1
|
Premkumar E, Sreedharan R, Ghosh P, Pal T, Maiti D, Gandhi T. Synthesis of lactones and lactams via C(sp 3)-H bond functionalization. Chem Soc Rev 2025. [PMID: 40423564 DOI: 10.1039/d4cs01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
The field of directing group-assisted, transition-metal-catalyzed functionalization has undergone a significant transformation, evolving from the use of auxiliary group attachment for the exploitation of native functional groups in novel organic reactions. In particular, coordination-assisted C(sp3)-H bond functionalization has revolutionized synthetic planning to build molecular complexity. Recently, the use of native directing groups in transition-metal-catalyzed reactions has allowed a step-economic process for increased access to biologically important lactones and lactams. Accordingly, lactones and lactams are unavoidable structural motifs with widespread presence in many biological and pharmaceutical arenas, encouraging researchers to access and modify their structures for improved biological properties. In this review, we showcase the diverse aspects of transition metal catalysis, biocatalysis, and photocatalytic C(sp3)-H bond functionalization to access lactones and lactams assisted by carboxylic acid and amines/amides with auxiliary or transient directing groups or unique ligands. This article also emphasizes the role of specially designed complexes, artificial metalloenzymes, and biocatalysts in assembling lactones and lactams. Besides, three-component reactions involving CO as a C1 synthon play a vital role in developing these heterocycles. Importantly, the crucial role of ligands in determining regioselectivity and enhancing enantioselectivity is discussed thoroughly. For better clarity, this review is divided into twelve sections based on the catalysts involved, with subsections categorized by the type of bond activation or formation. Overall, this review aims to inspire the growth of C(sp3)-H bond functionalization, leading to the integration of lactams and lactones in organics.
Collapse
Affiliation(s)
- Egambaram Premkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India.
| | - Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India.
| | - Premananda Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, India
| | - Tanay Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India.
| |
Collapse
|
2
|
García-Viada A, Carretero JC, Adrio J, Rodríguez N. Insights into the mechanism of 3d transition-metal-catalyzed directed C(sp 3)-H bond functionalization reactions. Chem Soc Rev 2025; 54:4353-4390. [PMID: 40111381 DOI: 10.1039/d4cs00657g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The growing interest in the catalytic activity of earth-abundant 3d transition-metals has led to the development of new and more sustainable methods for C-H bond functionalization reactions. However, this is an emerging field which involves considerable mechanistic complexity as the mode of action of 3d transition metals differs markedly from the well-studied mechanisms of precious metals. In this review, we present an overview of the research efforts in Ni-, Cu-, Fe- and Co-catalyzed directed C(sp3)-H bond functionalization reactions, covering design principles and mechanistic discussions, along with potential applications and limitations. To conclude, the unresolved challenges and future viewpoints are highlighted. We aspire for this review to serve as a relevant and valuable reference for researchers in this swiftly progressing field, helping to inspire the development of more original and innovative strategies.
Collapse
Affiliation(s)
- Andrés García-Viada
- Dpto. de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain.
| | - Juan C Carretero
- Dpto. de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
- Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Madrid, Spain
| | - Javier Adrio
- Dpto. de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
- Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Madrid, Spain
| | - Nuria Rodríguez
- Dpto. de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
- Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Madrid, Spain
| |
Collapse
|
3
|
Lakhal A, Gimbert Y, Mouriès-Mansuy V, Ollivier C, Fensterbank L. Alkynyl Radicals, Myths and Realities. JACS AU 2025; 5:448-465. [PMID: 40017740 PMCID: PMC11862951 DOI: 10.1021/jacsau.4c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 03/01/2025]
Abstract
This Perspective deals with the organic chemistry of alkynyl radicals, a species that is ultimately still little known in the synthetic community. Starting with the first observations and characterizations of alkynyl radicals generated by various methodologies in the gas phase, we then particularly turned our attention to the implications of these highly reactive intermediates in organic synthesis and materials science. Mechanistic considerations have been provided, in particular, for the key steps of generating alkynyl radicals, which are mainly based on photochemical or thermal activation and single electron transfer processes. This Perspective should serve as a roadmap for the synthetic chemist in order to plan more reliably alkynylation reactions based on alkynyl radicals.
Collapse
Affiliation(s)
- Amal Lakhal
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| | - Yves Gimbert
- Département
de Chimie Moléculaire (UMR CNRS 5250), Université Grenoble Alpes, 38050 Grenoble, France
| | - Virginie Mouriès-Mansuy
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| | - Cyril Ollivier
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
| | - Louis Fensterbank
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, 4 place Jussieu, 75005 Paris, France
- Collège
de France, Chaire Activations en Chimie
Moléculaire, 11
place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
4
|
Schutz D, Gommenginger C, Moegle B, Hourtoule M, Noël-Duchesneau L, Miesch L. Transition Metal-Free Domino Hydroamination/Isomerization/Transamidation Sequence: An Entry to Trifluorinated γ-Lactams. J Org Chem 2024; 89:10644-10653. [PMID: 39012323 DOI: 10.1021/acs.joc.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A method for the construction of trifluorinated-5-methylenepyrrolidinone is reported. This strategy combines an acid-catalyzed two-carbon homologation process between ynamides and aldehydes, providing CF3-substituted dienes followed by a metal-free domino hydroamination/isomerization/transamidation sequence, delivering trifluorinated-5-methylenepyrrolidinone stereoselectively.
