1
|
Karanth MN, Kirkpatrick JP, Krausze J, Schmelz S, Scrima A, Carlomagno T. The specificity of intermodular recognition in a prototypical nonribosomal peptide synthetase depends on an adaptor domain. SCIENCE ADVANCES 2024; 10:eadm9404. [PMID: 38896613 PMCID: PMC11186497 DOI: 10.1126/sciadv.adm9404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
In the quest for new bioactive substances, nonribosomal peptide synthetases (NRPS) provide biodiversity by synthesizing nonproteinaceous peptides with high cellular activity. NRPS machinery consists of multiple modules, each catalyzing a unique series of chemical reactions. Incomplete understanding of the biophysical principles orchestrating these reaction arrays limits the exploitation of NRPSs in synthetic biology. Here, we use nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to solve the conundrum of how intermodular recognition is coupled with loaded carrier protein specificity in the tomaymycin NRPS. We discover an adaptor domain that directly recruits the loaded carrier protein from the initiation module to the elongation module and reveal its mechanism of action. The adaptor domain of the type found here has specificity rules that could potentially be exploited in the design of engineered NRPS machinery.
Collapse
Affiliation(s)
- Megha N. Karanth
- Laboratory of Integrative Structural Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover D-30167, Germany
| | - John P. Kirkpatrick
- Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover D-30167, Germany
- Laboratory of Integrative Structural Biology, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| | - Joern Krausze
- Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover D-30167, Germany
| | - Stefan Schmelz
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| | - Andrea Scrima
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| | - Teresa Carlomagno
- Laboratory of Integrative Structural Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover D-30167, Germany
- Laboratory of Integrative Structural Biology, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig D-38124, Germany
| |
Collapse
|
2
|
Buyachuihan L, Stegemann F, Grininger M. How Acyl Carrier Proteins (ACPs) Direct Fatty Acid and Polyketide Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202312476. [PMID: 37856285 DOI: 10.1002/anie.202312476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
Megasynthases, such as type I fatty acid and polyketide synthases (FASs and PKSs), are multienzyme complexes responsible for producing primary metabolites and complex natural products. Fatty acids (FAs) and polyketides (PKs) are built by assembling and modifying small acyl moieties in a stepwise manner. A central aspect of FA and PK biosynthesis involves the shuttling of substrates between the domains of the multienzyme complex. This essential process is mediated by small acyl carrier proteins (ACPs). The ACPs must navigate to the different catalytic domains within the multienzyme complex in a particular order to guarantee the fidelity of the biosynthesis pathway. However, the precise mechanisms underlying ACP-mediated substrate shuttling, particularly the factors contributing to the programming of the ACP movement, still need to be fully understood. This Review illustrates the current understanding of substrate shuttling, including concepts of conformational and specificity control, and proposes a confined ACP movement within type I megasynthases.
Collapse
Affiliation(s)
- Lynn Buyachuihan
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Franziska Stegemann
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Arya N, Marincin KA, Frueh DP. Probing Substrate-Loaded Carrier Proteins by Nuclear Magnetic Resonance. Methods Mol Biol 2023; 2670:235-253. [PMID: 37184708 DOI: 10.1007/978-1-0716-3214-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Carrier proteins (CPs) are central actors in nonribosomal peptide synthetases (NRPSs) as they interact with all catalytic domains, and because they covalently hold the substrates and intermediates leading to the final product. Thus, how CPs and their partner domains recognize and engage with each other as a function of CP cargos is paramount to understanding and engineering NRPSs. However, rapid hydrolysis of the labile thioester bonds holding substrates challenges molecular and biophysical studies to determine the molecular mechanisms of domain recognition. In this chapter, we describe a protocol to counteract hydrolysis and study loaded carrier proteins at the atomic level with nuclear magnetic resonance (NMR) spectroscopy. The method relies on loading CPs in situ, with adenylation domains in the NMR tube, to reach substrate-loaded CPs at steady state. We describe controls and experimental readouts necessary to assess the integrity of the sample and maintain loading on CPs. Our approach provides a basis to conduct subsequent NMR experiments and obtain kinetic, thermodynamic, dynamic, and structural parameters of substrate-loaded CPs alone or in the presence of other domains.
Collapse
Affiliation(s)
- Neeru Arya
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth A Marincin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dominique P Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Marincin KA, Hwang Y, Kengmana ES, Meyers DJ, Frueh DP. NMR as a readout to monitor and restore the integrity of complex chemoenzymatic reactions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107265. [PMID: 35849973 PMCID: PMC9463103 DOI: 10.1016/j.jmr.2022.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The non-invasive nature of NMR offers a means to monitor biochemical reactions in situ at the atomic level. We harness this advantage to monitor a complex chemoenzymatic reaction that sequentially modifies reagents and loads the product on a nonribosomal peptide synthetase carrier protein. We present a protocol including a pulse sequence that permits to assess both the integrity of reagents and the completion of each step in the reaction, thus alleviating otherwise time-consuming and costly approaches to debug and repeat inefficient reactions. This study highlights the importance of NMR as a tool to establish reliable and reproducible experimental conditions in biochemical studies.
