mumbai , Maharashtra , India
| | - Shefali Vaidya
- Department of Chemistry , Indian Institute of Technology Bombay , Powai - 400076 , Mumbai , Maharashtra , India
| | - Mahesh Sundararajan
- Theoretical Chemistry Section , Bhabha Atomic Research Centre , Mumbai - 400 085 , India
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princes Street , Manchester - M1 7DN , U.K
| | - Maheswaran Shanmugam
- Department of Chemistry , Indian Institute of Technology Bombay , Powai - 400076 , Mumbai , Maharashtra , India
| |
Collapse
|
34
|
Cloutier JP, Rechignat L, Canac Y, Ess DH, Zargarian D. C-O and C-N Functionalization of Cationic, NCN-Type Pincer Complexes of Trivalent Nickel: Mechanism, Selectivity, and Kinetic Isotope Effect. Inorg Chem 2019; 58:3861-3874. [PMID: 30821151 DOI: 10.1021/acs.inorgchem.8b03489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report presents the synthesis of new mono- and dicationic NCN-NiIII complexes and describes their reactivities with protic substrates. (NCN is the pincer-type ligand κ N, κ C, κ N-2,6-(CH2NMe2)2-C6H3.) Treating van Koten's trivalent complex (NCN)NiIIIBr2 with AgSbF6 in acetonitrile gives the dicationic complex [(NCN)NiIII(MeCN)3]2+, whereas the latter complex undergoes a ligand-exchange reaction with (NCN)NiIIIBr2 to furnish the related monocationic complex [(NCN)NiIII(Br)(MeCN)]+. These trivalent complexes have been characterized by X-ray diffraction analysis and EPR spectroscopy. Treating these trivalent complexes with methanol and methylamine led, respectively, to C-OCH3 or C-NH(CH3) functionalization of the Ni-aryl moiety in these complexes, C-heteroatom bond formation taking place at the ipso-C. These reactions also generate the cationic divalent complex [(NCN)NiII(NCMe)]+, which was prepared independently and characterized fully. The unanticipated formation of the latter divalent species suggested a comproportionation side reaction between the cationic trivalent precursors and a monovalent species generated at the C-O and C-N bond formation steps; this scenario was supported by direct reaction of the trivalent complexes with the monovalent compound (PPh3)3NiICl. Kinetic measurements and density functional theory analysis have been used to investigate the mechanism of these C-O and C-N functionalization reactions and to rationalize the observed inverse kinetic isotope effect in the reaction of [(NCN)NiIII(Br)(MeCN)]+ with CH3OH/CD3OD.
Collapse
Affiliation(s)
| | | | - Yves Canac
- LCC-CNRS , Université de Toulouse , CNRS, Toulouse , France
| | - Daniel H Ess
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84604 , United States
| | - Davit Zargarian
- Département de chimie , Université de Montréal , Montréal , Québec H3C 3J7 , Canada
| |
Collapse
|
35
|
Zhu DL, Li HX, Xu ZM, Li HY, Young DJ, Lang JP. Visible light driven, nickel-catalyzed aryl esterification using a triplet photosensitiser thioxanthen-9-one. Org Chem Front 2019. [DOI: 10.1039/c9qo00536f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The nickel-catalyzed esterification of carboxylic acids with aryl bromides using thioxanthen-9-one as a photosensitizer provided aryl esters with excellent yields.
