1
|
Roy Chowdhury S, Rehberg N, Vlaisavljevich B. Computational Investigation of the Chemical Bond between An(III) Ions and Soft-Donor Ligands. Inorg Chem 2025; 64:5866-5877. [PMID: 40116360 PMCID: PMC11962836 DOI: 10.1021/acs.inorgchem.4c03924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/23/2025]
Abstract
The chemical bonding of actinide ions with arene and borohydride ligands is explored via quantum chemical methods to understand how the transuranium elements interact with soft-donor ligands. Specifically, the [ A n ( C 6 M e 6 ) ( B H 4 ) 3 ] complexes (An = U, Np, and Pu) and their reduced congeners are studied. Density functional theory (DFT) shows that the metal-ligand interactions in the neutral complexes are governed by electrostatic interactions. Both DFT and complete active space (CASSCF) results show that as one moves from U to Pu, the 5f-orbitals are stabilized leading to a poorer energy match with the ligand orbitals. This contributes to progressively weaker metal-arene and metal-borohydride interactions across the series due to a decrease in energy-driven covalency. A reduction in orbital contributions to bonding is obtained for the transuranium-arene interactions as well. Upon reduction, the arene is reduced, forming a δ-bond. This causes the An-arene distances to contract by 0.1-0.2 Å compared to the neutral complexes. The ground state is assigned as the intermediate-spin state where the arene radical is antiferromagnetically coupled to the metal-centered f-electrons in Np and Pu. On the other hand, the ferromagnetically and antiferromagnetically coupled states are close in energy in the uranium complex, but do not mix when spin-orbit coupling is included using a state-interaction approach (SO-CASPT2). The population of the CASSCF δ*-antibonding natural orbital increases from U to Pu consistent with the increased An-arene distances, weaker interactions, and decreasing covalency across the series. Although the An-B distance increases by ca. 0.06 Å upon reduction, both the neutral and reduced species involve an An(III)-borohydride bond and as such are qualitatively similar. The Np complexes can be assigned to have slightly weaker bonding than the uranium analogs but are overall "uranium-like". The Pu complexes are predicted to have less covalent contributions to bonding in both the Pu-arene and Pu-borohydride interactions; however, the Pu-arene interaction is predicted to be particularly weak.
Collapse
Affiliation(s)
- Sabyasachi Roy Chowdhury
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Naomi Rehberg
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Bess Vlaisavljevich
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| |
Collapse
|
2
|
Sheng W, Rajeshkumar T, Zhao Q, Xie J, Maron L, Zhu C. Synthesis and Catalytic Activity of Thorium Nitride Complex from Dinitrogen Reduction. J Am Chem Soc 2025; 147:7203-7208. [PMID: 39991937 DOI: 10.1021/jacs.4c18519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Metal nitride species are recognized as key intermediates in the conversion of dinitrogen (N2) to ammonia (NH3). In this work, we report the isolation of a multimetallic nitride-bridged thorium complex (2) by completely cleaving the N≡N triple bond of N2. The complex was synthesized through the reduction of a thorium precursor, {N[CH2CH2N-PiPr2]3ThCl}2 (1) and chromium dichloride (CrCl2) using potassium graphite (KC8) under an N2 atmosphere. Isotopic labeling with 15N2 confirms that the nitride in complex 2 originates from N2. Under ambient conditions, complex 2 exhibits remarkable catalytic activity, converting N2 to silylamine with yields of up to 9.9 equiv per thorium molecular catalyst. This work not only represents the first isolation of a thorium nitride complex from N2 reduction but also provides a rare example of N2 functionalization promoted by an actinide catalyst.
