1
|
Tang H, Zhang HN, Gao X, Zou Y, Jin GX. The Topological Transformation of Trefoil Knots to Solomon Links via Diels-Alder Click Reaction. J Am Chem Soc 2024; 146:16020-16027. [PMID: 38815259 DOI: 10.1021/jacs.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The quest for more efficient, user-friendly, and less wasteful topological transformations remains a significant challenge in the realm of postassembly modifications. In this article, high yields of two molecular trefoil knots (Rh-1, Ir-1) were obtained using ligand 3,6-bis(3-(pyridin-4-yl)phenyl)-1,2,4,5-tetrazine (L1) with reactive tetrazine units and binuclear half-sandwich organometallic units [Cp*2M2(μ-TPPHZ)(OTf)2](OTf)2 (Rh-B, M = RhIII; Ir-B, M = IrIII). 2,5-Norbornadiene was used as an inducer of the Diels-Alder click reaction to modulate rapidly and efficiently the transformation of Trefoil knots to Solomon links. However, the key to achieving this topological structural change is the subtle increase in site steric of the pyridazine fragments (L2), which allows the molecular structures to spread and bend in three-dimensional space, as confirmed by single-crystal X-ray diffraction, ESI-TOF/MS, elementary analysis and detailed solution-state NMR techniques.
Collapse
Affiliation(s)
- Haitong Tang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Hai-Ning Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Xiang Gao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Yan Zou
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| |
Collapse
|
2
|
Sarwa A, Białońska A, Sobieraj M, Martínez JP, Trzaskowski B, Szyszko B. Iminopyrrole-Based Self-Assembly: A Route to Intrinsically Flexible Molecular Links and Knots. Angew Chem Int Ed Engl 2024; 63:e202316489. [PMID: 38032333 DOI: 10.1002/anie.202316489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
The use of 2,5-diformylpyrrole in self-assembly reactions with diamines and Zn(II)/Cd(II) salts allowed the preparation of [2]catenane, trefoil knot, and Borromean rings. The intrinsically dynamic nature of the diiminopyrrole motif rendered all of the formed assemblies intramolecularly flexible. The presence of diiminopyrrole revealed new coordination motifs and influenced the host-guest chemistry of the systems, as illustrated by hexafluorophosphate encapsulation by Borromean rings.
Collapse
Affiliation(s)
- Aleksandra Sarwa
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-387, Wrocław, Poland
| | - Agata Białońska
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-387, Wrocław, Poland
| | - Michał Sobieraj
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-387, Wrocław, Poland
| | - Juan Pablo Martínez
- Centre of New Technologies, University of Warsaw, 2c Banach St., 02-097, Warsaw, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, 2c Banach St., 02-097, Warsaw, Poland
| | - Bartosz Szyszko
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-387, Wrocław, Poland
| |
Collapse
|
3
|
|
4
|
Zhang ZH, Zhou Q, Li Z, Zhang N, Zhang L. Completely stereospecific synthesis of a molecular cinquefoil (51) knot. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Tubiana L, Ferrari F, Orlandini E. Circular Polycatenanes: Supramolecular Structures with Topologically Tunable Properties. PHYSICAL REVIEW LETTERS 2022; 129:227801. [PMID: 36493458 DOI: 10.1103/physrevlett.129.227801] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Polycatenanes, macrochains of topologically interlocked rings with unique physical properties have recently gained considerable interest in supramolecular chemistry, biology, and soft matter. Most of the work has been, so far, focused on linear chains and on their variety of conformational properties compared to standard polymers. Here we go beyond the linear case and show that, by circularizing such macrochains, one can exploit the topology of the local interlockings to store twist in the system, significantly altering its metric and local properties. Moreover, by properly defining the twist (Tw) and writhe (Wr) of these macrorings we show the validity of a relation equivalent to the Călugăreanu-White-Fuller theorem Tw+Wr=const, originally proved for ribbonlike structures such as double stranded DNA. Our results suggest that circular polycatenanes with storable and tunable twist can form a new category of highly designable multiscale structures with potential applications in supramolecular chemistry and material science.
Collapse
Affiliation(s)
- L Tubiana
- Physics Department, University of Trento, via Sommarive, 14 I-38123 Trento, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Trento, Italy and Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - F Ferrari
- CASA* and Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland
| | - E Orlandini
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| |
Collapse
|
6
|
Ashbridge Z, Fielden SDP, Leigh DA, Pirvu L, Schaufelberger F, Zhang L. Knotting matters: orderly molecular entanglements. Chem Soc Rev 2022; 51:7779-7809. [PMID: 35979715 PMCID: PMC9486172 DOI: 10.1039/d2cs00323f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| | - Lucian Pirvu
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - Liang Zhang
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| |
Collapse
|
7
|
New wheel-shaped Ln6 clusters for conversion of CO2 and magnetic properties. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Yang Q, Wang GL, Zhang YQ, Tang J. Self-assembly of fish-bone and grid-like Co II-based single-molecule magnets using dihydrazone ligands with NNN and NNO pockets. Dalton Trans 2022; 51:13928-13937. [PMID: 36040449 DOI: 10.1039/d2dt02451a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Three CoII complexes, [Co2(H2L1)2](ClO4)4·4CH3OH (1), [Co2(H4L2)2](ClO4)4 (2) and [Co4(H4L2)4](ClO4)8 (3), were constructed by the self-assembly of the symmetrical dihydrazone ligands H2L1 and H4L2 with CoII ions under different synthetic conditions. The fish-bone-like complex 1 was obtained using the ligand H2L1 in methanol via the solvothermal method, while the self-assembly of H4L2 with CoII ions is solvent-dependent, producing the fish-bone-like complex 2 and [2 × 2] grid-like complex 3. Magnetic susceptibility measurements and theoretical calculations reveal that the large negative D values for the three complexes stem from their easy-axis magnetic anisotropy. Ac magnetic susceptibility measurements disclosed field-induced slow magnetic relaxation behaviors and the presence of Raman and/or direct processes of the three complexes at various applied dc fields.