Collapse
Affiliation(s)
- Da-Liang Zhu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Hong-Xi Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Ze-Ming Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Hai-Yan Li
- Analysis and Testing Centre
- Soochow University
- Suzhou 215123
- China
| | - David J. Young
- College of Engineering
- Information Technology and Environment
- Charles Darwin University
- Northern Territory 0909
- Australia
| | - Jian-Ping Lang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
36
|
Nattmann L, Lutz S, Ortsack P, Goddard R, Cornella J. A Highly Reduced Ni–Li–Olefin Complex for Catalytic Kumada–Corriu Cross-Couplings. J Am Chem Soc 2018; 140:13628-13633. [DOI: 10.1021/jacs.8b09849] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lukas Nattmann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Sigrid Lutz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Pascal Ortsack
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| |
Collapse
|
37
|
Dudkina YB, Fayzullin RR, Lyssenko KA, Gubaidullin AT, Kholin KV, Levitskaya AI, Balakina MY, Budnikova YH. Cyclometalated Nickel Complexes as Key Intermediates in C(sp2)–H Bond Functionalization: Synthesis, Catalysis, Electrochemical Properties, and DFT Calculations. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yulia B. Dudkina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Robert R. Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Konstantin A. Lyssenko
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russian Federation
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Kirill V. Kholin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Alina I. Levitskaya
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Marina Yu. Balakina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Yulia H. Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan 420088, Russian Federation
| |
Collapse
|
38
|
Planas O, Roldán-Gómez S, Martin-Diaconescu V, Luis JM, Company A, Ribas X. Mechanistic insights into the S N2-type reactivity of aryl-Co(iii) masked-carbenes for C-C bond forming transformations. Chem Sci 2018; 9:5736-5746. [PMID: 30079183 PMCID: PMC6050605 DOI: 10.1039/c8sc00851e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Herein we describe the synthesis and characterization of a family of C-metalated aryl-Co(iii) enolates, which can be considered as masked-carbenes, using diazoacetates as coupling partners. These species have been proved to be necessary intermediates in the C(sp2)-C(sp3) bond forming event to obtain cyclic amides, taming the elusive Co(iii)-carbene species. The scope of diazoacetates has been exhaustively examined, varying the nature of the ester and the α-substitution, and a clear preference for electron-poor carbene precursors is observed. Exhaustive experimental and theoretical studies indicate that an unprecedented intramolecular SN2-type process governs the formation of the newly formed C-C bond. Furthermore, the key role of several Lewis acids as carboxylate-activating reagents is further explored by DFT calculations.
Collapse
Affiliation(s)
- O Planas
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , Girona , E-17003 , Catalonia , Spain . ;
| | - S Roldán-Gómez
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , Girona , E-17003 , Catalonia , Spain . ;
| | - V Martin-Diaconescu
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Països Catalans 16 , 43007 Tarragona , Catalonia , Spain
| | - J M Luis
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , Girona , E-17003 , Catalonia , Spain . ;
| | - A Company
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , Girona , E-17003 , Catalonia , Spain . ;
| | - X Ribas
- Institut de Química Computacional i Catàlisi (IQCC) , Departament de Química , Universitat de Girona , Campus Montilivi , Girona , E-17003 , Catalonia , Spain . ;
| |
Collapse
|
39
|
Jongbloed LS, Vogt N, Sandleben A, de Bruin B, Klein A, van der Vlugt JI. Nickel-Alkyl Complexes with a Reactive PNC-Pincer Ligand. Eur J Inorg Chem 2018; 2018:2408-2418. [PMID: 29937691 PMCID: PMC6001697 DOI: 10.1002/ejic.201800168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 11/26/2022]
Abstract
Based on previous work related to the design and application of rigid tridentate phosphine-pyridine-phenyl coordination offered by a PNC-pincer ligand upon cyclometalation to nickel, the synthesis, spectroscopic and solid state characterization and redox-reactivity of two NiII(PNC) complexes featuring either a methyl (2CH3 ) or CF3 co-ligand (2CF3 ) are described. One-electron oxidation is proposed to furnish C-C reductive elimination, as deduced from a combined chemical, electrochemical, spectroscopic and computational study. One-electron reduction results in a ligand-centered radical anion, as supported by electrochemistry, UV spectroelectrochemistry, EPR spectroscopy, and DFT calculations. This further attenuates the breadth of chemical reactivity offered by such PNC-pincer ligands.