Collapse
Affiliation(s)
- Dorian Schutz
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Clément Gommenginger
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Baptiste Moegle
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Maxime Hourtoule
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Ludovik Noël-Duchesneau
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| |
Collapse
|
5
|
Staronova L, Yamazaki K, Xu X, Shi H, Bickelhaupt FM, Hamlin TA, Dixon DJ. Cobalt-Catalyzed Enantio- and Regioselective C(sp 3 )-H Alkenylation of Thioamides. Angew Chem Int Ed Engl 2024; 63:e202316021. [PMID: 38143241 DOI: 10.1002/anie.202316021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
An enantioselective cobalt-catalyzed C(sp3 )-H alkenylation of thioamides with but-2-ynoate ester coupling partners employing thioamide directing groups is presented. The method is operationally simple and requires only mild reaction conditions, while providing alkenylated products as single regioisomers in excellent yields (up to 85 %) and high enantiomeric excess [up to 91 : 9 enantiomeric ratio (er), or up to >99 : 1 er after a single recrystallization]. Diverse downstream derivatizations of the products are demonstrated, delivering a range of enantioenriched constructs. Extensive computational studies using density functional theory provide insight into the detailed reaction mechanism, origin of enantiocontrol, and the unusual regioselectivity of the alkenylation reaction.
Collapse
Affiliation(s)
- Lucia Staronova
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Xing Xu
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Heyao Shi
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Trevor A Hamlin
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
6
|
Jellali H, Amri N, Mukhrish YE, Al Nasr IS, Koko WS, Khan TA, Deniau E, Sauthier M, Ghalla H, Hamdi N. Copper-Catalyzed Asymmetric Hydroboration Reaction of Novel Methylene Isoindolinone Compounds through Microwave Irradiation and Their Antileishmanial and Antitoxoplasma Activities. ACS OMEGA 2023; 8:23067-23077. [PMID: 37396287 PMCID: PMC10308578 DOI: 10.1021/acsomega.3c02362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023]
Abstract
The aim of this study was devoted into molecular docking calculations to discover the potential antileishmania and antitoxoplasma activities of newly synthesized compounds obtained by applying a practical and simple method under microwave irradiation. All these compounds were tested in vitro for their biological activity against Leishmania major promastigotes, amastigotes, and Toxoplasma gondii tachyzoites. Compounds 2a, 5a, and 5e were the most active against both L. major promastigotes and amastigotes, with IC50 values of less than 0.4 μM mL-1. Compounds 2c, 2e, 2h, and 5d had a strong antitoxoplasma activity of less than 2.1 μM mL-1 against T. gondii. We can conclude that aromatic methyleneisoindolinones are potently active against both L. major and T. gondii. Further studies for mode of action evaluation are recommended. Compounds 5c and 5b are the best drug candidates for antileishmania and antitoxoplasma due to their SI values being over 13. The docking studies of compounds 2a-h and 5a-e against pteridine reductase 1 and T. gondii enoyl acyl carrier protein reductase reveal that compound 5e may be an effective antileishmanial and antitoxoplasma drug discovery initiative.
Collapse
Affiliation(s)
- Hamida Jellali
- Research
Laboratory of Environmental Sciences and Technologies (LR16ES09),
Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunis 2078, Tunisia
| | - Nasser Amri
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Yousef E. Mukhrish
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Ibrahim S. Al Nasr
- Department
of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia
- Department
of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Waleed S. Koko
- Department
of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Tariq A. Khan
- Department
of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Eric Deniau
- University
of Lille, CNRS, Centrale Lille, Université Artois, UMR 8181—UCCS—Unité
de Catalyze et Chimie du Solide, Lille 59000, France
| | - Mathieu Sauthier
- University
of Lille, CNRS, Centrale Lille, Université Artois, UMR 8181—UCCS—Unité
de Catalyze et Chimie du Solide, Lille 59000, France
| | - Houcine Ghalla
- Quantum
and Statistical Physics Laboratory, Faculty of Sciences, University of Monastir, Monastir 5000, Tunisia
| | - Naceur Hamdi
- Department
of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921 Saudi Arabia
| |
Collapse
|
7
|
Tohidi MM, Paymard B, Vasquez-García SR, Fernández-Quiroz D. Recent progress in applications of cobalt catalysts in organic reactions. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
8
|
Bora J, Dutta M, Chetia B. Cobalt catalyzed alkenylation/annulation reactions of alkynes via C–H activation: A review. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
|
10
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
11
|
Font M, Gulías M, Mascareñas JL. Transition‐Metal‐Catalyzed Annulations Involving the Activation of C(sp
3
)−H Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marc Font
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
12
|
Font M, Gulías M, Mascareñas JL. Transition-Metal-Catalyzed Annulations Involving the Activation of C(sp 3 )-H Bonds. Angew Chem Int Ed Engl 2022; 61:e202112848. [PMID: 34699657 PMCID: PMC9300013 DOI: 10.1002/anie.202112848] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 12/15/2022]
Abstract
The selective functionalization of C(sp3 )-H bonds using transition-metal catalysis is among the more attractive transformations of modern synthetic chemistry. In addition to its inherent atom economy, such reactions open unconventional retrosynthetic pathways that can streamline synthetic processes. However, the activation of intrinsically inert C(sp3 )-H bonds, and the selection among very similar C-H bonds, represent highly challenging goals. In recent years there has been notable progress tackling these issues, especially with regard to the development of intermolecular reactions entailing the formation of C-C and C-heteroatom bonds. Conversely, the assembly of cyclic products from simple acyclic precursors using metal-catalyzed C(sp3 )-H bond activations has been less explored. Only recently has the number of reports on such annulations started to grow. Herein we give an overview of some of the more relevant advances in this exciting topic.