Collapse
Affiliation(s)
- Kenneth A Marincin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Yousang Hwang
- Department of Pharmacology and Molecular Sciences Synthetic Core Facility, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Everett S Kengmana
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD 21218, USA
| | - David J Meyers
- Department of Pharmacology and Molecular Sciences Synthetic Core Facility, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dominique P Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Mishra SH, Kancherla AK, Marincin KA, Bouvignies G, Nerli S, Sgourakis N, Dowling DP, Frueh DP. Global protein dynamics as communication sensors in peptide synthetase domains. SCIENCE ADVANCES 2022; 8:eabn6549. [PMID: 35857508 PMCID: PMC9286511 DOI: 10.1126/sciadv.abn6549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/28/2022] [Indexed: 05/04/2023]
Abstract
Biological activity is governed by the timely redistribution of molecular interactions, and static structural snapshots often appear insufficient to provide the molecular determinants that choreograph communication. This conundrum applies to multidomain enzymatic systems called nonribosomal peptide synthetases (NRPSs), which assemble simple substrates into complex metabolites, where a dynamic domain organization challenges rational design to produce new pharmaceuticals. Using a nuclear magnetic resonance (NMR) atomic-level readout of biochemical transformations, we demonstrate that global structural fluctuations help promote substrate-dependent communication and allosteric responses, and impeding these global dynamics by a point-site mutation hampers allostery and molecular recognition. Our results establish global structural dynamics as sensors of molecular events that can remodel domain interactions, and they provide new perspectives on mechanisms of allostery, protein communication, and NRPS synthesis.
Collapse
Affiliation(s)
- Subrata H. Mishra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aswani K. Kancherla
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth A. Marincin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules (LBM), Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Santrupti Nerli
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nikolaos Sgourakis
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel P. Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021; 48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.,DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Marincin K, Pal I, Frueh D. Using delayed decoupling to attenuate residual signals in editing filters. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:475-487. [PMID: 34661195 PMCID: PMC8516316 DOI: 10.5194/mr-2-475-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Isotope filtering methods are instrumental in biomolecular nuclear magnetic resonance (NMR) studies as they isolate signals of chemical moieties of interest within complex molecular assemblies. However, isotope filters suppress undesired signals of isotopically enriched molecules through scalar couplings, and variations in scalar couplings lead to imperfect suppressions, as occurs for aliphatic and aromatic moieties in proteins. Here, we show that signals that have escaped traditional filters can be attenuated with mitigated sensitivity losses for the desired signals of unlabeled moieties. The method uses a shared evolution between the detection and preceding preparation period to establish non-observable antiphase coherences and eliminates them through composite pulse decoupling. We demonstrate the method by isolating signals of an unlabeled post-translational modification tethered to an isotopically enriched protein.
Collapse
Affiliation(s)
- Kenneth A. Marincin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins
School of Medicine, Baltimore, MD 21205, USA
| | - Indrani Pal
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins
School of Medicine, Baltimore, MD 21205, USA
- current address: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins
School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Watzel J, Duchardt-Ferner E, Sarawi S, Bode HB, Wöhnert J. Cooperation between a T Domain and a Minimal C-Terminal Docking Domain to Enable Specific Assembly in a Multiprotein NRPS. Angew Chem Int Ed Engl 2021; 60:14171-14178. [PMID: 33876501 PMCID: PMC8251938 DOI: 10.1002/anie.202103498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 01/27/2023]
Abstract
Non-ribosomal peptide synthetases (NRPS) produce natural products from amino acid building blocks. They often consist of multiple polypeptide chains which assemble in a specific linear order via specialized N- and C-terminal docking domains (N/C DDs). Typically, docking domains function independently from other domains in NRPS assembly. Thus, docking domain replacements enable the assembly of "designer" NRPS from proteins that normally do not interact. The multiprotein "peptide-antimicrobial-Xenorhabdus" (PAX) peptide-producing PaxS NRPS is assembled from the three proteins PaxA, PaxB and PaxC. Herein, we show that the small C DD of PaxA cooperates with its preceding thiolation (T1 ) domain to bind the N DD of PaxB with very high affinity, establishing a structural and thermodynamical basis for this unprecedented docking interaction, and we test its functional importance in vivo in a truncated PaxS assembly line. Similar docking interactions are apparently present in other NRPS systems.