Collapse
Affiliation(s)
- Qianqian Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guo-Lu Wang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
9
|
McTernan C, Davies JA, Nitschke JR. Beyond Platonic: How to Build Metal-Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chem Rev 2022; 122:10393-10437. [PMID: 35436092 PMCID: PMC9185692 DOI: 10.1021/acs.chemrev.1c00763] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/17/2022]
Abstract
The field of metallosupramolecular chemistry has advanced rapidly in recent years. Much work in this area has focused on the formation of hollow self-assembled metal-organic architectures and exploration of the applications of their confined nanospaces. These discrete, soluble structures incorporate metal ions as 'glue' to link organic ligands together into polyhedra.Most of the architectures employed thus far have been highly symmetrical, as these have been the easiest to prepare. Such high-symmetry structures contain pseudospherical cavities, and so typically bind roughly spherical guests. Biomolecules and high-value synthetic compounds are rarely isotropic, highly-symmetrical species. To bind, sense, separate, and transform such substrates, new, lower-symmetry, metal-organic cages are needed. Herein we summarize recent approaches, which taken together form the first draft of a handbook for the design of higher-complexity, lower-symmetry, self-assembled metal-organic architectures.
Collapse
Affiliation(s)
| | | | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
10
|
Gurusamy S, Nandini Asha R, Sankarganesh M, Christopher Jeyakumar T, Mathavan A. Vanillin based colorimetric and fluorometric chemosensor for detection of Cu(II) ion: DFT calculation, DNA / BSA interaction and Molecular docking studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Li L, Liu H, Tang J, Du P, Zhang Y, Qian Y. Embedding of Functionalized Coordination Cages and a Molecular Knot in a Polymeric Membrane for Potentiometric Sensing of Environmentally Important Oxyanions and Halides. ACS Sens 2022; 7:1602-1611. [PMID: 35499166 DOI: 10.1021/acssensors.2c00782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Three kinds of coordination cages and a molecular knot with inductively activated +P-H, N-H, or C-H hydrogen bond donors anchoring in the functionalized cavities were inspected as ionophores to develop polymeric membrane ISEs for potentiometric sensing of environmentally important oxyanions and halides. The proposed ISEs displayed significant preference for perrhenate, phosphate, or chloride with a selectivity pattern distinctively different from the sequence depending on the Gibbs free energy of hydration owing to the high degree of shape, charge, and size selectivity originating from the rigidity and complementarity of the binding cavities. To gain further insight into the response characters of the proposed ISEs, the binding constants of ionophore-anion complexes in the membrane phase were investigated, and the binding affinity, together with the Hofmeister series, correlates well with the determined selectivity pattern of the proposed ISEs. Optimizing the composition of the membrane such as lipophilic additives and plasticizers produced ISEs displaying Nernstian/near-Nernstian potentiometric responses to primary anions with a wide linear range, improved detection limits, good reversibility, and satisfying lifetime. Potentiometric determination of perrhenate, phosphate, and chloride in river water, mineral water, and artificial serum samples was achieved with good recovery and accuracy using the proposed ISEs, demonstrating their potential for real-life applications. These results will shed new light on how novel ionophores could be designed for potentiometric sensing and broaden the scope of host-guest chemistry of coordination cages and molecular knots.
Collapse
Affiliation(s)
- Long Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Haitao Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jing Tang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Pengcheng Du
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yihao Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yi Qian
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
12
|
Dang LL, Li TT, Zhang TT, Zhao Y, Chen T, Gao X, Ma LF, Jin GX. Highly selective synthesis and near-infrared photothermal conversion of metalla-Borromean ring and [2]catenane assemblies. Chem Sci 2022; 13:5130-5140. [PMID: 35655550 PMCID: PMC9093202 DOI: 10.1039/d2sc00437b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Although the selective synthesis of complicated supramolecular architectures has seen significant progress in recent years, the exploration of the properties of these complexes remains a fascinating challenge. Herein, a series of new supramolecular topologies, metalla[2]catenanes and Borromean ring assemblies, were constructed based on appropriate Cp*Rh building blocks and two rigid alkynyl pyridine ligands (L1, L2) via coordination-driven self-assembly. Interestingly, minor differences between the two rigid alkynyl pyridine ligands with/without organic substituents led to products with dramatically different topologies. Careful structural analysis showed that π–π stacking interactions play a crucial role in stabilizing these [2]catenanes and Borromean ring assemblies, while also promoting nonradiative transitions and triggering photothermal conversion in both the solution and the solid states. These results were showcased through comparative studies of the NIR photothermal conversion efficiencies of the Borromean ring assemblies, [2]catenanes and metallarectangles, which exhibited a wide range of photothermal conversion efficiencies (12.64–72.21%). The influence of the different Cp*Rh building blocks on the NIR photothermal conversion efficiencies of their assemblies was investigated. Good photothermal conversion properties of the assemblies were also found in the solid state. This study provides a new strategy to construct valuable half-sandwich-based NIR photothermal conversion materials while also providing promising candidates for the further development of materials science. The selective synthesis of three kinds of supermolecular topologies, molecular Borromean ring, [2]catenane and metallarectangle based on two alkynyl ligands is presented. Remarkably, the NIR photothermal conversion efficiency was found to improve as the π–π stacking increases.![]()
Collapse
Affiliation(s)
- Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China.,Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| | - Ting-Ting Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China.,College of Chemistry and Bioengineering (Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials), Guilin University of Technology Guilin 541004 P. R. China
| | - Ting-Ting Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Xiang Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory Luoyang 471934 P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University Shanghai 200438 P. R. China