Collapse
Grants
- SAF2016-76689-R Ministerio de Ciencia, Innovación y Universidades
- PID2019-108624RBI00 Ministerio de Ciencia, Innovación y Universidades
- PID2019-110385GB-I00 Ministerio de Ciencia, Innovación y Universidades
- IJCI-2017-31450 Ministerio de Ciencia, Innovación y Universidades
- 2021-CP054, ED431C-2021/25 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- ED431G 2019/03 Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- 340055 FP7 Ideas: European Research Council
- European Regional Development Fund
- Ministerio de Ciencia, Innovación y Universidades
- Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- FP7 Ideas: European Research Council
- European Regional Development Fund
Collapse
Affiliation(s)
- Marc Font
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Moisés Gulías
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| |
Collapse
|
13
|
Zeng Z, Yan F, Dai M, Yu Z, Liu F, Zhao Z, Bai R, Lan Y. Mechanistic Investigation of Cu-Catalyzed Asymmetric Alkynylation of Cyclic N-Sulfonyl Ketimines with Terminal Alkynes. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zhen Zeng
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Fuzhi Yan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Moxi Dai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Ziwen Yu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Fenru Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Zhuang Zhao
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, P. R. China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
14
|
Tahara K, Takezaki S, Ozawa Y, Abe M. Synthesis of an Organometallic Alkyl-Co(III) Complex with Amidoquinoline Directing Groups via C(sp3)-H Activation and its UV-vis/NMR Spectroscopic, Crystallographic, DFT, and Electrochemical Studies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keishiro Tahara
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Shun Takezaki
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Yoshiki Ozawa
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Masaaki Abe
- Department of Material Science, Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
15
|
Ma B, Sun R, Yang J. Cobalt-catalyzed direct α-hydroxymethylation of amides with methanol as a C1 source. Chem Commun (Camb) 2022; 58:1382-1385. [PMID: 34989725 DOI: 10.1039/d1cc06501g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we report a cobalt-catalyzed α-hydroxymethylation of amides with methanol under mild conditions. Using CoCl2·6H2O as an inexpensive and efficient catalyst, some important bioactive β-hydroxyamides were obtained in moderate to excellent yields. The developed method features a wide substrate scope and good functional group tolerance. In addition, anticholinergic tropicamide was easily synthesized in this way.
Collapse
Affiliation(s)
- Ben Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| | - Rongxia Sun
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| | - Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| |
Collapse
|
16
|
Zhang H, Sun MC, Yang D, Li T, Song MP, Niu JL. Cobalt(II)-Catalyzed Activation of C(sp3)–H Bonds: Organic Oxidant Enabled Selective Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- He Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Meng-Chan Sun
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Tong Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
17
|
Zhang H, Yang D, Zhao XF, Niu JL, Song MP. Cobalt-catalyzed C(sp3)-H bond functionalization to access indole derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo00562j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we develop an efficient method of cobalt-catalyzed C(sp3)-H bond functionalization to synthesize indole derivatives. The highlight of this protocol is accomplished by the sequential C-H activation. This “cobalt/ organic...
Collapse
|
18
|
Chen K, Lv S, Lai R, Yang Z, Hai L, Nie R, Wu Y. Cobalt‐Mediated Decarboxylative/Desilylative C‐H Activation/Annulation Reaction: An Efficient Approach to Natural Alkaloids and New Structural Analogues. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kang Chen
- Sichuan University West China School of Pharmacy Medicinal chemistry CHINA
| | - Shan Lv
- Sichuan University West China School of Pharmacy medicinal chemistry CHINA
| | - Ruizhi Lai
- Sichuan University West China School of Pharmacy medicinal chemistry CHINA
| | - Zhongzhen Yang
- Sichuan University West China School of Pharmacy medicinal chemistry CHINA
| | - Li Hai
- Sichuan University West China School of Pharmacy medicinal chemistry CHINA
| | - Ruifang Nie
- Shandong Provincial Hospital affiliated to Shandong First Medical University Pharmacy CHINA
| | - Yong Wu
- Sichuan University West China School of Pharmacy NO. 17, Sec 3, Renmin Road S 610041 Chengdu CHINA
| |
Collapse
|
19
|
Liu B, Romine AM, Rubel CZ, Engle KM, Shi BF. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp 3)-H Bonds. Chem Rev 2021; 121:14957-15074. [PMID: 34714620 PMCID: PMC8968411 DOI: 10.1021/acs.chemrev.1c00519] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transition-metal-catalyzed, coordination-assisted C(sp3)-H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.
Collapse
Affiliation(s)
- Bin Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Andrew M. Romine
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States.,Corresponding Author- (K. M. E.); (B.-F. S.)
