1
|
Huang S, Wang Z, Yang Z, Fu Y, Liao T, Cai Y, Li X, Feng W, Yuan L. Box-like Molecules-Induced Discrete Ring-in-Rings Assembly of Hydrogen-Bonded Aramide Macrocycles. Chemistry 2025; 31:e202500164. [PMID: 40085499 DOI: 10.1002/chem.202500164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
The controlled formation of ring-in-ring(s) assemblies is highly desirable as precursors for constructing higher order supramolecular architectures. We report our findings that this goal can be achieved by balancing molecular structures and conformational adaptivity through an interplay of multiple non-covalent bonding interactions. With hydrogen-bonded (H-bonded) aramide macrocycles and box-like molecules including naph-Box, m-Box and p4p-Box, ring-in-rings assembling systems with 4 : 1 stoichiometry are preferentially created. The formation of such assemblies with a defined number of rings threaded on a Box molecule is unprecedented using 2D shape-persistent macrocycles. The unusual assembly behaviors are rationalized by the aid of NMR spectroscopy, mass spectrometry, X-ray crystallography, and xTB computation. In sharp contrast to the use of o-Box and p-Box in forming ring-in-rings complexes where a distribution of various assembled species is observed, the box-like molecules all afford monodisperse compact assemblies. Conformational adaptivity is deemed as one of the major factors that is accountable for the selectivity observed, which is driven mainly by cooperative action of multiple non-covalent bonding interactions including H-bonding and π-π stacking interactions. Using pyrimidyl-incorporated H-bonded macrocycles and box-like molecules to form ring-in-rings assembling structures may provide opportunities for designing more sophisticated and topologically unique supramolecular systems with potential functions.
Collapse
Affiliation(s)
- Song Huang
- College of Chemistry, Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Zhenwen Wang
- College of Chemistry, Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Zhiyao Yang
- College of Chemistry, Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yebin Fu
- College of Chemistry, Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Tongjing Liao
- College of Chemistry, Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yimin Cai
- College of Chemistry, Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiaowei Li
- College of Chemistry, Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Wen Feng
- College of Chemistry, Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Lihua Yuan
- College of Chemistry, Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
2
|
Stenspil SG, Olsson AH, Mucci R, Pink M, Besnard C, Pescitelli G, Lacour J, Flood AH, Laursen BW. Supramolecular Control of Helicene Circularly Polarized Luminescence Emitters in Molecular Solids and Bright Nanoparticles. Angew Chem Int Ed Engl 2024; 63:e202412320. [PMID: 39225193 PMCID: PMC11627132 DOI: 10.1002/anie.202412320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Circularly polarized luminescence (CPL) from chiral molecules is attracting much attention due to its potential use in optical materials. However, formulation of CPL emitters as molecular solids typically deteriorates photophysical properties in the aggregated state leading to quenching and unpredictable changes in CPL behavior impeding materials development. To circumvent these shortcomings, a supramolecular approach can be used to isolate cationic dyes in a lattice of cyanostar-anion complexes that suppress aggregation-caused quenching and which we hypothesize can preserve the synthetically-crafted chiroptical properties. Herein, we verify that supramolecular assembly of small-molecule ionic isolation lattices (SMILES) allows translation of molecular ECD and CPL properties to solids. A series of cationic helicenes that display increasing chiroptical response is investigated. Crystal structures of three different packing motifs all show spatial isolation of dyes by the anion complexes. We observe the photophysical and chiroptical properties of all helicenes are seamlessly translated to water soluble nanoparticles by the SMILES method. Also, a DMQA helicene is used as FRET acceptor in SMILES nanoparticles of intensely absorbing rhodamine antennae to generate an 18-fold boost in CPL brightness. These features offer promise for reliably accessing bright materials with programmable CPL properties.