Collapse
Affiliation(s)
- Jonas Watzel
- Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Elke Duchardt-Ferner
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Sepas Sarawi
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.,Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany.,Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt am Main, Germany.,Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Watzel J, Duchardt‐Ferner E, Sarawi S, Bode HB, Wöhnert J. Kooperation zwischen T‐Domäne und minimaler C‐terminaler Docking‐Domäne für funktionelle Proteininteraktionen in Multiprotein‐NRPS. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jonas Watzel
- Molekulare Biotechnologie Institut für Molekulare Biowissenschaften Goethe-Universität Frankfurt 60438 Frankfurt am Main Deutschland
| | - Elke Duchardt‐Ferner
- Institut für Molekulare Biowissenschaften und Biomolekulares Magnetresonanz Zentrum (BMRZ) Goethe-Universität Frankfurt 60438 Frankfurt am Main Deutschland
| | - Sepas Sarawi
- Institut für Molekulare Biowissenschaften und Biomolekulares Magnetresonanz Zentrum (BMRZ) Goethe-Universität Frankfurt 60438 Frankfurt am Main Deutschland
- Molekulare Biotechnologie Institut für Molekulare Biowissenschaften Goethe-Universität Frankfurt 60438 Frankfurt am Main Deutschland
| | - Helge B. Bode
- Abteilung Naturstoffe in organismischen Interaktionen Max-Planck-Institut für terrestrische Mikrobiologie 35043 Marburg Deutschland
- Senckenberg Gesellschaft für Naturforschung 60325 Frankfurt am Main Deutschland
- Molekulare Biotechnologie Institut für Molekulare Biowissenschaften Goethe-Universität Frankfurt 60438 Frankfurt am Main Deutschland
| | - Jens Wöhnert
- Institut für Molekulare Biowissenschaften und Biomolekulares Magnetresonanz Zentrum (BMRZ) Goethe-Universität Frankfurt 60438 Frankfurt am Main Deutschland
| |
Collapse
|
10
|
Evans DJ, Yovanno RA, Rahman S, Cao DW, Beckett MQ, Patel MH, Bandak AF, Lau AY. Finding Druggable Sites in Proteins Using TACTICS. J Chem Inf Model 2021; 61:2897-2910. [PMID: 34096704 DOI: 10.1021/acs.jcim.1c00204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Structure-based drug discovery efforts require knowledge of where drug-binding sites are located on target proteins. To address the challenge of finding druggable sites, we developed a machine-learning algorithm called TACTICS (trajectory-based analysis of conformations to identify cryptic sites), which uses an ensemble of molecular structures (such as molecular dynamics simulation data) as input. First, TACTICS uses k-means clustering to select a small number of conformations that represent the overall conformational heterogeneity of the data. Then, TACTICS uses a random forest model to identify potentially bindable residues in each selected conformation, based on protein motion and geometry. Lastly, residues in possible binding pockets are scored using fragment docking. As proof-of-principle, TACTICS was applied to the analysis of simulations of the SARS-CoV-2 main protease and methyltransferase and the Yersinia pestis aryl carrier protein. Our approach recapitulates known small-molecule binding sites and predicts the locations of sites not previously observed in experimentally determined structures. The TACTICS code is available at https://github.com/Albert-Lau-Lab/tactics_protein_analysis.
Collapse
Affiliation(s)
- Daniel J Evans
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Remy A Yovanno
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Sanim Rahman
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - David W Cao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Morgan Q Beckett
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Milan H Patel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Afif F Bandak
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
11
|
Sztain T, Bartholow TG, McCammon JA, Burkart MD. Shifting the Hydrolysis Equilibrium of Substrate Loaded Acyl Carrier Proteins. Biochemistry 2019; 58:3557-3560. [PMID: 31397556 DOI: 10.1021/acs.biochem.9b00612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acyl carrier proteins (ACP)s transport intermediates through many primary and secondary metabolic pathways. Studying the effect of substrate identity on ACP structure has been hindered by the lability of the thioester bond that attaches acyl substrates to the 4'-phosphopantetheine cofactor of ACP. Here we show that an acyl acyl-carrier protein synthetase (AasS) can be used in real time to shift the hydrolysis equilibrium toward favoring acyl-ACP during solution NMR spectroscopy. Only 0.005 molar equivalents of AasS enables 1 week of stability to palmitoyl-AcpP from Escherichia coli. 2D NMR spectra enabled with this method revealed that the tethered palmitic acid perturbs nearly every secondary structural region of AcpP. This technique will allow previously unachievable structural studies of unstable acyl-ACP species, contributing to the understanding of these complex biosynthetic pathways.