Collapse
Affiliation(s)
- Linda S. Jongbloed
- Homogeneous, Bioinspired and Supramolecular Catalysis, van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Nicolas Vogt
- Department für ChemieInstitut für Anorganische ChemieUniversität zu KölnGreinstraße 650939KölnGermany
| | - Aaron Sandleben
- Department für ChemieInstitut für Anorganische ChemieUniversität zu KölnGreinstraße 650939KölnGermany
| | - Bas de Bruin
- Homogeneous, Bioinspired and Supramolecular Catalysis, van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Axel Klein
- Department für ChemieInstitut für Anorganische ChemieUniversität zu KölnGreinstraße 650939KölnGermany
| | - Jarl Ivar van der Vlugt
- Homogeneous, Bioinspired and Supramolecular Catalysis, van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
40
|
Cloutier JP, Zargarian D. Functionalization of the Aryl Moiety in the Pincer Complex (NCN)NiIIIBr2: Insights on NiIII-Promoted Carbon–Heteroatom Coupling. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Davit Zargarian
- Département de chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
41
|
Peng Q, Wang Z, Zarić SD, Brothers EN, Hall MB. Unraveling the Role of a Flexible Tetradentate Ligand in the Aerobic Oxidative Carbon-Carbon Bond Formation with Palladium Complexes: A Computational Mechanistic Study. J Am Chem Soc 2018; 140:3929-3939. [PMID: 29444572 DOI: 10.1021/jacs.7b11701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanistic details of the aerobic oxidative coupling of methyl groups by a novel (MeL)PdII(Me)2 complex with the tetradentate ligand, MeL = N, N-dimethyl-2,11-diaza[3.3](2,6)pyridinophane, has been explored by density functional theory calculations. The calculated mechanism sheds light on the role of this ligand's flexibility in several stages of the reaction, especially as the oxidation state of the Pd changes. Ligand flexibility leads to diverse axial coordination modes, and it controls the availability of electrons by modulating the energies of high-lying molecular orbitals, particularly those with major d z2 character. Solvent molecules, particularly water, appear essential in the aerobic oxidation of PdII by lowering the energy of the oxygen molecule's unoccupied molecular orbital and stabilizing the PdX-O2 complex. Ligand flexibility and solvent coordination to oxygen are essential to the required spin-crossover for the transformation of high-valent PdX-O2 complexes. A methyl cation pathway has been predicted by our calculations in transmetalation between PdII and PdIV intermediates to be preferred over methyl radical or methyl anion pathways. Combining an axial and equatorial methyl group is preferred in the reductive elimination pathway where roles are played by the ligand's flexibility and the fluxionality of trimethyl groups.
Collapse
Affiliation(s)
- Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Zengwei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Snežana D Zarić
- Faculty of Chemistry , Texas A&M University at Qatar , P.O. Box 23874, Doha , Qatar.,Department of Chemistry , University of Belgrade , Studentski trg 12-16 , Belgrade , Serbia
| | - Edward N Brothers
- Faculty of Chemistry , Texas A&M University at Qatar , P.O. Box 23874, Doha , Qatar
| | - Michael B Hall
- Department of Chemistry , Texas A&M University , College Station , Texas 77843-3255 , United States
| |
Collapse
|
42
|
Chang HC, Lin SH, Hsu YC, Jen SW, Lee WZ. Nickel(iii)-mediated oxidative cascades from a thiol-bearing nickel(ii) precursor to the nickel(iv) product. Dalton Trans 2018; 47:3796-3802. [PMID: 29446427 DOI: 10.1039/c7dt04137c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel(ii) complex, Ni(HPS2)2 (1) that contains two pendant thiols, is rapidly aerobically oxidized in the presence of an amine to produce a diamagnetic nickel(iv) complex, Ni(PS2)2 (2). This process was investigated spectroscopically at a temperature of -80 °C. Absorption spectra revealed that the deprotonation of one pendant thiol of 1 triggers an oxidative cascade; EPR findings indicate that single-spin species comprised of nickel(iii) intermediates are produced in the reaction solution. Possible reaction routes were examined by DFT calculations, in which an energy profile indicates that (i) a self-driven formation of 2 favors a sequential proton/electron transfer pathway; (ii) kinetically trapped nickel(iii) intermediates may respond to the specificity of the coordination of 2 in a cis-form. The overall findings help one to rationalize how a nickel(ii) precursor can be oxidized by O2 to a higher oxidation state.
Collapse
Affiliation(s)
- Hao-Ching Chang
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
43
|
Desnoyer AN, Love JA. Recent advances in well-defined, late transition metal complexes that make and/or break C-N, C-O and C-S bonds. Chem Soc Rev 2018; 46:197-238. [PMID: 27849097 DOI: 10.1039/c6cs00150e] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemical transformations that result in either the formation or cleavage of carbon-heteroatom bonds are among the most important processes in the chemical sciences. Herein, we present a review on the reactivity of well-defined, late-transition metal complexes that result in the making and breaking of C-N, C-O and C-S bonds via fundamental organometallic reactions, i.e. oxidative addition, reductive elimination, insertion and elimination reactions. When appropriate, emphasis is placed on structural and spectroscopic characterization techniques, as well as mechanistic data.