Collapse
Affiliation(s)
- Stine G. Stenspil
- Nano-Science Center & Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100København ØDenmark
| | - Andrew H. Olsson
- Department of ChemistryIndiana University800 East Kirkwood AveBloomingtonIN47405United States
| | - Rebecca Mucci
- Department of Organic ChemistryUniversity of GenevaQuai Ernest Ansermet 30CH1211Geneva 4Switzerland
| | - Maren Pink
- Department of ChemistryIndiana University800 East Kirkwood AveBloomingtonIN47405United States
| | - Céline Besnard
- Laboratory of crystallographyUniversity of GenevaQuai Ernest Ansermet 24CH1211Geneva 4Switzerland
| | - Gennaro Pescitelli
- Department of Chemistry and Industrial ChemistryUniversity of PisaVia Moruzzi 1356124PisaItaly
| | - Jérôme Lacour
- Department of Organic ChemistryUniversity of GenevaQuai Ernest Ansermet 30CH1211Geneva 4Switzerland
| | - Amar H. Flood
- Department of ChemistryIndiana University800 East Kirkwood AveBloomingtonIN47405United States
| | - Bo W. Laursen
- Nano-Science Center & Department of ChemistryUniversity of CopenhagenUniversitetsparken 52100København ØDenmark
| |
Collapse
|
3
|
Zhang Z, Sheetz EG, Pink M, Yamamoto N, Flood AH. Cone Angles Quantify and Predict the Affinity and Reactivity of Anion Complexes between Trifluoroborates and Rigid Macrocycles. Angew Chem Int Ed Engl 2024; 63:e202409070. [PMID: 38969622 DOI: 10.1002/anie.202409070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
Steric manipulation is a known concept in molecular recognition but there is currently no linear free energy relationship correlating sterics to the stability of receptor-anion complexes nor to the reactivity of the bound anion. By analogy to Tolman cone angles in cation coordination chemistry, we explore how to define and correlate cone angles of organo-trifluoroborates (R-BF3 -) to the affinities observed for cyanostar-anion binding. We extend the analogy to a rare investigation of the anion's reactivity and how it changes upon binding. The substituent on the anion is used to define the cone angle, θ. A series of 10 anions were studied including versions with ethynyl, ethylene, and ethyl substituents to tune steric bulk across the sp, sp2 and sp3 hybridized α-carbons bearing 0, 1 and 2 hydrogen atoms. A linear relationship between affinity and cone angle is observed for anions bearing substituents larger than the -BF3 - headgroup. This correlation predicted affinities of two new anions to within ±5 %. We explored how complexation affects the reactivity of fluoride exchange. The yield of fluoride transfer from R-BF3 - to Lewis acid triphenylborane is correlated with cone angle. We predict that other rigid macrocycles, like commercially available bambusuril, could follow these trends.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Edward G Sheetz
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Nobuyuki Yamamoto
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Amar H Flood
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| |
Collapse
|
4
|
Zhao Z, Tajkhorshid E. GOLEM: Automated and Robust Cryo-EM-Guided Ligand Docking with Explicit Water Molecules. J Chem Inf Model 2024; 64:5680-5690. [PMID: 38990699 PMCID: PMC12016184 DOI: 10.1021/acs.jcim.4c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A detailed understanding of ligand-protein interaction is essential for developing rational drug-design strategies. In recent years, technological advances in cryo-electron microscopy (cryo-EM) brought a new era to the structural determination of biological macromolecules and assemblies at high resolution, marking cryo-EM as a promising tool for studying ligand-protein interactions. However, even in high-resolution cryo-EM results, the densities for the bound small-molecule ligands are often of lower quality due to their relatively dynamic and flexible nature, frustrating their accurate coordinate assignment. To address the challenge of ligand modeling in cryo-EM maps, here we report the development of GOLEM (Genetic Optimization of Ligands in Experimental Maps), an automated and robust ligand docking method that predicts a ligand's pose and conformation in cryo-EM maps. GOLEM employs a Lamarckian genetic algorithm to perform a hybrid global/local search for exploring the ligand's conformational, orientational, and positional space. As an important feature, GOLEM explicitly considers water molecules and places them at optimal positions and orientations. GOLEM takes into account both molecular energetics and the correlation with the cryo-EM maps in its scoring function to optimally place the ligand. We have validated GOLEM against multiple cryo-EM structures with a wide range of map resolutions and ligand types, returning ligand poses in excellent agreement with the densities. As a VMD plugin, GOLEM is free of charge and accessible to the community. With these features, GOLEM will provide a valuable tool for ligand modeling in cryo-EM efforts toward drug discovery.