Collapse
Affiliation(s)
- Terra Sztain
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States
| | - Thomas G Bartholow
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States.,Department of Pharmacology , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0340 , United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093-0358 , United States
| |
Collapse
|
12
|
Izoré T, Cryle MJ. The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. Nat Prod Rep 2019; 35:1120-1139. [PMID: 30207358 DOI: 10.1039/c8np00038g] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: up to July 2018 Non-ribosomal peptide synthetase (NRPS) machineries are complex, multi-domain proteins that are responsible for the biosynthesis of many important, peptide-derived compounds. By decoupling peptide synthesis from the ribosome, NRPS assembly lines are able to access a significant pool of amino acid monomers for peptide synthesis. This is combined with a modular protein architecture that allows for great variation in stereochemistry, peptide length, cyclisation state and further modifications. The architecture of NRPS assembly lines relies upon a repetitive set of catalytic domains, which are organised into modules responsible for amino acid incorporation. Central to NRPS-mediated biosynthesis is the carrier protein (CP) domain, to which all intermediates following initial monomer activation are bound during peptide synthesis up until the final handover to the thioesterase domain that cleaves the mature peptide from the NRPS. This mechanism makes understanding the protein-protein interactions that occur between different NRPS domains during peptide biosynthesis of crucial importance to understanding overall NRPS function. This endeavour is also highly challenging due to the inherent flexibility and dynamics of NRPS systems. In this review, we present the current state of understanding of the protein-protein interactions that govern NRPS-mediated biosynthesis, with a focus on insights gained from structural studies relating to CP domain interactions within these impressive peptide assembly lines.
Collapse
Affiliation(s)
- Thierry Izoré
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
13
|
Gulick AM, Aldrich CC. Trapping interactions between catalytic domains and carrier proteins of modular biosynthetic enzymes with chemical probes. Nat Prod Rep 2019; 35:1156-1184. [PMID: 30046790 DOI: 10.1039/c8np00044a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to early 2018 The Nonribosomal Peptide Synthetases (NRPSs) and Polyketide Synthases (PKSs) are families of modular enzymes that produce a tremendous diversity of natural products, with antibacterial, antifungal, immunosuppressive, and anticancer activities. Both enzymes utilize a fascinating modular architecture in which the synthetic intermediates are covalently attached to a peptidyl- or acyl-carrier protein that is delivered to catalytic domains for natural product elongation, modification, and termination. An investigation of the structural mechanism therefore requires trapping the often transient interactions between the carrier and catalytic domains. Many novel chemical probes have been produced to enable the structural and functional investigation of multidomain NRPS and PKS structures. This review will describe the design and implementation of the chemical tools that have proven to be useful in biochemical and biophysical studies of these natural product biosynthetic enzymes.
Collapse
Affiliation(s)
- Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 955 Main St, Buffalo, NY 14203, USA.
| | | |
Collapse
|
14
|
Degen A, Mayerthaler F, Mootz HD, Di Ventura B. Context-dependent activity of A domains in the tyrocidine synthetase. Sci Rep 2019; 9:5119. [PMID: 30914767 PMCID: PMC6435693 DOI: 10.1038/s41598-019-41492-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/08/2019] [Indexed: 01/08/2023] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) are large, modular enzymes that produce bioactive peptides of tremendous structural and chemical diversity, due to the incorporation, alongside the canonical 20 amino acids, of non-proteinogenic amino acids, fatty acids, sugars and heterocyclic rings. For linear NRPSs, the size and composition of the peptide product is dictated by the number, order and specificity of the individual modules, each made of several domains. Given the size and complexity of NRPSs, most in vitro studies have focused on individual domains, di-domains or single modules extracted from the full-length proteins. However, intermodular interactions could play a critical role and regulate the activity of the domains and modules in unpredictable ways. Here we investigate in vitro substrate activation by three A domains of the tyrocidine synthetase TycC enzyme, systematically comparing their activity when alone (with the respective PCP domain), in pairs (di-modular constructs) or all together (tri-modular construct). Furthermore, we study the impact of mutations in the A or PCP domains in these various constructs. Our results suggest that substrate adenylation and effects of mutations largely depend on the context in which the domains/modules are. Therefore, generalizing properties observed for domains or modules in isolation should be done with caution.
Collapse
Affiliation(s)
- Anna Degen
- German Cancer Research Center DKFZ and Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Florian Mayerthaler
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149, Münster, Germany
| | - Henning D Mootz
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149, Münster, Germany
| | - Barbara Di Ventura
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany.
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
15
|
Thapa HR, Robbins JM, Moore BS, Agarwal V. Insights into Thiotemplated Pyrrole Biosynthesis Gained from the Crystal Structure of Flavin-Dependent Oxidase in Complex with Carrier Protein. Biochemistry 2019; 58:918-929. [PMID: 30620182 DOI: 10.1021/acs.biochem.8b01177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sequential enzymatic reactions on substrates tethered to carrier proteins (CPs) generate thiotemplated building blocks that are then delivered to nonribosomal peptide synthetases (NRPSs) to generate peptidic natural products. The underlying diversity of these thiotemplated building blocks is the principal driver of the chemical diversity of NRPS-derived natural products. Structural insights into recognition of CPs by tailoring enzymes that generate these building blocks are sparse. Here we present the crystal structure of a flavin-dependent prolyl oxidase that furnishes thiotemplated pyrrole as the product, in complex with its cognate CP in the holo and product-bound states. The thiotemplated pyrrole is an intermediate that is well-represented in natural product biosynthetic pathways. Our results delineate the interactions between the CP and the oxidase while also providing insights into the stereospecificity of the enzymatic oxidation of the prolyl heterocycle to the aromatic pyrrole. Biochemical validation of the interaction between the CP and the oxidase demonstrates that NRPSs recognize and bind to their CPs using interactions quite different from those of fatty acid and polyketide biosynthetic enzymes. Our results posit that structural diversity in natural product biosynthesis can be, and is, derived from subtle modifications of primary metabolic enzymes.