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China,Corresponding Author- (K. M. E.); (B.-F. S.)
| |
Collapse
|
20
|
Xu X, Zheng X, Xu X. Synthesis of Tetrahydroquinolines by Scandium-Catalyzed [3 + 3] Annulation of Anilines with Allenes and Dienes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xian Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xizhou Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
21
|
Liu S, He B, Li H, Zhang X, Shang Y, Su W. Facile Synthesis of Alkylidene Phthalides by Rhodium-Catalyzed Domino C-H Acylation/Annulation of Benzamides with Aliphatic Carboxylic Acids. Chemistry 2021; 27:15628-15633. [PMID: 34519367 DOI: 10.1002/chem.202102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/12/2022]
Abstract
The Rh-catalyzed ortho-C(sp2 )-H functionalization of 8-aminoquinoline-derived benzamides with aliphatic acyl fluorides generated in situ from the corresponding acids has been developed. This reaction initiated with 8-aminoquinoline-directed ortho-C(sp2 )-H acylation, which was accompanied by subsequent intramolecular nucleophilic acyl substitution of amide group to produce alkylidene phthalides This approach exhibits high stereo-selectivity for Z-isomer products, and tolerates a variety of functional groups as well as aliphatic carboxylic acids with diverse structural scaffolds.
Collapse
Affiliation(s)
- Sien Liu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bangyue He
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Hongyi Li
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao West Road 155, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
22
|
Yu S, Hong C, Liu Z, Zhang Y. Cobalt-Catalyzed Vinylic C-H Addition to Formaldehyde: Synthesis of Butenolides from Acrylic Acids and HCHO. Org Lett 2021; 23:8359-8364. [PMID: 34652922 DOI: 10.1021/acs.orglett.1c03095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A carboxyl-assisted C-H functionalization of acrylic acids with formaldehyde to give butenolides is described. It is the first time that the addition of an inert vinylic C-H bond to formaldehyde has been achieved via cobalt-catalyzed C-H activation. The unique reactivity of the cobalt species was observed when compared with related Rh or Ir catalysts. γ-Hydroxymethylated butenolides were produced by the treatment of Na2CO3 after the catalytic reaction in one pot.
Collapse
Affiliation(s)
- Shuling Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chao Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
23
|
Lukasevics L, Cizikovs A, Grigorjeva L. C-H bond functionalization by high-valent cobalt catalysis: current progress, challenges and future perspectives. Chem Commun (Camb) 2021; 57:10827-10841. [PMID: 34570134 DOI: 10.1039/d1cc04382j] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the last decade, high-valent cobalt catalysis has earned a place in the spotlight as a valuable tool for C-H activation and functionalization. Since the discovery of its unique reactivity, more and more attention has been directed towards the utilization of cobalt as an alternative to noble metal catalysts. In particular, Cp*Co(III) complexes, as well as simple Co(II) and Co(III) salts in combination with bidentate chelation assistance, have been extensively used for the development of novel transformations. In this review, we have demonstrated the existing trends in the C-H functionalization methodology using high-valent cobalt catalysis and highlighted the main challenges to overcome, as well as perspective directions, which need to be further developed in the future.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| |
Collapse
|
24
|
Suseelan Sarala A, Bhowmick S, Carvalho RL, Al‐Thabaiti SA, Mokhtar M, Silva Júnior EN, Maiti D. Transition‐Metal‐Catalyzed Selective Alkynylation of C−H Bonds. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anjana Suseelan Sarala
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
- Department of Chemistry Saarland University 66123 Saarbrucken Germany
| | - Suman Bhowmick
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
| | - Renato L. Carvalho
- Department of Chemistry Federal University of Minas Gerais 31270-901 Belo Horizonte MG Brazil
| | | | - Mohamed Mokhtar
- Chemistry Department Faculty of Science King Abdulaziz University 21589 Jeddah Saudi Arabia
| | | | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
| |
Collapse
|
25
|
Topolovčan N, Duplić F, Gredičak M. Influence of
N
‐Substitution in 3‐Alkyl‐3‐hydroxyisoindolin‐1‐ones on the Stereoselectivity of Brønsted Acid‐Catalyzed Synthesis of 3‐Methyleneisoindolin‐1‐ones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikola Topolovčan
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| | - Filip Duplić
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| | - Matija Gredičak
- Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička cesta 54 10000 Zagreb Croatia
| |
Collapse
|
26
|
Savela R, Méndez‐Gálvez C. Isoindolinone Synthesis via One-Pot Type Transition Metal Catalyzed C-C Bond Forming Reactions. Chemistry 2021; 27:5344-5378. [PMID: 33125790 PMCID: PMC8048987 DOI: 10.1002/chem.202004375] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Indexed: 11/06/2022]
Abstract
Isoindolinone structure is an important privileged scaffold found in a large variety of naturally occurring as well as synthetic, biologically and pharmaceutically active compounds. Owing to its crucial role in a number of applications, the synthetic methodologies for accessing this heterocyclic skeleton have received significant attention during the past decade. In general, the synthetic strategies can be divided into two categories: First, direct utilization of phthalimides or phthalimidines as starting materials for the synthesis of isoindolinones; and second, construction of the lactam and/or aromatic rings by different catalytic methods, including C-H activation, cross-coupling, carbonylation, condensation, addition and formal cycloaddition reactions. Especially in the last mentioned, utilization of transition metal catalysts provides access to a broad range of substituted isoindolinones. Herein, the recent advances (2010-2020) in transition metal catalyzed synthetic methodologies via formation of new C-C bonds for isoindolinones are reviewed.