Collapse
Affiliation(s)
- Weiming Sheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Qianyi Zhao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Lin X, Lu X, Tang S, Wu W, Mo Y. Multiconfigurational actinide nitrides assisted by double Möbius aromaticity. Chem Sci 2024; 15:8216-8226. [PMID: 38817572 PMCID: PMC11134321 DOI: 10.1039/d4sc01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024] Open
Abstract
Understanding the bonding nature between actinides and main-group elements remains a key challenge in actinide chemistry due to the involvement of f orbitals. Herein, we propose a unique "aromaticity-assisted multiconfiguration" (AAM) model to elucidate the bonding nature in actinide nitrides (An2N2, An = Ac, Th, Pa, U). Each planar four-membered An2N2 with equivalent An-N bonds possesses four delocalized π electrons and four delocalized σ electrons, forming a new family of double Möbius aromaticity that contributes to the molecular stability. The unprecedented aromaticity further supports actinide nitrides to exhibit multiconfigurational characters, where the unpaired electrons (2, 4 or 6 in naked Th2N2, Pa2N2 or U2N2, respectively) either are spin-free and localized on metal centres or form metal-ligand bonds. High-level multiconfigurational computations confirm an open-shell singlet ground state for actinide nitrides, with small energy gaps to high spin states. This is consistent with the antiferromagnetic nature observed experimentally in uranium nitrides. The novel AAM bonding model can be authenticated in both experimentally identified compounds containing a U2N2 motif and other theoretically modelled An2N2 clusters and is thus expected to be a general chemical bonding pattern between actinides and main-group elements.
Collapse
Affiliation(s)
- Xuhui Lin
- School of Physics, Central South University Changsha Hunan 410083 China
| | - Xiaoli Lu
- School of Chemistry, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Shenghui Tang
- School of Chemistry, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro Greensboro NC 27401 USA
| |
Collapse
|
4
|
Liddle ST. Progress in Nonaqueous Molecular Uranium Chemistry: Where to Next? Inorg Chem 2024; 63:9366-9384. [PMID: 38739898 PMCID: PMC11134516 DOI: 10.1021/acs.inorgchem.3c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
There is long-standing interest in nonaqueous uranium chemistry because of fundamental questions about uranium's variable chemical bonding and the similarities of this pseudo-Group 6 element to its congener d-block elements molybdenum and tungsten. To provide historical context, with reference to a conference presentation slide presented around 1988 that advanced a defining collection of top targets, and the challenge, for synthetic actinide chemistry to realize in isolable complexes under normal experimental conditions, this Viewpoint surveys progress against those targets, including (i) CO and related π-acid ligand complexes, (ii) alkylidenes, carbynes, and carbidos, (iii) imidos and terminal nitrides, (iv) homoleptic polyalkyls, -alkoxides, and -aryloxides, (v) uranium-uranium bonds, and (vi) examples of topics that can be regarded as branching out in parallel from the leading targets. Having summarized advances from the past four decades, opportunities to build on that progress, and hence possible future directions for the field, are highlighted. The wealth and diversity of uranium chemistry that is described emphasizes the importance of ligand-metal complementarity in developing exciting new chemistry that builds our knowledge and understanding of elements in a relativistic regime.
Collapse
Affiliation(s)
- Stephen T. Liddle
- Department of Chemistry and Centre
for Radiochemistry Research, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
5
|
Keener M, Maria L, Mazzanti M. Progress in the chemistry of molecular actinide-nitride compounds. Chem Sci 2023; 14:6493-6521. [PMID: 37350843 PMCID: PMC10283502 DOI: 10.1039/d3sc01435e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/05/2023] [Indexed: 06/24/2023] Open
Abstract
The chemistry of actinide-nitrides has witnessed significant advances in the last ten years with a large focus on uranium and a few breakthroughs with thorium. Following the early discovery of the first terminal and bridging nitride complexes, various synthetic routes to uranium nitrides have since been identified, although the range of ligands capable of stabilizing uranium nitrides still remains scarce. In particular, both terminal- and bridging-nitrides possess attractive advantages for potential reactivity, especially in light of the recent development of uranium complexes for dinitrogen reduction and functionalization. The first molecular thorium bridged-nitride complexes have also been recently identified, anticipating the possibility of expanding nitride chemistry not only to low-valent thorium, but also to the transuranic elements.