Collapse
Affiliation(s)
- Hem R Thapa
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - John M Robbins
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,Krone Engineered Biosystems Building , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Bradley S Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography , University of California, San Diego , La Jolla , California 92093 , United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
16
|
Reimer JM, Haque AS, Tarry MJ, Schmeing TM. Piecing together nonribosomal peptide synthesis. Curr Opin Struct Biol 2018; 49:104-113. [DOI: 10.1016/j.sbi.2018.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
17
|
Jaremko MJ, Lee DJ, Patel A, Winslow V, Opella SJ, McCammon JA, Burkart MD. Manipulating Protein-Protein Interactions in Nonribosomal Peptide Synthetase Type II Peptidyl Carrier Proteins. Biochemistry 2017; 56:5269-5273. [PMID: 28920687 DOI: 10.1021/acs.biochem.7b00884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In an effort to elucidate and engineer interactions in type II nonribosomal peptide synthetases, we analyzed biomolecular recognition between the essential peptidyl carrier proteins and adenylation domains using nuclear magnetic resonance (NMR) spectroscopy, molecular dynamics, and mutational studies. Three peptidyl carrier proteins, PigG, PltL, and RedO, in addition to their cognate adenylation domains, PigI, PltF, and RedM, were investigated for their cross-species activity. Of the three peptidyl carrier proteins, only PigG showed substantial cross-pathway activity. Characterization of the novel NMR solution structure of holo-PigG and molecular dynamics simulations of holo-PltL and holo-PigG revealed differences in structures and dynamics of these carrier proteins. NMR titration experiments revealed perturbations of the chemical shifts of the loop 1 residues of these peptidyl carrier proteins upon their interaction with the adenylation domain. These experiments revealed a key region for the protein-protein interaction. Mutational studies supported the role of loop 1 in molecular recognition, as mutations to this region of the peptidyl carrier proteins significantly modulated their activities.
Collapse
Affiliation(s)
- Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - D John Lee
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Ashay Patel
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States.,Department of Pharmacology, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0636, United States
| | - Victoria Winslow
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States.,Department of Pharmacology, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0636, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
18
|
Alfermann J, Sun X, Mayerthaler F, Morrell TE, Dehling E, Volkmann G, Komatsuzaki T, Yang H, Mootz HD. FRET monitoring of a nonribosomal peptide synthetase. Nat Chem Biol 2017; 13:1009-1015. [PMID: 28759017 DOI: 10.1038/nchembio.2435] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/14/2017] [Indexed: 12/16/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are multidomain enzyme templates for the synthesis of bioactive peptides. Large-scale conformational changes during peptide assembly are obvious from crystal structures, yet their dynamics and coupling to catalysis are poorly understood. We have designed an NRPS FRET sensor to monitor, in solution and in real time, the adoption of the productive transfer conformation between phenylalanine-binding adenylation (A) and peptidyl-carrier-protein domains of gramicidin synthetase I from Aneurinibacillus migulanus. The presence of ligands, substrates or intermediates induced a distinct fluorescence resonance energy transfer (FRET) readout, which was pinpointed to the population of specific conformations or, in two cases, mixtures of conformations. A pyrophosphate switch and lysine charge sensors control the domain alternation of the A domain. The phenylalanine-thioester and phenylalanine-AMP products constitute a mechanism of product inhibition and release that is involved in ordered assembly-line peptide biosynthesis. Our results represent insights from solution measurements into the conformational dynamics of the catalytic cycle of NRPSs.