Collapse
Affiliation(s)
- Risto Savela
- Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and TechnologyÅbo Akademi UniversityBiskopsgatan 820500TurkuFinland
| | - Carolina Méndez‐Gálvez
- Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and TechnologyÅbo Akademi UniversityBiskopsgatan 820500TurkuFinland
| |
Collapse
|
27
|
Li T, Li J, Zhu Z, Chen Y, Li X, Yang Q, Xia J, Zhang W, Zhang C, Pan W, Wu S. Metallaphotoredox-catalyzed C–H activation: regio-selective annulation of allenes with benzamide. Org Chem Front 2021. [DOI: 10.1039/d0qo01127d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have developed an efficient annulation of benzamides with allenes using cobalt and photoredox dual catalysis under an oxygen atmosphere. The transformation features an alternative strategy for the regeneration of a cobalt catalyst with the aid of Eosin Y.
Collapse
|
28
|
Sun Y, Feng C, Wang P, Yang F, Wu Y. Cobalt-catalyzed C8–H sulfonylation of 1-naphthylamine derivatives with sodium sulfinates. Org Chem Front 2021. [DOI: 10.1039/d1qo00975c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A facile and efficient protocol for cobalt-catalyzed regioselective C8–H sulfonylation of 1-naphthylamine derivatives with sodium sulfinates was developed to afford sulfonylated naphthylamines in moderate to good yields.
Collapse
Affiliation(s)
- Yucong Sun
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P R China
| | - Cancan Feng
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P R China
| | - Peisong Wang
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P R China
| | - Fan Yang
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P R China
| | - Yangjie Wu
- College of Chemistry, Green Catalysis Center, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, P R China
| |
Collapse
|
29
|
Wei M, Zhang J, Liu C, He W, Wang T, Yang X, Yang Z, Fang Z, Guo K. Microfluidic synthesis of pyrrolidin-2-ones via photoinduced organocatalyzed cyclization of styrene, α-bromoalkyl esters and primary amines. Org Biomol Chem 2021; 19:6468-6472. [PMID: 34236379 DOI: 10.1039/d1ob01082d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green and efficient reaction route for the synthesis of pyrrolidin-2-ones via photoinduced organocatalyzed three-component cyclization of styrene, tertiary α-bromoalkyl esters and primary amines in a microchannel reactor under visible light conditions has been developed. Moreover, the overall process can be carried out under mild conditions without using a metal. In addition, a reasonable reaction mechanism was proposed based on control experiments.
Collapse
Affiliation(s)
- Minghui Wei
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China.
| | - Jingming Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China.
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China.
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China.
| | - Tingyu Wang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China.
| | - Xiaobing Yang
- Biology and Medicine Department, Jiangsu Industrial Technology Research Institute, Nanjing 210031, P.R. China.
| | - Zhao Yang
- College of Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210003, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China. and State Key Laboratory of Materials-Oriented Chemical Engineering, 30 Puzhu Rd S., Nanjing, 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China. and State Key Laboratory of Materials-Oriented Chemical Engineering, 30 Puzhu Rd S., Nanjing, 211816, China
| |
Collapse
|
30
|
Ghiringhelli F, Uttry A, Ghosh KK, van Gemmeren M. Direct β- and γ-C(sp 3 )-H Alkynylation of Free Carboxylic Acids*. Angew Chem Int Ed Engl 2020; 59:23127-23131. [PMID: 32898310 PMCID: PMC7756274 DOI: 10.1002/anie.202010784] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/04/2020] [Indexed: 12/23/2022]
Abstract
In this study we report the identification of a novel class of ligands for palladium-catalyzed C(sp3 )-H activation that enables the direct alkynylation of free carboxylic acid substrates. In contrast to previous synthetic methods, no introduction/removal of an exogenous directing group is required. A broad scope of acids including both α-quaternary and challenging α-non-quaternary can be used as substrates. Additionally, the alkynylation in the distal γ-position is reported. Finally, this study encompasses preliminary findings on an enantioselective variant of the title transformation as well as synthetic applications of the products obtained.
Collapse
Affiliation(s)
- Francesca Ghiringhelli
- Organisch-Chemisches InstitutWestfalische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Alexander Uttry
- Organisch-Chemisches InstitutWestfalische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Kiron Kumar Ghosh
- Organisch-Chemisches InstitutWestfalische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Manuel van Gemmeren
- Organisch-Chemisches InstitutWestfalische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
31
|
Ghiringhelli F, Uttry A, Ghosh KK, Gemmeren M. Direkte β‐ und γ‐C(sp
3
)‐H Alkinylierung freier Carbonsäuren**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Francesca Ghiringhelli
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Alexander Uttry
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Kiron Kumar Ghosh
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Manuel Gemmeren
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| |
Collapse
|
32
|
Wang X, Chen Y, Song H, Liu Y, Wang Q. Construction of 2-(2-Arylphenyl)azoles via Cobalt-Catalyzed C-H/C-H Cross-Coupling Reactions and Evaluation of Their Antifungal Activity. Org Lett 2020; 22:9331-9336. [PMID: 33216554 DOI: 10.1021/acs.orglett.0c03551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although compounds with a 2-(2-arylphenyl) benzoxazole motif are biologically important, there are only a few methods for synthesizing them. Herein, we report an efficient method for synthesis of such compounds by means of cobalt-catalyzed C-H/C-H cross-coupling reactions. This method has a broad substrate scope and good tolerance for sensitive functional groups. In addition, we demonstrate that introducing a heteroarene moiety to biphenyl compounds enhanced their antifungal activity.