Collapse
Affiliation(s)
- Addison N Desnoyer
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Jennifer A Love
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
44
|
Ribas X, Devillard M. Model Macrocyclic Ligands for Proof-of-Concept Mechanistic Studies in Transition-Metal Catalysis. Chemistry 2017; 24:1222-1230. [DOI: 10.1002/chem.201704408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química; Universitat de Girona; Campus Montilivi, Facultat Ciències E17003 Girona Catalonia Spain
| | - Marc Devillard
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química; Universitat de Girona; Campus Montilivi, Facultat Ciències E17003 Girona Catalonia Spain
| |
Collapse
|
45
|
Camasso NM, Canty AJ, Ariafard A, Sanford MS. Experimental and Computational Studies of High-Valent Nickel and Palladium Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00613] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicole M. Camasso
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Allan J. Canty
- School
of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alireza Ariafard
- School
of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Melanie S. Sanford
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
46
|
Planas O, Roldán-Gómez S, Martin-Diaconescu V, Parella T, Luis JM, Company A, Ribas X. Carboxylate-Assisted Formation of Aryl-Co(III) Masked-Carbenes in Cobalt-Catalyzed C–H Functionalization with Diazo Esters. J Am Chem Soc 2017; 139:14649-14655. [DOI: 10.1021/jacs.7b07880] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Oriol Planas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, E-17003 Catalonia, Spain
| | - Steven Roldán-Gómez
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, E-17003 Catalonia, Spain
| | - Vlad Martin-Diaconescu
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, E-17003 Catalonia, Spain
| | - Teodor Parella
- Servei
de RMN, Facultat de Ciències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, E-08193 Catalonia, Spain
| | - Josep M. Luis
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, E-17003 Catalonia, Spain
| | - Anna Company
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, E-17003 Catalonia, Spain
| | - Xavi Ribas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona, E-17003 Catalonia, Spain
| |
Collapse
|
47
|
Kouno M, Yoshinari N, Kuwamura N, Yamagami K, Sekiyama A, Okumura M, Konno T. Valence Interconversion of Octahedral Nickel(II/III/IV) Centers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Masahiro Kouno
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| | - Nobuto Yoshinari
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| | - Naoto Kuwamura
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| | - Kohei Yamagami
- Division of Materials Physics Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| | - Akira Sekiyama
- Division of Materials Physics Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| | - Mitsutaka Okumura
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| | - Takumi Konno
- Department of Chemistry Graduate School of Science Osaka University Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
48
|
Kouno M, Yoshinari N, Kuwamura N, Yamagami K, Sekiyama A, Okumura M, Konno T. Valence Interconversion of Octahedral Nickel(II/III/IV) Centers. Angew Chem Int Ed Engl 2017; 56:13762-13766. [PMID: 28846211 DOI: 10.1002/anie.201708169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 11/06/2022]
Abstract
Three oxidation states (+2, +3, +4) of an octahedral nickel center were stabilized in a newly prepared RhNiRh trinuclear complex, [Ni{Rh(apt)3 }2 ]n+ (apt=3- aminopropanethiolate), in which the nickel center was bound by six thiolato donors sourced from two redox-inert fac-[RhIII (apt)3 ] octahedral units. The three oxidation states of the octahedral nickel center were fully characterized by single-crystal X-ray crystallography, as well as spectroscopic, electrochemical, and magnetic measurements; all three were interconvertible, and the conversion was accompanied by changes in color, magnetism, and Jahn-Teller distortion.
Collapse
Affiliation(s)
- Masahiro Kouno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Naoto Kuwamura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Kohei Yamagami
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Akira Sekiyama
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Mitsutaka Okumura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
49
|
|
50
|
Lee H, Börgel J, Ritter T. Carbon-Fluorine Reductive Elimination from Nickel(III) Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heejun Lee
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Department of Chemistry and Chemical Biology; Harvard University; 12 Oxford Street Cambridge MA 02138 USA
| | - Jonas Börgel
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Department of Chemistry and Chemical Biology; Harvard University; 12 Oxford Street Cambridge MA 02138 USA
| |
Collapse
|