Collapse
Affiliation(s)
- Megan Keener
- Group of Coordination Chemistry, Institute of Chemical Sciences and Engineering - ISIC, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Leonor Maria
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa 2695-066 Bobadela Portugal
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institute of Chemical Sciences and Engineering - ISIC, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
6
|
Hu SX, Zhang P, Cao LZ, Zou WL, Zhang P. XPu(CO) n (X = B, Al, Ga; n = 2 to 4): π Back-Bonding in Heterodinuclear Plutonium Boron Group Compounds with an End-On Carbonyl Ligand. J Phys Chem A 2023; 127:1233-1243. [PMID: 36710620 DOI: 10.1021/acs.jpca.2c08132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The bonding situation and the oxidation state of plutonium in heterodinuclear plutonium boron group carbonyl compounds XPu(CO)n (X = B, Al, Ga; n = 2 to 4) were investigated by systematically searching their ground-state geometrical structures and by analyzing their electronic structures. We found that the series of XPu(CO)n compounds show various interesting structures with an increment in n as well as a changeover from X = B to Ga. The first ethylene dione (OCCO) compounds of plutonium are found in AlPu(CO)n (n = 2, 3). A direct Ga-Pu single bond is first predicted in the series of GaPu(CO)n, where the bonding pattern represents a class of the Pu → CO π back-bonding system. There is a trend where the Pu-Ga bonding decreases and the Pu-C(O) covalency increases as the Ga oxidation state increases from Ga(0) to Ga(I). Our finding extends the metal → CO covalence back-bonding concept to plutonium systems and also enriches plutonium-containing bonding chemistry.
Collapse
Affiliation(s)
- Shu-Xian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Ling-Zhi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Wen-Li Zou
- Institute of Modern Physics, Northwest University, Xi'an 710127, China
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
7
|
Hu SX, You XX, Zou WL, Lu E, Gao X, Zhang P. Electronic Structures and Unusual Chemical Bonding in Actinyl Peroxide Dimers [An 2O 6] 2+ and [(An 2O 6)(12-crown-4 ether) 2] 2+ (An = U, Np, and Pu). Inorg Chem 2022; 61:15589-15599. [DOI: 10.1021/acs.inorgchem.2c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Xiao-Xia You
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Wen-Li Zou
- Institute of Modern Physics, Northwest University, Xi’an, 710127, China
| | - Erli Lu
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, United Kingdom
| | - Xiang Gao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Ping Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
8
|
King DM, Atkinson BE, Chatelain L, Gregson M, Seed JA, Wooles AJ, Kaltsoyannis N, Liddle ST. Uranium-nitride chemistry: uranium-uranium electronic communication mediated by nitride bridges. Dalton Trans 2022; 51:8855-8864. [PMID: 35622422 PMCID: PMC9171730 DOI: 10.1039/d2dt00998f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatment of [UIV(N3)(TrenTIPS)] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-) with excess Li resulted in the isolation of [{UIV(μ-NLi2)(TrenTIPS)}2] (2), which exhibits a diuranium(IV) 'diamond-core' dinitride motif. Over-reduction of 1 produces [UIII(TrenTIPS)] (3), and together with known [{UV(μ-NLi)(TrenTIPS)}2] (4) an overall reduction sequence 1 → 4 → 2 → 3 is proposed. Attempts to produce an odd-electron nitride from 2 resulted in the formation of [{UIV(TrenTIPS)}2(μ-NH)(μ-NLi2)Li] (5). Use of heavier alkali metals did not result in the formation of analogues of 2, emphasising the role of the high charge-to-radius-ratio of lithium stabilising the charge build up at the nitride. Variable-temperature magnetic data for 2 and 5 reveal large low-temperature magnetic moments, suggesting doubly degenerate ground states, where the effective symmetry of the strong crystal field of the nitride dominates over the spin-orbit coupled nature of the ground multiplet of uranium(IV). Spin Hamiltonian modelling of the magnetic data for 2 and 5 suggest U⋯U anti-ferromagnetic coupling of -4.1 and -3.4 cm-1, respectively. The nature of the U⋯U electronic communication was probed computationally, revealing a borderline case where the prospect of direct uranium-uranium bonding was raised, but in-depth computational analysis reveals that if any uranium-uranium bonding is present it is weak, and instead the nitride centres dominate the mediation of U⋯U electronic communication. This highlights the importance of obtaining high-level ab initio insight when probing potential actinide-actinide electronic communication and bonding in weakly coupled systems. The computational analysis highlights analogies between the 'diamond-core' dinitride of 2 and matrix-isolated binary U2N2.