| |
Collapse
|
13
|
Ashbridge Z, Kreidt E, Pirvu L, Schaufelberger F, Stenlid JH, Abild-Pedersen F, Leigh DA. Vernier template synthesis of molecular knots. Science 2022; 375:1035-1041. [PMID: 35239374 DOI: 10.1126/science.abm9247] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecular knots are often prepared using metal helicates to cross the strands. We found that coordinatively mismatching oligodentate ligands and metal ions provides a more effective way to synthesize larger knots using Vernier templating. Strands composed of different numbers of tridentate 2,6-pyridinedicarboxamide groups fold around nine-coordinate lanthanide (III) ions to generate strand-entangled complexes with the lowest common multiple of coordination sites for the ligand strands and metal ions. Ring-closing olefin metathesis then completes the knots. A 3:2 (ditopic strand:metal) Vernier assembly produces +31#+31 and -31#-31 granny knots. Vernier complexes of 3:4 (tetratopic strand:metal) stoichiometry selectively form a 378-atom-long trefoil-of-trefoils triskelion knot with 12 alternating strand crossings or, by using opposing stereochemistry at the terminus of the strand, an inverted-core triskelion knot with six alternating and six nonalternating strand crossings.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Elisabeth Kreidt
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Lucian Pirvu
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | - Joakim Halldin Stenlid
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
14
|
Liu W, Tan Y, Jones LO, Song B, Guo QH, Zhang L, Qiu Y, Feng Y, Chen XY, Schatz GC, Stoddart JF. PCage: Fluorescent Molecular Temples for Binding Sugars in Water. J Am Chem Soc 2021; 143:15688-15700. [PMID: 34505510 DOI: 10.1021/jacs.1c06333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of synthetic receptors that recognize carbohydrates in water with high selectivity and specificity is challenging on account of their structural complexity and strong hydrophilicity. Here, we report on the design and synthesis of two pyrene-based, temple-shaped receptors for the recognition of a range of common sugars in water. These receptors rely on the use of two parallel pyrene panels, which serve as roofs and floors, capable of forming multiple [C-H···π] interactions with the axially oriented C-H bonds on glycopyranosyl rings in the carbohydrate-based substrates. In addition, eight polarized pyridinium C-H bonds, projecting from the roofs and floors of the temple receptors toward the binding cavities, form [C-H···O] hydrogen bonds, with the equatorially oriented OH groups on the sugars located inside the hydrophobic cavities. Four para-xylylene pillars play a crucial role in controlling the distance between the roof and floor. These temple receptors are highly selective for the binding of glucose and its derivatives. Furthermore, they show enhanced fluorescence upon binding with glucose in water, a property which is useful for glucose-sensing in aqueous solution.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Leighton O Jones
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Long Zhang
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
15
|
Timmer BJJ, Mooibroek TJ. Anion binding properties of a hollow PdL-cage. Chem Commun (Camb) 2021; 57:7184-7187. [PMID: 34190254 PMCID: PMC8291284 DOI: 10.1039/d1cc02663a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 12/04/2022]
Abstract
The hollow [PdL][BArF]2 complex 1 of a tetra-pyridyl (py) ligand (L) has a [Pd(py)4]2+ coordination environment. Addition of coordinating anions resulted in the formation of a neutral species with Pd(py)2(anion)2 coordination environment (12A). These species bind further to the coordinating anions in the order Cl- > N3- > Br- > I- > AcO- with Ka1 : 1 ≤ 414 M-1. With relatively non-coordinating anions 1 remains intact and displays 1 : 2 binding behaviour dominated by the 1 : 1 stoichiometry in the order NO3- (∼105 M-1) » ClO4- and BF4- (∼103 M-1). As evidenced by crystal structure data, DFT calculations and {1H-19F}-HOESY NMR with BF4-, the anions are bound by charge assisted [C-H]+···anion interactions.
Collapse
Affiliation(s)
- Brian J J Timmer
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.
| | - Tiddo J Mooibroek
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.
| |
Collapse
|
16
|
Carpenter JP, McTernan CT, Greenfield JL, Lavendomme R, Ronson TK, Nitschke JR. Controlling the shape and chirality of an eight-crossing molecular knot. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Leigh DA, Danon JJ, Fielden SDP, Lemonnier JF, Whitehead GFS, Woltering SL. A molecular endless (7 4) knot. Nat Chem 2021; 13:117-122. [PMID: 33318672 DOI: 10.1038/s41557-020-00594-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
Current strategies for the synthesis of molecular knots focus on twisting, folding and/or threading molecular building blocks. Here we report that Zn(II) or Fe(II) ions can be used to weave ligand strands to form a woven 3 × 3 molecular grid. We found that the process requires tetrafluoroborate anions to template the assembly of the interwoven grid by binding within the square cavities formed between the metal-coordinated criss-crossed ligands. The strand ends of the grid can subsequently be joined through within-grid alkene metathesis reactions to form a topologically trivial macrocycle (unknot), a doubly interlocked [2]catenane (Solomon link) and a knot with seven crossings in a 258-atom-long closed loop. This 74 knot topology corresponds to that of an endless knot, which is a basic motif of Celtic interlace, the smallest Chinese knot and one of the eight auspicious symbols of Buddhism and Hinduism. The weaving of molecular strands within a discrete layer by anion-template metal-ion coordination opens the way for the synthesis of other molecular knot topologies and to woven polymer materials.
Collapse
Affiliation(s)
- David A Leigh
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China. .,Department of Chemistry, University of Manchester, Manchester, UK.
| | - Jonathan J Danon
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
18
|
August DP, Jaramillo-Garcia J, Leigh DA, Valero A, Vitorica-Yrezabal IJ. A Chiral Cyclometalated Iridium Star of David [2]Catenane. J Am Chem Soc 2021; 143:1154-1161. [DOI: 10.1021/jacs.0c12038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- David P. August
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | | | - David A. Leigh
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alberto Valero
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | | |
Collapse
|
19
|
Chen M, Cao JN, Li S, Liu D, Wang J, Zhao H, Wang G, Wu T, Jiang Z, Wang P. Customized self-assembled molecules: rim adjustable coronal polygons with multiple-folds symmetry. Org Chem Front 2021. [DOI: 10.1039/d1qo01316e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three desired discrete metallomacrocyclic wreaths with four-, five- and six-fold symmetry were successfully realized in a controlled fashion.