Collapse
Affiliation(s)
- Zhiyu Zhao
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Patrick SC, Beer PD, Davis JJ. Solvent effects in anion recognition. Nat Rev Chem 2024; 8:256-276. [PMID: 38448686 DOI: 10.1038/s41570-024-00584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Anion recognition is pertinent to a range of environmental, medicinal and industrial applications. Recent progress in the field has relied on advances in synthetic host design to afford a broad range of potent recognition motifs and novel supramolecular structures capable of effective binding both in solution and at derived molecular films. However, performance in aqueous media remains a critical challenge. Understanding the effects of bulk and local solvent on anion recognition by host scaffolds is imperative if effective and selective detection in real-world media is to be viable. This Review seeks to provide a framework within which these effects can be considered both experimentally and theoretically. We highlight proposed models for solvation effects on anion binding and discuss approaches to retain strong anion binding in highly competitive (polar) solvents. The synthetic design principles for exploiting the aforementioned solvent effects are explored.
Collapse
Affiliation(s)
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Edhborg F, Olesund A, Tripathy V, Wang Y, Sadhukhan T, Olsson AH, Bisballe N, Raghavachari K, Laursen BW, Albinsson B, Flood AH. Triplet States of Cyanostar and Its Anion Complexes. J Phys Chem A 2023. [PMID: 37427990 DOI: 10.1021/acs.jpca.3c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The design of advanced optical materials based on triplet states requires knowledge of the triplet energies of the molecular building blocks. To this end, we report the triplet energy of cyanostar (CS) macrocycles, which are the key structure-directing units of small-molecule ionic isolation lattices (SMILES) that have emerged as programmable optical materials. Cyanostar is a cyclic pentamer of covalently linked cyanostilbene units that form π-stacked dimers when binding anions as 2:1 complexes. The triplet energies, ET, of the parent cyanostar and its 2:1 complex around PF6- are measured to be 1.96 and 2.02 eV, respectively, using phosphorescence quenching studies at room temperature. The similarity of these triplet energies suggests that anion complexation leaves the triplet energy relatively unchanged. Similar energies (2.0 and 1.98 eV, respectively) were also obtained from phosphorescence spectra of the iodinated form, I-CS, and of complexes formed with PF6- and IO4- recorded at 85 K in an organic glass. Thus, measures of the triplet energies likely reflect geometries close to those of the ground state either directly by triplet energy transfer to the ground state or indirectly by using frozen media to inhibit relaxation. Density functional theory (DFT) and time-dependent DFT were undertaken on a cyanostar analogue, CSH, to examine the triplet state. The triplet excitation localizes on a single olefin whether in the single cyanostar or its π-stacked dimer. Restriction of the geometrical changes by forming either a dimer of macrocycles, (CSH)2, or a complex, (CSH)2·PF6-, reduces the relaxation resulting in an adiabatic energy of the triplet state of 2.0 eV. This structural constraint is also expected for solid-state SMILES materials. The obtained T1 energy of 2.0 eV is a key guide line for the design of SMILES materials for the manipulation of triplet excitons by triplet state engineering in the future.