Collapse
Affiliation(s)
- Jonas Alfermann
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| | - Xun Sun
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Florian Mayerthaler
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| | - Thomas E Morrell
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Eva Dehling
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| | - Gerrit Volkmann
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| | - Tamiki Komatsuzaki
- Molecule and Life Nonlinear Sciences Laboratory, Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo, Japan
| | - Haw Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Henning D Mootz
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster, Münster, Germany
| |
Collapse
|
19
|
Bloudoff K, Schmeing TM. Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1587-1604. [PMID: 28526268 DOI: 10.1016/j.bbapap.2017.05.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are incredible macromolecular machines that produce a wide range of biologically- and therapeutically-relevant molecules. During synthesis, peptide elongation is performed by the condensation (C) domain, as it catalyzes amide bond formation between the nascent peptide and the amino acid it adds to the chain. Since their discovery more than two decades ago, C domains have been subject to extensive biochemical, bioinformatic, mutagenic, and structural analyses. They are composed of two lobes, each with homology to chloramphenicol acetyltransferase, have two binding sites for their two peptidyl carrier protein-bound ligands, and have an active site with conserved motif HHxxxDG located between the two lobes. This review discusses some of the important insights into the structure, catalytic mechanism, specificity, and gatekeeping functions of C domains revealed since their discovery. In addition, C domains are the archetypal members of the C domain superfamily, which includes several other members that also function as NRPS domains. The other family members can replace the C domain in NRP synthesis, can work in concert with a C domain, or can fulfill diverse and novel functions. These domains include the epimerization (E) domain, the heterocyclization (Cy) domain, the ester-bond forming C domain, the fungal NRPS terminal C domain (CT), the β-lactam ring forming C domain, and the X domain. We also discuss structural and function insight into C, E, Cy, CT and X domains, to present a holistic overview of historical and current knowledge of the C domain superfamily. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Kristjan Bloudoff
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
20
|
Goodrich AC, Meyers DJ, Frueh DP. Molecular impact of covalent modifications on nonribosomal peptide synthetase carrier protein communication. J Biol Chem 2017; 292:10002-10013. [PMID: 28455448 DOI: 10.1074/jbc.m116.766220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/27/2017] [Indexed: 11/06/2022] Open
Abstract
Nonribosomal peptide synthesis involves the interplay between covalent protein modifications, conformational fluctuations, catalysis, and transient protein-protein interactions. Delineating the mechanisms involved in orchestrating these various processes will deepen our understanding of domain-domain communication in nonribosomal peptide synthetases (NRPSs) and lay the groundwork for the rational reengineering of NRPSs by swapping domains handling different substrates to generate novel natural products. Although many structural and biochemical studies of NRPSs exist, few studies have focused on the energetics and dynamics governing the interactions in these systems. Here, we present detailed binding studies of an adenylation domain and its partner carrier protein in apo-, holo-, and substrate-loaded forms. Results from fluorescence anisotropy, isothermal titration calorimetry, and NMR titrations indicated that covalent modifications to a carrier protein modulate domain communication, suggesting that chemical modifications to carrier proteins during NRPS synthesis may impart directionality to sequential NRPS domain interactions. Comparison of the structure and dynamics of an apo-aryl carrier protein with those of its modified forms revealed structural fluctuations induced by post-translational modifications and mediated by modulations of protein dynamics. The results provide a comprehensive molecular description of a carrier protein throughout its life cycle and demonstrate how a network of dynamic residues can propagate the molecular impact of chemical modifications throughout a protein and influence its affinity toward partner domains.
Collapse
Affiliation(s)
| | - David J Meyers
- the Department of Pharmacology and Molecular Sciences Synthetic Core Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
21
|
Harden BJ, Frueh DP. Molecular Cross-Talk between Nonribosomal Peptide Synthetase Carrier Proteins and Unstructured Linker Regions. Chembiochem 2017; 18:629-632. [PMID: 28120469 PMCID: PMC5380562 DOI: 10.1002/cbic.201700030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 11/08/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) employ multiple domains separated by linker regions to incorporate substrates into natural products. During synthesis, substrates are covalently tethered to carrier proteins that translocate between catalytic partner domains. The molecular parameters that govern translocation and associated linker remodeling remain unknown. Here, we used NMR to characterize the structure, dynamics, and invisible states of a peptidyl carrier protein flanked by its linkers. We showed that the N-terminal linker stabilizes and interacts with the protein core while modulating dynamics at specific sites involved in post-translational modifications and/or domain interactions. The results detail the molecular communication between peptidyl carrier proteins and their linkers and could guide efforts in engineering NRPSs to obtain new pharmaceuticals.
Collapse
Affiliation(s)
- Bradley J. Harden
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205
| | - Dominique P. Frueh
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205
| |
Collapse
|
22
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 615] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
23
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
24
|
Kancherla AK, Frueh DP. Covariance nuclear magnetic resonance methods for obtaining protein assignments and novel correlations. CONCEPTS IN MAGNETIC RESONANCE. PART A, BRIDGING EDUCATION AND RESEARCH 2017; 46A:e21437. [PMID: 30288152 PMCID: PMC6167751 DOI: 10.1002/cmr.a.21437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/19/2018] [Indexed: 06/08/2023]
Abstract
Protein NMR resonance assignment can be a tedious and error prone process, and it is often a limiting factor in biomolecular NMR studies. Challenges are exacerbated in larger proteins, disordered proteins, and often alpha-helical proteins, owing to an increase in spectral complexity and frequency degeneracies. Here, several multi-dimensional spectra must be inspected and compared in an iterative manner before resonances can be assigned with confidence. Over the last two decades, covariance NMR has evolved to become applicable to protein multi-dimensional spectra. The method, previously used to generate new correlations from spectra of small organic molecules, can now be used to recast assignment procedures as mathematical operations on NMR spectra. These operations result in multidimensional correlation maps combining all information from input spectra and providing direct correlations between moieties that would otherwise be compared indirectly through reporter nuclei. Thus, resonances of sequential residues can be identified and side-chain signals can be assigned by visual inspection of 4D arrays. This review highlights advances in covariance NMR that permitted to generate reliable 4D arrays and describes how these arrays can be obtained from conventional NMR spectra.