Collapse
Affiliation(s)
- David M King
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Benjamin E Atkinson
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Lucile Chatelain
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Matthew Gregson
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - John A Seed
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Ashley J Wooles
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Stephen T Liddle
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
9
|
Zhang P, Zou W, Zhang P, Hu S. Electronic Structures and Properties of Actinide‐Bimetal Compounds An
2
O
2
(An=Th to Cf) and U
2
E
2
(E=N, F, S). Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Zhang
- School of Mathematics and Physics University of Science and Technology Beijing Beijing 100083 China
| | - Wen‐Li Zou
- Institute of Modern Physics Northwest University Xi'an 710127 China
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics Haidian Beijing 100088 China
| | - Shu‐Xian Hu
- School of Mathematics and Physics University of Science and Technology Beijing Beijing 100083 China
- Beijing Computational Science Research Center Haidian Beijing 100193 China
| |
Collapse
|
10
|
Barluzzi L, Hsueh FC, Scopelliti R, Atkinson BE, Kaltsoyannis N, Mazzanti M. Synthesis, structure, and reactivity of uranium(vi) nitrides. Chem Sci 2021; 12:8096-8104. [PMID: 34194699 PMCID: PMC8208130 DOI: 10.1039/d1sc01796a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022] Open
Abstract
Uranium nitride compounds are important molecular analogues of uranium nitride materials such as UN and UN2 which are effective catalysts in the Haber-Bosch synthesis of ammonia, but the synthesis of molecular nitrides remains a challenge and studies of the reactivity and of the nature of the bonding are poorly developed. Here we report the synthesis of the first nitride bridged uranium complexes containing U(vi) and provide a unique comparison of reactivity and bonding in U(vi)/U(vi), U(vi)/U(v) and U(v)/U(v) systems. Oxidation of the U(v)/U(v) bis-nitride [K2{U(OSi(O t Bu)3)3(μ-N)}2], 1, with mild oxidants yields the U(v)/U(vi) complexes [K{U(OSi(O t Bu)3)3(μ-N)}2], 2 and [K2{U(OSi(O t Bu)3)3}2(μ-N)2(μ-I)], 3 while oxidation with a stronger oxidant ("magic blue") yields the U(vi)/U(vi) complex [{U(OSi(O t Bu)3)3}2(μ-N)2(μ-thf)], 4. The three complexes show very different stability and reactivity, with N2 release observed for complex 4. Complex 2 undergoes hydrogenolysis to yield imido bridged [K2{U(OSi(O t Bu)3)3(μ-NH)}2], 6 and rare amido bridged U(iv)/U(iv) complexes [{U(OSi(O t Bu)3)3}2(μ-NH2)2(μ-thf)], 7 while no hydrogenolysis could be observed for 4. Both complexes 2 and 4 react with H+ to yield quantitatively NH4Cl, but only complex 2 reacts with CO and H2. Differences in reactivity can be related to significant differences in the U-N bonding. Computational studies show a delocalised bond across the U-N-U for 1 and 2, but an asymmetric bonding scheme is found for the U(vi)/U(vi) complex 4 which shows a U-N σ orbital well localised to U[triple bond, length as m-dash]N and π orbitals which partially delocalise to form the U-N single bond with the other uranium.