Collapse
Affiliation(s)
- Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Jia-nan Cao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Suqing Li
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Jun Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - He Zhao
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Guotao Wang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education; Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
20
|
Andrews R, Begum S, Clemett CJ, Faulkner RA, Ginger ML, Harmer J, Molinari M, Parkes GMB, Qureshi ZMH, Rice CR, Ward MD, Williams HM, Wilson PB. Self-Assembled Anion-Binding Cryptand for the Selective Liquid-Liquid Extraction of Phosphate Anions. Angew Chem Int Ed Engl 2020; 59:20480-20484. [PMID: 32743891 PMCID: PMC7693201 DOI: 10.1002/anie.202009960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/19/2022]
Abstract
The ligands L1 and L2 form trinuclear self-assembled complexes with Cu2+ (i.e. [(L1 )2 Cu3 ]6+ or [(L2 )2 Cu3 ]6+ ) both of which act as a host to a variety of anions. Inclusion of long aliphatic chains on these ligands allows the assemblies to extract anions from aqueous media into organic solvents. Phosphate can be removed from water efficiently and highly selectively, even in the presence of other anions.
Collapse
Affiliation(s)
- Rebecca Andrews
- Department of Chemical SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Sabera Begum
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | | | - Robert A. Faulkner
- Department of Chemical SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Michael L. Ginger
- Department of Chemical SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Jane Harmer
- Department of Chemical SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Marco Molinari
- Department of Chemical SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Gareth M. B. Parkes
- Department of Chemical SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | | | - Craig R. Rice
- Department of Chemical SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Michael D. Ward
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Howard M. Williams
- Department of Chemical SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Philippe B. Wilson
- School of AnimalRural and Environmental SciencesNottingham Trent UniversityNottinghamNG25 0QFUK
| |
Collapse
|
21
|
August D, Borsley S, Cockroft SL, della Sala F, Leigh DA, Webb SJ. Transmembrane Ion Channels Formed by a Star of David [2]Catenane and a Molecular Pentafoil Knot. J Am Chem Soc 2020; 142:18859-18865. [PMID: 33084320 PMCID: PMC7745878 DOI: 10.1021/jacs.0c07977] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/19/2022]
Abstract
A (FeII)6-coordinated triply interlocked ("Star of David") [2]catenane (612 link) and a (FeII)5-coordinated pentafoil (51) knot are found to selectively transport anions across phospholipid bilayers. Allostery, topology, and building block stoichiometry all play important roles in the efficacy of the ionophoric activity. Multiple FeII cation coordination by the interlocked molecules is crucial: the demetalated catenane exhibits no anion binding in solution nor any transmembrane ion transport properties. However, the topologically trivial, Lehn-type cyclic hexameric FeII helicates-which have similar anion binding affinities to the metalated Star of David catenane in solution-also display no ion transport properties. The unanticipated difference in behavior between the open- and closed-loop structures may arise from conformational restrictions in the linking groups that likely enhances the rigidity of the channel-forming topologically complex molecules. The (FeII)6-coordinated Star of David catenane, derived from a hexameric cyclic helicate, is 2 orders of magnitude more potent in terms of ion transport than the (FeII)5-coordinated pentafoil knot, derived from a cyclic pentamer of the same building block. The reduced efficacy is reminiscent of multisubunit protein ion channels assembled with incorrect monomer stoichiometries.
Collapse
Affiliation(s)
- David
P. August
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Stefan Borsley
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Scott L. Cockroft
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh EH9 3FJ, United Kingdom
| | - Flavio della Sala
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David A. Leigh
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Simon J. Webb
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
22
|
Dang LL, Feng HJ, Lin YJ, Jin GX. Self-Assembly of Molecular Figure-Eight Knots Induced by Quadruple Stacking Interactions. J Am Chem Soc 2020; 142:18946-18954. [DOI: 10.1021/jacs.0c09162] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li-Long Dang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
23
|
Andrews R, Begum S, Clemett CJ, Faulkner RA, Ginger ML, Harmer J, Molinari M, Parkes GMB, Qureshi ZMH, Rice CR, Ward MD, Williams HM, Wilson PB. Self‐Assembled Anion‐Binding Cryptand for the Selective Liquid–Liquid Extraction of Phosphate Anions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rebecca Andrews
- Department of Chemical Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | - Sabera Begum
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | | | - Robert A. Faulkner
- Department of Chemical Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | - Michael L. Ginger
- Department of Chemical Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | - Jane Harmer
- Department of Chemical Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | - Marco Molinari
- Department of Chemical Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | - Gareth M. B. Parkes
- Department of Chemical Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | | | - Craig R. Rice
- Department of Chemical Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | - Michael D. Ward
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Howard M. Williams
- Department of Chemical Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | - Philippe B. Wilson
- School of Animal Rural and Environmental Sciences Nottingham Trent University Nottingham NG25 0QF UK
| |
Collapse
|
24
|
Katsonis N, Lancia F, Leigh DA, Pirvu L, Ryabchun A, Schaufelberger F. Knotting a molecular strand can invert macroscopic effects of chirality. Nat Chem 2020; 12:939-944. [DOI: 10.1038/s41557-020-0517-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 06/25/2020] [Indexed: 11/10/2022]
|
25
|
Ayme J, Dhers S, Lehn J. Triple Self-Sorting in Constitutional Dynamic Networks: Parallel Generation of Imine-Based Cu I , Fe II , and Zn II Complexes. Angew Chem Int Ed Engl 2020; 59:12484-12492. [PMID: 32286724 PMCID: PMC7383593 DOI: 10.1002/anie.202000818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/20/2022]
Abstract
Three imine-based metal complexes, having no overlap in terms of their compositions, have been simultaneously generated from the self-sorting of a constitutional dynamic library (CDL) containing three amines, three aldehydes, and three metal salts. The hierarchical ordering of the stability of the three metal complexes assembled and the leveraging of the antagonistic and agonistic relationships existing between the constituents within the constitutional dynamic network corresponding to the CDL were pivotal in achieving the sorting. Examination of the process by NMR spectroscopy showed that the self-sorting of the FeII and ZnII complexes depended on an interplay between the thermodynamic driving forces and a kinetic trap involved in their assembly. These results also exemplify the concept of "simplexity"-the fact that the output of a self-assembling system may be simplified by increasing its initial compositional complexity-as the two complexes could self-sort only in the presence of the third pair of organic components, those of the CuI complex.