Collapse
Affiliation(s)
- Aswani K. Kancherla
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins
University School of Medicine, Baltimore, MD 21205, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins
University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Gulick AM. Structural insight into the necessary conformational changes of modular nonribosomal peptide synthetases. Curr Opin Chem Biol 2016; 35:89-96. [PMID: 27676239 DOI: 10.1016/j.cbpa.2016.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 01/09/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) catalyze the assembly line biosynthesis of peptide natural products that play important roles in microbial signaling and communication. These multidomain enzymes use an integrated carrier protein that delivers the growing peptide to the catalytic domains, requiring coordinated conformational changes that allow the proper sequence of synthetic steps. Recent structural studies of NRPSs have described important conformational states and illustrate the critical role of a small subdomain within the adenylation domains. This subdomain alternates between catalytic conformations and also serves as a linker domain, providing further conformational flexibility to enable the carrier to project from the core of NRPS. These studies are described along with remaining questions in the study of the structural dynamics of NRPSs.
Collapse
Affiliation(s)
- Andrew M Gulick
- Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA; Department of Structural Biology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
26
|
Kittilä T, Mollo A, Charkoudian LK, Cryle MJ. New Structural Data Reveal the Motion of Carrier Proteins in Nonribosomal Peptide Synthesis. Angew Chem Int Ed Engl 2016; 55:9834-40. [PMID: 27435901 PMCID: PMC5113783 DOI: 10.1002/anie.201602614] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Indexed: 12/28/2022]
Abstract
The nonribosomal peptide synthetases (NRPSs) are one of the most promising resources for the production of new bioactive molecules. The mechanism of NRPS catalysis is based around sequential catalytic domains: these are organized into modules, where each module selects, modifies, and incorporates an amino acid into the growing peptide. The intermediates formed during NRPS catalysis are delivered between enzyme centers by peptidyl carrier protein (PCP) domains, which makes PCP interactions and movements crucial to NRPS mechanism. PCP movement has been linked to the domain alternation cycle of adenylation (A) domains, and recent complete NRPS module structures provide support for this hypothesis. However, it appears as though the A domain alternation alone is insufficient to account for the complete NRPS catalytic cycle and that the loaded state of the PCP must also play a role in choreographing catalysis in these complex and fascinating molecular machines.
Collapse
Affiliation(s)
- Tiia Kittilä
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Aurelio Mollo
- Department of Chemistry, Haverford College, Haverford, PA, 19041, USA
| | | | - Max J Cryle
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany. .,EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia. .,The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
27
|
Kittilä T, Mollo A, Charkoudian LK, Cryle MJ. Neue Strukturdaten geben Einblick in die Bewegungen von Transportproteinen in der nicht-ribosomalen Peptidsynthese. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Tiia Kittilä
- Abteilung Biomolekulare Mechanismen; Max-Planck-Institut für Medizinische Forschung; Jahnstraße 29 69120 Heidelberg Deutschland
| | - Aurelio Mollo
- Department of Chemistry; Haverford College; Haverford PA 19041 USA
| | | | - Max J. Cryle
- Abteilung Biomolekulare Mechanismen; Max-Planck-Institut für Medizinische Forschung; Jahnstraße 29 69120 Heidelberg Deutschland
- EMBL Australia; Monash University; Clayton Victoria 3800 Australien
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging; Monash University; Clayton VIC 3800 Australien
| |
Collapse
|
28
|
Sticky swinging arm dynamics: studies of an acyl carrier protein domain from the mycolactone polyketide synthase. Biochem J 2016; 473:1097-110. [PMID: 26920023 PMCID: PMC4847154 DOI: 10.1042/bcj20160041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/18/2016] [Indexed: 11/17/2022]
Abstract
When covalently linked to an acyl carrier protein (ACP) and loaded with acyl substrate-mimics, some 4′-phosphopantetheine prosthetic group arms swing freely, whereas others stick to the protein surface, suggesting a possible mode of interaction with enzyme domains during polyketide biosynthesis. Type I modular polyketide synthases (PKSs) produce polyketide natural products by passing a growing acyl substrate chain between a series of enzyme domains housed within a gigantic multifunctional polypeptide assembly. Throughout each round of chain extension and modification reactions, the substrate stays covalently linked to an acyl carrier protein (ACP) domain. In the present study we report on the solution structure and dynamics of an ACP domain excised from MLSA2, module 9 of the PKS system that constructs the macrolactone ring of the toxin mycolactone, cause of the tropical disease Buruli ulcer. After modification of apo ACP with 4′-phosphopantetheine (Ppant) to create the holo form, 15N nuclear spin relaxation and paramagnetic relaxation enhancement (PRE) experiments suggest that the prosthetic group swings freely. The minimal chemical shift perturbations displayed by Ppant-attached C3 and C4 acyl chains imply that these substrate-mimics remain exposed to solvent at the end of a flexible Ppant arm. By contrast, hexanoyl and octanoyl chains yield much larger chemical shift perturbations, indicating that they interact with the surface of the domain. The solution structure of octanoyl-ACP shows the Ppant arm bending to allow the acyl chain to nestle into a nonpolar pocket, whereas the prosthetic group itself remains largely solvent exposed. Although the highly reduced octanoyl group is not a natural substrate for the ACP from MLSA2, similar presentation modes would permit partner enzyme domains to recognize an acyl group while it is bound to the surface of its carrier protein, allowing simultaneous interactions with both the substrate and the ACP.