Collapse
Affiliation(s)
- Xinmou Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuming Chen
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People's Republic of China
| |
Collapse
|
33
|
Lv N, Yu S, Hong C, Han DM, Zhang Y. Selectively Oxidative C(sp2)–H/C(sp3)–H Cross-Coupling of Benzamides with Amides by Nickel Catalysis. Org Lett 2020; 22:9308-9312. [DOI: 10.1021/acs.orglett.0c03535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ningning Lv
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shuling Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chao Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - De-Man Han
- Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
34
|
Dey A, Volla CMR. Traceless Bidentate Directing Group Assisted Cobalt-Catalyzed sp2-C–H Activation and [4 + 2]-Annulation Reaction with 1,3-Diynes. Org Lett 2020; 22:7480-7485. [DOI: 10.1021/acs.orglett.0c02664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arnab Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
35
|
Abstract
An important strategy for the efficient generation of diversity in molecular structures is the utilization of common starting materials in chemodivergent transformations. The most studied solutions for switching the chemoselectivity rely on the catalyst, ligand, additive, solvent, temperature, time, pressure, pH and even small modifications in the substrate. In this review article several processes have been selected such as inter- and intramolecular cyclizations, including carba-, oxa-, thia- and oxazacyclizations promoted mainly by Brønsted or Lewis acids, transition metals and organocatalysts, as well as radical reactions. Catalyst-controlled intra- and intermolecular cyclizations are mainly described to give five- and six-membered rings. Cycloaddition reactions involving (2+2), (3+2), (3+3), (4+1), (4+2), (5+2), (6+2) and (7+2) processes are useful reactions for the synthesis of cyclic systems using organocatalysts, metal catalysts and Lewis acid-controlled processes. Addition reactions mainly of carba- and heteronucleophiles to unsaturated conjugated substrates can give different adducts via metal catalyst-, Lewis acid- and solvent-dependent processes. Carbonylation reactions of amines and phenols are carried out via ligand-controlled transition metal-catalyzed multicomponent processes. Ring-opening reactions starting mainly from cyclopropanols, cyclopropenols and epoxides or aziridines are applied to the synthesis of acyclic versus cyclic products under catalyst-control mainly by Lewis acids. Chemodivergent reduction reactions are performed using dissolving metals, sodium borohydride or hydrogen transfer conditions under solvent control. Oxidation reactions include molecular oxygen under solvent control or using different dioxiranes, as well as chemodivergent palladium catalyzed cross-coupling reactions using boronic acids are applied to aromatic and allenic compounds. Other chemodivergent reactions such as alkylations and allylations under transition metal catalysis, dimerization of acetylenes, bromination of benzylic substrates, and A3-couplings are performed via catalyst- or reaction condition-dependent processes.
Collapse
Affiliation(s)
- Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow University, Leminskie Gory 1, 119992 Moscow, Russia
| | | | | |
Collapse
|
36
|
Gujjarappa R, Vodnala N, Malakar CC. Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| |
Collapse
|
37
|
Mei R, Dhawa U, Samanta RC, Ma W, Wencel-Delord J, Ackermann L. Cobalt-Catalyzed Oxidative C-H Activation: Strategies and Concepts. CHEMSUSCHEM 2020; 13:3306-3356. [PMID: 32065843 DOI: 10.1002/cssc.202000024] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Inexpensive cobalt-catalyzed oxidative C-H functionalization has emerged as a powerful tool for the construction of C-C and C-Het bonds, which offers unique potential for transformative applications to modern organic synthesis. In the early stage, these transformations typically required stoichiometric and toxic transition metals as sacrificial oxidants; thus, the formation of metal-containing waste was inevitable. In contrast, naturally abundant molecular O2 has more recently been successfully employed as a green oxidant in cobalt catalysis, thus considerably improving the sustainability of such transformations. Recently, a significant momentum was gained by the use of electricity as a sustainable and environmentally benign redox reagent in cobalt-catalyzed C-H functionalization, thereby preventing the consumption of cost-intensive chemicals while at the same time addressing the considerable safety hazards related to the use of molecular oxygen in combination with flammable organic solvents. Considering the unparalleled potential of the aforementioned approaches for sustainable green synthesis, this Review summarizes the recent progress in cobalt-catalyzed oxidative C-H activation until early 2020.