Collapse
Affiliation(s)
- Jean‐François Ayme
- Institute of NanotechnologyKarlsruhe Institute of Technology76344Eggenstein-LeopoldshafenGermany
- Laboratoire de Chimie SupramoléculaireInstitut de Science et d'Ingénierie SupramoléculairesUniversité de Strasbourg8 allée Gaspard Monge67000StrasbourgFrance
| | - Sébastien Dhers
- Laboratoire de Chimie SupramoléculaireInstitut de Science et d'Ingénierie SupramoléculairesUniversité de Strasbourg8 allée Gaspard Monge67000StrasbourgFrance
| | - Jean‐Marie Lehn
- Institute of NanotechnologyKarlsruhe Institute of Technology76344Eggenstein-LeopoldshafenGermany
- Laboratoire de Chimie SupramoléculaireInstitut de Science et d'Ingénierie SupramoléculairesUniversité de Strasbourg8 allée Gaspard Monge67000StrasbourgFrance
| |
Collapse
|
26
|
Ayme J, Dhers S, Lehn J. Triple Self‐Sorting in Constitutional Dynamic Networks: Parallel Generation of Imine‐Based Cu
I
, Fe
II
, and Zn
II
Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jean‐François Ayme
- Institute of Nanotechnology Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie Supramoléculaire Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Sébastien Dhers
- Laboratoire de Chimie Supramoléculaire Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean‐Marie Lehn
- Institute of Nanotechnology Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie Supramoléculaire Institut de Science et d'Ingénierie Supramoléculaires Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
27
|
Clemett CJ, Faulkner RA, Midgley G, Slater C, Rice CR. Anion dependent self-assembly; formation of an octanuclear assembly by templation with the selenite dianion. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Ayme JF, Lehn JM, Bailly C, Karmazin L. Simultaneous Generation of a [2 × 2] Grid-Like Complex and a Linear Double Helicate: a Three-Level Self-Sorting Process. J Am Chem Soc 2020; 142:5819-5824. [DOI: 10.1021/jacs.0c00896] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jean-François Ayme
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Corinne Bailly
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg, 1 rue Blaise Pascal, 67008 Strasbourg, France
| | - Lydia Karmazin
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg, 1 rue Blaise Pascal, 67008 Strasbourg, France
| |
Collapse
|
29
|
Caprice K, Aster A, Cougnon FBL, Kumpulainen T. Untying the Photophysics of Quinolinium-Based Molecular Knots and Links. Chemistry 2020; 26:1576-1587. [PMID: 31670851 DOI: 10.1002/chem.201904456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Indexed: 01/08/2023]
Abstract
Complex molecular knots and links are still difficult to synthesize and the properties arising from their topology are mostly unknown. Here, we report on a comparative photophysical study carried out on a family of closely related quinolinium-based knots and links to determine the impact exerted by topology on the molecular backbone. Our results indicate that topology has a negligible influence on the behavior of loosely braided molecules, which mostly behave like their unbraided equivalents. On the other hand, tightly braided molecules display distinct features. Their higher packing density results in a pronounced ability to resist deformation, a significant reduction in the solvent-accessible surface area and favors close-range π-π interactions between the quinolinium units and neighboring aromatics. Finally, the sharp alteration in behavior between loosely and tightly braided molecules sheds light on the factors contributing to braiding tightness.
Collapse
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Alexander Aster
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Fabien B L Cougnon
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Tatu Kumpulainen
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| |
Collapse
|
30
|
Ayme JF, Lehn JM. Self-sorting of two imine-based metal complexes: balancing kinetics and thermodynamics in constitutional dynamic networks. Chem Sci 2019; 11:1114-1121. [PMID: 34084368 PMCID: PMC8146771 DOI: 10.1039/c9sc04988f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
A major hurdle in the development of complex constitutional dynamic networks (CDNs) is the lack of strategies to simultaneously control the output of two (or more) interconnected dynamic processes over several species, namely reversible covalent imine bond formation and dynamic metal-ligand coordination. We have studied in detail the self-sorting process of 11 constitutional dynamic libraries containing two different amines, aldehydes and metal salts into two imine-based metal complexes, having no overlap in terms of their compositions. This study allowed us to determine the factors influencing the fidelity of this process (concentration, electronic and steric parameters of the organic components, and nature of the metal cations). In all 11 systems, the outcome of the process was primarily determined by the ability of the octahedral metal ion to select its pair of components from the initial pool of components, with the composition of the weaker tetrahedral complex being imposed by the components rejected by the octahedral metal ions. Different octahedral metal ions required different levels of precision in the "assembling instructions" provided by the organic components of the CDN to guide it towards a sorted output. The concentration of the reaction mixture, and the electronic and steric properties of the initial components of the library were all found to influence the lifetime of unwanted metastable intermediates formed during the assembling of the two complexes.
Collapse
Affiliation(s)
- Jean-François Ayme
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| | - Jean-Marie Lehn
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
31
|
Cheisson T, Jian J, Su J, Eaton TM, Gau MR, Carroll PJ, Batista ER, Yang P, Gibson JK, Schelter EJ. Halide anion discrimination by a tripodal hydroxylamine ligand in gas and condensed phases. Phys Chem Chem Phys 2019; 21:19868-19878. [PMID: 31475264 DOI: 10.1039/c9cp03764k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Electrospray ionization of solutions containing a tripodal hydroxylamine ligand, H3TriNOx ([((2-tBuNOH)C6H4CH2)3N]) denoted as L, and a hydrogen halide HX: HCl, HBr and/or HI, yielded gas-phase anion complexes [L(X)]- and [L(HX2)]-. Collision induced dissociation (CID) of mixed-halide complexes, [L(HXaXb)]-, indicated highest affinity for I- and lowest for Cl-. Structures and energetics computed by density functional theory are in accord with the CID results, and indicate that the gas-phase binding preference is a manifestation of differing stabilities of the HX molecules. A high halide affinity of [L(H)]+ in solution was also demonstrated, though with a highest preference for Cl- and lowest for I-, the opposite observation of, but not in conflict with, what is observed in gas phase. The results suggest a connection between gas- and condensed-phase chemistry and computational approaches, and shed light on the aggregation and anion recognition properties of hydroxylamine receptors.