Collapse
Affiliation(s)
- Luciano Barluzzi
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Fang-Che Hsueh
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Benjamin E Atkinson
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Marinella Mazzanti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
11
|
Liu G, Zhang C, Ciborowski SM, Asthana A, Cheng L, Bowen KH. Mapping the Electronic Structure of the Uranium(VI) Dinitride Molecule, UN 2. J Phys Chem A 2020; 124:6486-6492. [PMID: 32700533 DOI: 10.1021/acs.jpca.0c03735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combined anion photoelectron spectroscopic and relativistic coupled-cluster computational study of the electronic structure of the UN2 molecule is presented. Because the photoelectron spectrum of the uranium dinitride negative ion, UN2-, directly reflects the electronic structure of neutral UN2, we have measured and relied upon the photoelectron spectrum of the UN2- anion as a means of mapping the electronic structure of neutral UN2. In addition to the electron affinity of the UN2 ground state, energy levels of the UN2 excited states were well characterized by the close interplay between the experiment and high-level theory. We found that both electron attachment and electronic excitation significantly bend the UN2 molecule and elongate its U≡N bond. Implications for the activation of UN2 are discussed.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chaoqun Zhang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sandra M Ciborowski
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ayush Asthana
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
12
|
Mosquera MA, Jones LO, Borca CH, Ratner MA, Schatz GC. Domain Separated Density Functional Theory for Reaction Energy Barriers and Optical Excitations. J Phys Chem A 2020; 124:5954-5962. [DOI: 10.1021/acs.jpca.0c03596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martín A. Mosquera
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O. Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Carlos H. Borca
- Department of Chemical and Biological Engineering, Princeton University, 41 Olden Street, Princeton, New Jersey 08544, United States
| | - Mark A. Ratner
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
13
|
Qin JW, Zhang P, Pu Z, Hu Y, Zhang P, Shuai MB, Hu SX. Probing the Electronic Structure and Chemical Bonding of Uranium Nitride Complexes of NU–XO (X = C, N, O). J Phys Chem A 2019; 123:6958-6969. [DOI: 10.1021/acs.jpca.9b02923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jian-Wei Qin
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
| | - Peng Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Zhen Pu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Yin Hu
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Mao-Bing Shuai
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Shu-Xian Hu
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
14
|
Staun SL, Sergentu DC, Wu G, Autschbach J, Hayton TW. Use of 15N NMR spectroscopy to probe covalency in a thorium nitride. Chem Sci 2019; 10:6431-6436. [PMID: 31367305 PMCID: PMC6615217 DOI: 10.1039/c9sc01960j] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/02/2019] [Indexed: 01/29/2023] Open
Abstract
The first isolable molecular thorium nitride, [(NR2)3Th(μ-N)Th(NR2)3]–, was synthesized by reaction of [Th{N(R)(SiMe2)CH2}(NR2)2] with NaNH2 and characterized by X-ray crystallography, 15N NMR spectroscopy, and DFT calculations.
Reaction of the thorium metallacycle, [Th{N(R)(SiMe2)CH2}(NR2)2] (R = SiMe3) with 1 equiv. of NaNH2 in THF, in the presence of 18-crown-6, results in formation of the bridged thorium nitride complex, [Na(18-crown-6)(Et2O)][(R2N)3Th(μ-N)(Th(NR2)3] ([Na][1]), which can be isolated in 66% yield after work-up. Complex [Na][1] is the first isolable molecular thorium nitride complex. Mechanistic studies suggest that the first step of the reaction is deprotonation of [Th{N(R)(SiMe2)CH2}(NR2)2] by NaNH2, which results in formation of the thorium bis(metallacycle) complex, [Na(THF)x][Th{N(R)(SiMe2CH2)}2(NR2)], and NH3. NH3 then reacts with unreacted [Th{N(R)(SiMe2)CH2}(NR2)2], forming [Th(NR2)3(NH2)] (2), which protonates [Na(THF)x][Th{N(R)(SiMe2CH2)}2(NR2)] to give [Na][1]. Consistent with hypothesis, addition of excess NH3 to a THF solution of [Th{N(R)(SiMe2)CH2}(NR2)2] results in formation of [Th(NR2)3(NH2)] (2), which can be isolated in 51% yield after work-up. Furthermore, reaction of [K(DME)][Th{N(R)(SiMe2CH2)}2(NR2)] with 2, in THF-d8, results in clean formation of [K][1], according to 1H NMR spectroscopy. The electronic structures of [1]– and 2 were investigated by 15N NMR spectroscopy and DFT calculations. This analysis reveals that the Th–Nnitride bond in [1]– features more covalency and a greater degree of bond multiplicity than the Th–NH2 bond in 2. Similarly, our analysis indicates a greater degree of covalency in [1]–vs. comparable thorium imido and oxo complexes.
Collapse
Affiliation(s)
- Selena L Staun
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , USA .
| | - Dumitru-Claudiu Sergentu
- Department of Chemistry , University at Buffalo , State University of New York , 312 Natural Sciences Complex , Buffalo , NY 14260-3000 , USA .
| | - Guang Wu
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , USA .
| | - Jochen Autschbach
- Department of Chemistry , University at Buffalo , State University of New York , 312 Natural Sciences Complex , Buffalo , NY 14260-3000 , USA .