Collapse
Affiliation(s)
- Ruhuai Mei
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 Rue Becquerel, 67087, Strasbourg, France
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
- Department of Chemistry, University of Pavia, Viale Taramelli, 10, 27100, Pavia, Italy
| |
Collapse
|
38
|
Wang W, Guan Q, Lin C, Gao F, Liu X, Shen L. Ni-Catalyzed desilylative annulation of benzamides and acrylamides with alkynylsilanes: Access to 3-Methyleneisoindolin-1-one and 5-Methylene-1 H-pyrrol-2( 5H)-one derivatives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1761392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Wenjing Wang
- Jiangxi Engineering Laboratory of Waterborne Coatings, College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Qifan Guan
- Jiangxi Engineering Laboratory of Waterborne Coatings, College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Cong Lin
- Jiangxi Engineering Laboratory of Waterborne Coatings, College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Fei Gao
- Jiangxi Engineering Laboratory of Waterborne Coatings, College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Xiuhong Liu
- Jiangxi Engineering Laboratory of Waterborne Coatings, College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coatings, College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, China
| |
Collapse
|
39
|
Xu LP, Liu EELN, Bacsa J, MacBeth CE, Musaev DG. Mechanistic details of the cobalt-mediated dehydrogenative dimerization of aminoquinoline-directed benzamides. Chem Sci 2020; 11:6085-6096. [PMID: 32774827 PMCID: PMC7366830 DOI: 10.1039/d0sc02066d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/16/2020] [Indexed: 02/04/2023] Open
Abstract
Key mechanistic features of the cobalt-mediated and aminoquinoline-directed dehydrogenative aryl-aryl coupling were investigated computationally and experimentally. A series of CoII and CoIII complexes relevant to the proposed reaction cycle have been synthesized and characterized. Stoichiometric reactions and electrochemical studies were used to probe the role of different additives in the reaction pathway. Computationally, three different mechanisms, such as charge neutral, anionic, and dimetallic were explored. It is shown that the mono-metallic anionic and charge neutral mechanisms are the most favorable ones, among which the former mechanism is slightly more encouraging and proceeds via the: (a) concerted-metalation-deprotonation (CMD) of the first benzamide C-H bond, (b) PivOH-to-PivO- rearrangement, (c) CMD of the second benzamide C-H bond, (d) C-C coupling, (e) product formation facilitated by the amide nitrogen re-protonation, and (f) catalyst regeneration. The rate-determining step of this multi-step process is the C-C coupling step. The computational studies suggest that the electronics of both the aryl-benzamide and pyridine fragments of the aminoquinoline-benzamide ligand control the efficiency of the reaction.
Collapse
Affiliation(s)
- Li-Ping Xu
- Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , USA .
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , USA .
- School of Chemistry and Chemical Engineering , Shandong University of Technology , Zibo , 255000 , China
| | - Elaine E L-N Liu
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , USA .
| | - John Bacsa
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , USA .
| | - Cora E MacBeth
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , USA .
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation , Emory University , Atlanta , Georgia 30322 , USA .
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , USA .
| |
Collapse
|
40
|
Pd(II)‐Catalyzed Tandem Enantioselective Methylene C(sp
3
)−H Alkenylation–Aza‐Wacker Cyclization to Access β‐Stereogenic γ‐Lactams. Angew Chem Int Ed Engl 2020; 59:14060-14064. [DOI: 10.1002/anie.202004504] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Indexed: 01/28/2023]
|
41
|
Ding Y, Han Y, Wu L, Zhou T, Yao Q, Feng Y, Li Y, Kong K, Shi B. Pd(II)‐Catalyzed Tandem Enantioselective Methylene C(sp
3
)−H Alkenylation–Aza‐Wacker Cyclization to Access β‐Stereogenic γ‐Lactams. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004504] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yi Ding
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Ye‐Qiang Han
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Le‐Song Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Tao Zhou
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qi‐Jun Yao
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Ya‐Lan Feng
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Ya Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Ke‐Xin Kong
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bing‐Feng Shi
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
42
|
Meyer TH, Oliveira JCA, Ghorai D, Ackermann L. Mechanistische Studien zu Cobalta(III/IV/II)‐Elektrokatalyse: Oxidativ‐induzierte reduktive Eliminierung zur zweifachen C‐H‐Aktivierung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tjark H. Meyer
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Debasish Ghorai
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
43
|
Neto JSS, Zeni G. Transition Metal‐Catalyzed and Metal‐Free Cyclization Reactions of Alkynes with Nitrogen‐Containing Substrates: Synthesis of Pyrrole Derivatives. ChemCatChem 2020. [DOI: 10.1002/cctc.201902325] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jose S. S. Neto
- Departamento de QuímicaUniversidade Federal de Santa Catarina Florianópolis Santa Catarina 88040-900 Brazil
| | - Gilson Zeni
- Department of Biochemistry and Molecular Biology Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios, CCNEUniversidade Federal de Santa Maria Santa Maria Rio Grande do Sul 97105-900 Brazil
| |
Collapse
|
44
|
Meyer TH, Oliveira JCA, Ghorai D, Ackermann L. Insights into Cobalta(III/IV/II)-Electrocatalysis: Oxidation-Induced Reductive Elimination for Twofold C-H Activation. Angew Chem Int Ed Engl 2020; 59:10955-10960. [PMID: 32154625 PMCID: PMC7318662 DOI: 10.1002/anie.202002258] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 12/17/2022]
Abstract
The merger of cobalt‐catalyzed C−H activation and electrosynthesis provides new avenues for resource‐economical molecular syntheses, unfortunately their reaction mechanisms remain poorly understood. Herein, we report the identification and full characterization of electrochemically generated high‐valent cobalt(III/IV) complexes as crucial intermediates in electrochemical cobalt‐catalyzed C−H oxygenations. Detailed mechanistic studies provided support for an oxidatively‐induced reductive elimination via highly‐reactive cobalt(IV) intermediates. These key insights set the stage for unprecedented cobaltaelectro two‐fold C−H/C−H activation.