Collapse
Affiliation(s)
- Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S 34th St., Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fu CY, Li YQ, Chen L, Wang YG, Lin LR. Anion recognition in aqueous solution by cyclic dinuclear square cage-shaped coordination complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Caprice K, Pupier M, Bauzá A, Frontera A, Cougnon FBL. Synchronized On/Off Switching of Four Binding Sites for Water in a Molecular Solomon Link. Angew Chem Int Ed Engl 2019; 58:8053-8057. [DOI: 10.1002/anie.201902278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Marion Pupier
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Antonio Bauzá
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Antonio Frontera
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Fabien B. L. Cougnon
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| |
Collapse
|
34
|
Caprice K, Pupier M, Bauzá A, Frontera A, Cougnon FBL. Synchronized On/Off Switching of Four Binding Sites for Water in a Molecular Solomon Link. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Marion Pupier
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Antonio Bauzá
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Antonio Frontera
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Fabien B. L. Cougnon
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| |
Collapse
|
35
|
Zhang L, Stephens AJ, Lemonnier JF, Pirvu L, Vitorica-Yrezabal IJ, Robinson CJ, Leigh DA. Coordination Chemistry of a Molecular Pentafoil Knot. J Am Chem Soc 2019; 141:3952-3958. [PMID: 30742430 PMCID: PMC6438588 DOI: 10.1021/jacs.8b12548] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The binding of Zn(II) cations to
a pentafoil (51) knotted
ligand allows the synthesis of otherwise inaccessible metalated molecular
pentafoil knots via transmetalation, affording the corresponding “first-sphere”
coordination Co(II), Ni(II), and Cu(II) pentanuclear knots in good
yields (≥85%). Each of the knot complexes was characterized
by mass spectrometry, the diamagnetic (zinc) knot complex was characterized
by 1H and 13C NMR spectroscopy, and the zinc,
cobalt, and nickel pentafoil knots afforded single crystals whose
structures were determined by X-ray crystallography. Lehn-type circular
helicates generally only form with tris-bipy ligand strands and Fe(II)
(and, in some cases, Ni(II) and Zn(II)) salts, so such architectures
become accessible for other metal cations only through the use of
knotted ligands. The different metalated knots all exhibit “second-sphere”
coordination of a single chloride ion within the central cavity of
the knot through CH···Cl– hydrogen
bonding and electrostatic interactions. The chloride binding affinities
were determined in MeCN by isothermal titration calorimetry, and the
strength of binding was shown to vary over 3 orders of magnitude for
the different metal-ion–knotted-ligand second-sphere coordination
complexes.
Collapse
Affiliation(s)
- Liang Zhang
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Alexander J Stephens
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | | | - Lucian Pirvu
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | | | - Christopher J Robinson
- SYNBIOCHEM, Manchester Institute of Biotechnology , University of Manchester , Manchester M1 7DN , United Kingdom
| | - David A Leigh
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| |
Collapse
|
36
|
Clemett CJ, Faulkner RA, Rice CR, Slater C, Wedge CJ, Whitehead M. A ligand strand that displays anion-dependant reactivity with acetonitrile; formation of either a mononuclear complex or head-to-tail circular helicate. Dalton Trans 2019; 48:8427-8432. [DOI: 10.1039/c9dt01063g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ligand L2,2 contains two bidentate domains separated by a 3,3-diamino-2,2′-biphenyl spacer unit and with Cu(ClO4)2 a mononuclear species is formed (e.g. [Cu(L2,2)]2+).
Collapse
Affiliation(s)
| | - Robert A. Faulkner
- Department of Chemical and Biological Sciences
- University of Huddersfield
- Huddersfield
- UK
| | - Craig R. Rice
- Department of Chemical and Biological Sciences
- University of Huddersfield
- Huddersfield
- UK
| | - Christopher Slater
- Department of Chemical and Biological Sciences
- University of Huddersfield
- Huddersfield
- UK
| | - Christopher J. Wedge
- Department of Chemical and Biological Sciences
- University of Huddersfield
- Huddersfield
- UK
| | - Martina Whitehead
- Department of Chemical and Biological Sciences
- University of Huddersfield
- Huddersfield
- UK
| |
Collapse
|
37
|
Rice CR, Slater C, Faulkner RA, Allan RL. Self‐Assembly of an Anion‐Binding Cryptand for the Selective Encapsulation, Sequestration, and Precipitation of Phosphate from Aqueous Systems. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Craig R. Rice
- School of Applied SciencesUniversity of Huddersfield Huddersfield HD1 3DH UK
| | - Christopher Slater
- School of Applied SciencesUniversity of Huddersfield Huddersfield HD1 3DH UK
| | - Robert A. Faulkner
- School of Applied SciencesUniversity of Huddersfield Huddersfield HD1 3DH UK
| | - Robert L. Allan
- School of Applied SciencesUniversity of Huddersfield Huddersfield HD1 3DH UK
| |
Collapse
|
38
|
Rice CR, Slater C, Faulkner RA, Allan RL. Self-Assembly of an Anion-Binding Cryptand for the Selective Encapsulation, Sequestration, and Precipitation of Phosphate from Aqueous Systems. Angew Chem Int Ed Engl 2018; 57:13071-13075. [PMID: 30113121 DOI: 10.1002/anie.201805633] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/27/2018] [Indexed: 11/08/2022]
Abstract
The self-assembled trimetallic species [L2 Cu3 ]6+ contains a cavity that acts as a host to many different anions. By using X-ray crystallography, ESI-MS, and UV/Vis spectroscopy we show that these anions are encapsulated both in the solid state and aqueous systems. Upon encapsulation, the anions Br- , I- , CO32- , SiF62- , IO63- , VO43- , WO42- , CrO42- , SO42- , AsO43- , and PO43- are all precipitated from aqueous solution and can be removed by filtration. Furthermore, the cavity can be tuned to be selective to either phosphate or sulfate anions by variation of the pH. Phosphate anions can be removed from water, even in the presence of other common anions, reducing the concentration from 1000 to <0.1 ppm and recovering approximately 99 % of the phosphate anions.