Collapse
|
29
|
Rational biosynthetic approaches for the production of new-to-nature compounds in fungi. Fungal Genet Biol 2016; 89:89-101. [PMID: 26872866 DOI: 10.1016/j.fgb.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 01/06/2023]
Abstract
Filamentous fungi have the ability to produce a wide range of secondary metabolites some of which are potent toxins whereas others are exploited as food additives or drugs. Fungal natural products still play an important role in the discovery of new chemical entities for potential use as pharmaceuticals. However, in most cases they cannot be directly used as drugs due to toxic side effects or suboptimal pharmacokinetics. To improve drug-like properties, including bioactivity and stability or to produce better precursors for semi-synthetic routes, one needs to generate non-natural derivatives from known fungal secondary metabolites. In this minireview, we describe past and recent biosynthetic approaches for the diversification of fungal natural products, covering examples from precursor-directed biosynthesis, mutasynthesis, metabolic engineering and biocombinatorial synthesis. To illustrate the current state-of-the-art, challenges and pitfalls, we lay particular emphasis on the class of fungal cyclodepsipeptides which have been studied longtime for product diversification and which are of pharmaceutical relevance as drugs.
Collapse
|
30
|
Kokona B, Winesett ES, Nikolai von Krusenstiern A, Cryle MJ, Fairman R, Charkoudian LK. Probing the selectivity of β-hydroxylation reactions in non-ribosomal peptide synthesis using analytical ultracentrifugation. Anal Biochem 2016; 495:42-51. [DOI: 10.1016/j.ab.2015.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/17/2022]
|
31
|
Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 2016; 529:235-8. [PMID: 26762461 PMCID: PMC4843164 DOI: 10.1038/nature16163] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
Many important natural products are produced by multidomain nonribosomal peptide synthetases (NRPSs)1–4. During synthesis, intermediates are covalently bound to integrated carrier domains and transported to neighboring catalytic domains in an assembly line fashion5. Understanding the structural basis for catalysis with NRPSs will facilitate bioengineering to create novel products. Here we describe the structures of two different holo-NRPSs modules, each revealing a distinct step in the catalytic cycle. One structure depicts the carrier domain cofactor bound to the peptide bond-forming condensation domain, whereas a second structure captures the installation of the amino acid onto the cofactor within the adenylation domain. These structures demonstrate that a conformational change within the adenylation domain guides transfer of intermediates between domains. Furthermore, one structure shows that the condensation and adenylation domains simultaneously adopt their catalytic conformations, increasing the overall efficiency in a revised structural cycle. These structures and single-particle electron microscopy analysis demonstrate a highly dynamic domain architecture and provide the foundation for understanding the structural mechanisms that could enable engineering novel NRPSs.
Collapse
|
32
|
Reimer JM, Aloise MN, Harrison PM, Schmeing TM. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 2016; 529:239-42. [PMID: 26762462 DOI: 10.1038/nature16503] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/02/2015] [Indexed: 12/22/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are very large proteins that produce small peptide molecules with wide-ranging biological activities, including environmentally friendly chemicals and many widely used therapeutics. NRPSs are macromolecular machines, with modular assembly-line logic, a complex catalytic cycle, moving parts and many active sites. In addition to the core domains required to link the substrates, they often include specialized tailoring domains, which introduce chemical modifications and allow the product to access a large expanse of chemical space. It is still unknown how the NRPS tailoring domains are structurally accommodated into megaenzymes or how they have adapted to function in nonribosomal peptide synthesis. Here we present a series of crystal structures of the initiation module of an antibiotic-producing NRPS, linear gramicidin synthetase. This module includes the specialized tailoring formylation domain, and states are captured that represent every major step of the assembly-line synthesis in the initiation module. The transitions between conformations are large in scale, with both the peptidyl carrier protein domain and the adenylation subdomain undergoing huge movements to transport substrate between distal active sites. The structures highlight the great versatility of NRPSs, as small domains repurpose and recycle their limited interfaces to interact with their various binding partners. Understanding tailoring domains is important if NRPSs are to be utilized in the production of novel therapeutics.
Collapse
Affiliation(s)
- Janice M Reimer
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, Québec H3G 0B1, Canada
| | - Martin N Aloise
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, Québec H3G 0B1, Canada
| | - Paul M Harrison
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montréal, Québec H3A 1B1, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|