Collapse
Affiliation(s)
- Tjark H Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Gottingen, Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Gottingen, Germany
| | - Debasish Ghorai
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Gottingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Gottingen, Germany
| |
Collapse
|
45
|
Wei W, Chen Z, Lin Y, Chen R, Wang Q, Wu Q, Liu S, Yan M, Zhang X. Synthesis of Isoindolinones through Intramolecular Amidation of
ortho
‐Vinyl Benzamides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wen‐tao Wei
- Institute of Clinical PharmacologyScience and Technology Innovation CenterGuangzhou University of Chinese Medicine Guangzhou 510405 People's Republic of China
| | - Zhen‐yu Chen
- Institute of Drug Synthesis and Pharmaceutical ProcessSchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Yong‐lu Lin
- Institute of Clinical PharmacologyScience and Technology Innovation CenterGuangzhou University of Chinese Medicine Guangzhou 510405 People's Republic of China
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou 510006 People's Republic of China
| | - Ri‐xing Chen
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou 510006 People's Republic of China
| | - Qi Wang
- Institute of Clinical PharmacologyScience and Technology Innovation CenterGuangzhou University of Chinese Medicine Guangzhou 510405 People's Republic of China
| | - Qing‐guang Wu
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou 510006 People's Republic of China
| | - Si‐jun Liu
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou 510006 People's Republic of China
| | - Ming Yan
- Institute of Drug Synthesis and Pharmaceutical ProcessSchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Xue‐jing Zhang
- Institute of Drug Synthesis and Pharmaceutical ProcessSchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
46
|
Lukasevics L, Cizikovs A, Grigorjeva L. Synthesis of 3-Hydroxymethyl Isoindolinones via Cobalt-Catalyzed C(sp 2)-H Carbonylation of Phenylglycinol Derivatives. Org Lett 2020; 22:2720-2723. [PMID: 32181664 DOI: 10.1021/acs.orglett.0c00672] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient method for the synthesis of 3-hydroxymethyl isoindolinones via cobalt-catalyzed C(sp2)-H carbonylation of phenylglycinol derivatives using picolinamide as a traceless directing group is demonstrated. The reaction proceeds in the presence of a commercially available cobalt(II) tetramethylheptanedionate catalyst and employs DIAD as a "CO" surrogate. This synthetic route offers a broad substrate scope, excellent regioselectivity, and full preservation of the original stereochemistry. Besides, the developed method provides a pathway for accessing valuable enantiopure 3-substituted isoindolinone derivatives.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
47
|
Trowbridge A, Walton SM, Gaunt MJ. New Strategies for the Transition-Metal Catalyzed Synthesis of Aliphatic Amines. Chem Rev 2020; 120:2613-2692. [DOI: 10.1021/acs.chemrev.9b00462] [Citation(s) in RCA: 479] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Aaron Trowbridge
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Scarlett M. Walton
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Oncology
- IMED Biotech Unit, AstraZeneca, Darwin Building, Unit 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, United Kingdom
| | - Matthew J. Gaunt
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
48
|
Liu M, Niu JL, Yang D, Song MP. Development of a Traceless Directing Group: Cp*-Free Cobalt-Catalyzed C–H Activation/Annulations to Access Isoquinolinones. J Org Chem 2020; 85:4067-4078. [DOI: 10.1021/acs.joc.9b03073] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Minghui Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Long Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Dandan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Mao-Ping Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
49
|
Kumaran S, Parthasarathy K. Cobalt(III)-Catalyzed Synthesis of Fused Quinazolinones by C-H/N-H Annulation of 2-Arylquinazolinones with Alkynes. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Subramani Kumaran
- Department of Organic Chemistry; University of Madras; Guindy Campus -600025 Chennai Tamilnadu India
| | - Kanniyappan Parthasarathy
- Department of Organic Chemistry; University of Madras; Guindy Campus -600025 Chennai Tamilnadu India
| |
Collapse
|
50
|
Mei R, Fang X, He L, Sun J, Zou L, Ma W, Ackermann L. Cobaltaelectro-catalyzed oxidative allene annulation by electro-removable hydrazides. Chem Commun (Camb) 2020; 56:1393-1396. [PMID: 31912810 DOI: 10.1039/c9cc09076b] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient C-H/N-H functionalization with allenes was enabled via versatile electro-oxidative cobalt catalysis. Thus, electrochemical C-H activations were accomplished with high levels of chemoselectivity and regioselectivity in an operationally simple undivided cell setup. The user-friendly nature of this protocol was highlighted by excellent functional group tolerance, an electro-reductive removable hydrazide directing group and easy scalability. Experimental mechanistic studies were indicative of a facile BIES C-H cobaltation event.
Collapse
Affiliation(s)
- Ruhuai Mei
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China. and Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Liang He
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.
| | - Junmei Sun
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.
| | - Liang Zou
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Lutz Ackermann
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany.
| |
Collapse
|