Collapse
Affiliation(s)
- Craig R Rice
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Christopher Slater
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Robert A Faulkner
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Robert L Allan
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| |
Collapse
|
39
|
Cougnon FBL, Caprice K, Pupier M, Bauzá A, Frontera A. A Strategy to Synthesize Molecular Knots and Links Using the Hydrophobic Effect. J Am Chem Soc 2018; 140:12442-12450. [DOI: 10.1021/jacs.8b05220] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fabien B. L. Cougnon
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Kenji Caprice
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Marion Pupier
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Antonio Bauzá
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| |
Collapse
|
40
|
Faulkner RA, Patmore NJ, Rice CR, Slater C. Dihydrogen phosphate-containing dinuclear double assemblies that demonstrate phosphate reactivity to the tetrafluoroborate anion. Chem Commun (Camb) 2018; 54:9159-9162. [PMID: 30062337 DOI: 10.1039/c8cc04900a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ligands L1 and L2 both form dinuclear assemblies with Cu(ii) and these react with dihydrogen phosphate so that the anion is incorporated within the assembly (e.g. [Cu2L2(H2PO4)]3+). However, in the presence of tetrafluoroborate anions the phosphate undergoes reaction with the anion forming [Cu3(L1)3(O3POBF3)]3+ and [Cu2(L2)2(O2P(OBF3)2)]+.
Collapse
Affiliation(s)
- Robert A Faulkner
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK.
| | | | | | | |
Collapse
|
41
|
Gillen DM, Hawes CS, Gunnlaugsson T. Solution-State Anion Recognition, and Structural Studies, of a Series of Electron-Rich meta-Phenylene Bis(phenylurea) Receptors and Their Self-Assembled Structures. J Org Chem 2018; 83:10398-10408. [DOI: 10.1021/acs.joc.8b01481] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dermot M. Gillen
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152−160 Pearse Street, Dublin 2, Ireland
| | - Chris S. Hawes
- School of Chemical and Physical Sciences, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152−160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
42
|
Leigh DA, Pirvu L, Schaufelberger F, Tetlow DJ, Zhang L. Securing a Supramolecular Architecture by Tying a Stopper Knot. Angew Chem Int Ed Engl 2018; 57:10484-10488. [PMID: 29708636 PMCID: PMC6099318 DOI: 10.1002/anie.201803871] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Indexed: 11/11/2022]
Abstract
We report on a rotaxane-like architecture secured by the in situ tying of an overhand knot in the tris(2,6-pyridyldicarboxamide) region of the axle through complexation with a lanthanide ion (Lu3+ ). The increase in steric bulk caused by the knotting locks a crown ether onto the thread. Removal of the lutetium ion unties the knot, and when the axle binding site for the ring is deactivated, the macrocycle spontaneously dethreads. When the binding interaction is switched on again, the crown ether rethreads over the 10 nm length of the untangled strand. The overhand knot can be retied, relocking the threaded structure, by once again adding lutetium ions.
Collapse
Affiliation(s)
- David A. Leigh
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Lucian Pirvu
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | | - Daniel J. Tetlow
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Liang Zhang
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
43
|
Leigh DA, Pirvu L, Schaufelberger F, Tetlow DJ, Zhang L. Securing a Supramolecular Architecture by Tying a Stopper Knot. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David A. Leigh
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | - Lucian Pirvu
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Daniel J. Tetlow
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | - Liang Zhang
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
44
|
Marenda M, Orlandini E, Micheletti C. Discovering privileged topologies of molecular knots with self-assembling models. Nat Commun 2018; 9:3051. [PMID: 30076306 PMCID: PMC6076300 DOI: 10.1038/s41467-018-05413-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/03/2018] [Indexed: 11/09/2022] Open
Abstract
Despite the several available strategies to build complex supramolecular constructs, only a handful of different molecular knots have been synthesised so far. Here, in response to the quest for further designable topologies, we use Monte Carlo sampling and molecular dynamics simulations, informed by general principles of supramolecular assembly, as a discovery tool for thermodynamically and kinetically accessible knot types made of helical templates. By combining this approach with the exhaustive enumeration of molecular braiding patterns applicable to more general template geometries, we find that only few selected shapes have the closed, symmetric and quasi-planar character typical of synthetic knots. The corresponding collection of admissible topologies is extremely restricted. It covers all known molecular knots but it especially includes a limited set of novel complex ones that have not yet been obtained experimentally, such as 10124 and 15n41185, making them privileged targets for future self-assembling experiments.
Collapse
Affiliation(s)
- Mattia Marenda
- SISSA, International School for Advanced Studies, via Bonomea 265, I-34136, Trieste, Italy
| | - Enzo Orlandini
- Dipartimento di Fisica e Astronomia "Galileo Galilei", sezione INFN, Università degli Studi di Padova, via Marzolo 8, I-35131, Padova, Italy
| | - Cristian Micheletti
- SISSA, International School for Advanced Studies, via Bonomea 265, I-34136, Trieste, Italy.
| |
Collapse
|
45
|
Zhang L, August DP, Zhong J, Whitehead GFS, Vitorica-Yrezabal IJ, Leigh DA. Molecular Trefoil Knot from a Trimeric Circular Helicate. J Am Chem Soc 2018. [PMID: 29537836 DOI: 10.1021/jacs.8b00738] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the two-step synthesis of a molecular trefoil knot in 90% overall yield through the self-assembly of a 12-component trimeric circular zinc helicate followed by ring closing metathesis of six pendant alkene chains. Both the trimeric circular helicate intermediate and the resulting trefoil knot were characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography.