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , USA .
| |
Collapse
|
15
|
Geometries, electronic and magnetic properties of dinitrogen adsorbed on lanthanide element LnN 2 (Ln = La-Lu) systems: A density functional investigation. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Moylan HM, McDouall JJW. Electronic g Tensors in U V Complexes-A Computational Study. Chemistry 2017; 23:7798-7808. [PMID: 28422350 DOI: 10.1002/chem.201701058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Indexed: 11/05/2022]
Abstract
The theory and computation of EPR parameters from first principles has seen a great deal of development over the past two decades. In particular, various techniques for the computation of the electronic g tensor have been implemented in many quantum chemistry packages. These methods have been successfully applied to paramagnetic organic species and transition metal systems. The situation is less well-understood and established in the case of actinide-containing molecules and there is a dearth of experimental data available for validation of computations. In this study quantum chemical techniques have been used to evaluate the g tensor for UV complexes, for which experimental data are available for comparison. The g tensors were calculated using relatively simple, state-averaged complete active space self-consistent field (SA-CASSCF) calculations. This approach is shown to be capable of providing useful accuracy. Aspects of the computations that should be refined to provide a more quantitative approach are discussed. The key features of the underlying electronic structure that influence the computed g values are delineated, providing a simple physical picture of these subtle molecular properties.
Collapse
Affiliation(s)
- Helen M Moylan
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Joseph J W McDouall
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
17
|
Pu Z, Yu W, Roy SK, Li C, Ao B, Liu T, Shuai M, Wang X. Insights into the enhanced CeN triple bond in the HCeN molecule. Phys Chem Chem Phys 2017; 19:8216-8222. [DOI: 10.1039/c7cp00419b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an experimental study of the vibrational spectra of HCeN was carried out in solid argon, followed by theoretical investigations of molecular structures and the nature of CeN bond.
Collapse
Affiliation(s)
- Zhen Pu
- China Academy of Engineering and Physics
- Mianyang
- P. R. China
| | - Wenjie Yu
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| | - Soumendra K. Roy
- Institute of Theoretical and Computational Chemistry Shaanxi key Laboratory of Catalysis
- School of Chemical & Environmental Science
- Shaanxi University of Technology
- Hanzhong
- P. R. China
| | - Chaoyang Li
- China Academy of Engineering and Physics
- Mianyang
- P. R. China
| | - Bingyun Ao
- China Academy of Engineering and Physics
- Mianyang
- P. R. China
| | - Tianwei Liu
- China Academy of Engineering and Physics
- Mianyang
- P. R. China
| | - Maobing Shuai
- China Academy of Engineering and Physics
- Mianyang
- P. R. China
| | - Xuefeng Wang
- China Academy of Engineering and Physics
- Mianyang
- P. R. China
| |
Collapse
|
18
|
King DM, Cleaves PA, Wooles AJ, Gardner BM, Chilton NF, Tuna F, Lewis W, McInnes EJL, Liddle ST. Molecular and electronic structure of terminal and alkali metal-capped uranium(V) nitride complexes. Nat Commun 2016; 7:13773. [PMID: 27996007 PMCID: PMC5187438 DOI: 10.1038/ncomms13773] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022] Open
Abstract
Determining the electronic structure of actinide complexes is intrinsically challenging because inter-electronic repulsion, crystal field, and spin-orbit coupling effects can be of similar magnitude. Moreover, such efforts have been hampered by the lack of structurally analogous families of complexes to study. Here we report an improved method to U≡N triple bonds, and assemble a family of uranium(V) nitrides. Along with an isoelectronic oxo, we quantify the electronic structure of this 5f1 family by magnetometry, optical and electron paramagnetic resonance (EPR) spectroscopies and modelling. Thus, we define the relative importance of the spin-orbit and crystal field interactions, and explain the experimentally observed different ground states. We find optical absorption linewidths give a potential tool to identify spin-orbit coupled states, and show measurement of UV···UV super-exchange coupling in dimers by EPR. We show that observed slow magnetic relaxation occurs via two-phonon processes, with no obvious correlation to the crystal field.
Collapse
Affiliation(s)
- David M. King
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Peter A. Cleaves
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ashley J. Wooles
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Benedict M. Gardner
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Nicholas F. Chilton
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Floriana Tuna
- School of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Eric J. L. McInnes
- School of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Stephen T. Liddle
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|