Collapse
Affiliation(s)
- Liang Zhang
- School of Chemistry , University of Manchester , Manchester M13 9PL , U.K
| | - David P August
- School of Chemistry , University of Manchester , Manchester M13 9PL , U.K
| | - Jiankang Zhong
- School of Chemistry , University of Manchester , Manchester M13 9PL , U.K
| | | | | | - David A Leigh
- School of Chemistry , University of Manchester , Manchester M13 9PL , U.K
| |
Collapse
|
46
|
Caprice K, Pupier M, Kruve A, Schalley CA, Cougnon FBL. Imine-based [2]catenanes in water. Chem Sci 2018; 9:1317-1322. [PMID: 29675178 PMCID: PMC5887103 DOI: 10.1039/c7sc04901c] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
We report the efficient condensation of imine-based macrocycles from dialdehyde A and aliphatic diamines B n in pure water. Within the libraries, we identified a family of homologous amphiphilic [2]catenanes, whose self-assembly is primarily driven by the hydrophobic effect. The length and odd-even character of the diamine alkyl linker dictate both the yield and the conformation of the [2]catenanes, whose particular thermodynamic stability further shifts the overall equilibrium in favour of imine condensation. These findings highlight the role played by solvophobic effects in the self-assembly of complex architectures.
Collapse
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry , University of Geneva , 30 Quai Ernest Ansermet , 1211 Geneva 4 , Switzerland .
| | - Marion Pupier
- Department of Organic Chemistry , University of Geneva , 30 Quai Ernest Ansermet , 1211 Geneva 4 , Switzerland .
| | - Anneli Kruve
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Fabien B L Cougnon
- Department of Organic Chemistry , University of Geneva , 30 Quai Ernest Ansermet , 1211 Geneva 4 , Switzerland .
| |
Collapse
|
47
|
Yang L, Jing X, An B, He C, Yang Y, Duan C. Binding of anions in triply interlocked coordination catenanes and dynamic allostery for dehalogenation reactions. Chem Sci 2018; 9:1050-1057. [PMID: 29675152 PMCID: PMC5883946 DOI: 10.1039/c7sc04070a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/30/2017] [Indexed: 01/17/2023] Open
Abstract
By synergistic combination of multicomponent self-assembly and template-directed approaches, triply interlocked metal organic catenanes that consist of two isolated chirally identical tetrahedrons were constructed and stabilized as thermodynamic minima. In the presence of suitable template anions, the structural conversion from the isolated tetrahedral conformers into locked catenanes occurred via the cleavage of an intrinsically reversible coordination bond in each of the tetrahedrons, followed by the reengineering and interlocking of two fragments with the regeneration of the broken coordination bonds. The presence of several kinds of individual pocket that were attributed to the triply interlocked patterns enabled the possibility of encapsulating different anions, allowing the dynamic allostery between the unlocked/locked conformers to promote the dehalogenation reaction of 3-bromo-cyclohexene efficiently, as with the use of dehalogenase enzymes. The interlocked structures could be unlocked into two individual tetrahedrons through removal of the well-matched anion templates. The stability and reversibility of the locked/unlocked structures were further confirmed by the catching/releasing process that accompanied emission switching, providing opportunities for the system to be a dynamic molecular logic system.
Collapse
Affiliation(s)
- Linlin Yang
- State Key Laboratory of Fine Chemicals , College of Zhang Dayu , Dalian University of Technology , Dalian , 116024 , P. R. China .
| | - Xu Jing
- State Key Laboratory of Fine Chemicals , College of Zhang Dayu , Dalian University of Technology , Dalian , 116024 , P. R. China .
| | - Bowen An
- State Key Laboratory of Fine Chemicals , College of Zhang Dayu , Dalian University of Technology , Dalian , 116024 , P. R. China .
| | - Cheng He
- State Key Laboratory of Fine Chemicals , College of Zhang Dayu , Dalian University of Technology , Dalian , 116024 , P. R. China .
| | - Yang Yang
- State Key Laboratory of Fine Chemicals , College of Zhang Dayu , Dalian University of Technology , Dalian , 116024 , P. R. China .
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals , College of Zhang Dayu , Dalian University of Technology , Dalian , 116024 , P. R. China .
| |
Collapse
|
48
|
Yao MX, Cai LZ, Deng XW, Zhang W, Liu SJ, Cai XM. Self-assembly of rare octanuclear quad(double-stranded) cluster helicates showing slow magnetic relaxation and the magnetocaloric effect. NEW J CHEM 2018. [DOI: 10.1039/c8nj04169e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Four rare structurally novel octanuclear quad(double-strands) cluster helicates containing Ln8 polyhedron cores have been synthesized. Magnetic studies show that the Gd derivative exhibits the magnetocaloric effect and the Dy derivative shows slow magnetic relaxation under zero dc field.
Collapse
Affiliation(s)
- Min-Xia Yao
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Li-Zheng Cai
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Xiao-Wei Deng
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Wei Zhang
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Sui-Jun Liu
- School of Metallurgy and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- P. R. China
| | - Xu-Min Cai
- College of Chemical Engineering
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals
- Nanjing Forestry University
- Nanjing 210037
| |
Collapse
|
49
|
Abstract
The first synthetic molecular trefoil knot was prepared in the late 1980s. However, it is only in the last few years that more complex small-molecule knot topologies have been realized through chemical synthesis. The steric restrictions imposed on molecular strands by knotting can impart significant physical and chemical properties, including chirality, strong and selective ion binding, and catalytic activity. As the number and complexity of accessible molecular knot topologies increases, it will become increasingly useful for chemists to adopt the knot terminology employed by other disciplines. Here we give an overview of synthetic strategies towards molecular knots and outline the principles of knot, braid, and tangle theory appropriate to chemistry and molecular structure.
Collapse
Affiliation(s)
| | - David A. Leigh
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | |
Collapse
|
50
|
Affiliation(s)
- Stephen D. P. Fielden
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL Großbritannien
| | - David A. Leigh
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL Großbritannien
| | - Steffen L. Woltering
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL Großbritannien
| |
Collapse
|