Collapse
Affiliation(s)
- Fredrik Edhborg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Axel Olesund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Vikrant Tripathy
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yang Wang
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Tumpa Sadhukhan
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Andrew H Olsson
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Niels Bisballe
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Bo W Laursen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Wang Z, Mei L, Guo C, Huang S, Shi WQ, Li X, Feng W, Li X, Yang C, Yuan L. Supramolecular Shish Kebabs: Higher Order Dimeric Structures from Ring-in-Rings Complexes with Conformational Adaptivity. Angew Chem Int Ed Engl 2023; 62:e202216690. [PMID: 36652350 DOI: 10.1002/anie.202216690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring-in-ring(s) system comprising a hydrogen-bonded macrocycle and cyclobis(paraquat-o-phenylene) tetracation (o-Box) or cyclobis(paraquat-p-phenylene) tetracation (CBPQT4+ , p-Box) that assembles to construct discrete higher order structures with adaptive conformation. As indicated by mass spectrometry, computational modeling, NMR spectroscopy, and single-crystal X-ray diffraction analysis, this ring-in-ring(s) system features the box-directed aggregation of multiple macrocycles, leading to generation of several stable species such as H4G (1 a/o-Box) and H5G (1 a/o-Box). Remarkably, a dimeric shish-kebab-like ring-in-rings superstructure H7G2 (1 a/o-Box) or H8G2 (1 a/p-Box) is formed from the coaxial stacking of two ring-in-rings units. The formation of such unique dimeric superstructures is attributed to the large π-surface of this 2D planar macrocycle and the conformational variation of both host and guest.
Collapse
Affiliation(s)
- Zhenwen Wang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Song Huang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, China.,University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Cheng Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| |
Collapse
|
8
|
Yan D, Cai L, Hu S, Zhou Y, Zhou L, Sun Q. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induced‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202209879. [DOI: 10.1002/anie.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dan‐Ni Yan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Shao‐Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Fang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
9
|
Sheetz EG, Zhang Z, Marogil A, Che M, Pink M, Carta V, Raghavachari K, Flood AH. High‐fidelity Recognition of Organotrifluoroborate Anions (R−BF
3
−
) as Designer Guest Molecules. Chemistry 2022; 28:e202201584. [DOI: 10.1002/chem.202201584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Edward G. Sheetz
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Zhao Zhang
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Alyssa Marogil
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Minwei Che
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Maren Pink
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Veronica Carta
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Krishnan Raghavachari
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Amar H. Flood
- Department of Chemistry Indiana University Bloomington 800 E. Kirkwood Ave Bloomington IN 47405 USA
| |
Collapse
|
10
|
Yan DN, Cai LX, Hu SJ, Zhou YF, Zhou LP, Sun QF. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induce‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dan-Ni Yan
- University of the Chinese Academy of Sciences Fujian College CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Shao-Jun Hu
- University of the Chinese Academy of Sciences Fujian College 350002 Fuzhou CHINA
| | - Yan-Fang Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Li-Peng Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Qing-Fu Sun
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
11
|
Yan L, Saha A, Zhao W, Neal JF, Chen Y, Flood AH, Allen HC. Recognition competes with hydration in anion-triggered monolayer formation of cyanostar supra-amphiphiles at aqueous interfaces. Chem Sci 2022; 13:4283-4294. [PMID: 35509460 PMCID: PMC9006960 DOI: 10.1039/d2sc00986b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
The triggered self-assembly of surfactants into organized layers at aqueous interfaces is important for creating adaptive nanosystems and understanding selective ion extraction. While these transformations require molecular recognition, the underlying driving forces are modified by the local environment in ways that are not well understood. Herein, we investigate the role of ion binding and ion hydration using cyanosurf, which is composed of the cyanostar macrocycle, and its binding to anions that are either size-matched or mis-matched and either weakly or highly hydrated. We utilize the supra-amphiphile concept where anion binding converts cyanosurf into a charged and amphiphilic complex triggering its self-organization into monolayers at the air-water interface. Initially, cyanosurf forms aggregates at the surface of a pure water solution. When the weakly hydrated and size-matched hexafluorophosphate (PF6 -) and perchlorate (ClO4 -) anions are added, the macrocycles form distinct monolayer architectures. Surface-pressure isotherms reveal significant reorganization of the surface-active molecules upon anion binding while infrared reflection absorption spectroscopy show the ion-bound complexes are well ordered at the interface. Vibrational sum frequency generation spectroscopy shows the water molecules in the interfacial region are highly ordered in response to the charged monolayer of cyanosurf complexes. Consistent with the importance of recognition, we find the smaller mis-matched chloride does not trigger the transformation. However, the size-matched phosphate (H2PO4 -) also does not trigger monolayer formation indicating hydration inhibits its interfacial binding. These studies reveal how anion-selective recognition and hydration both control the binding and thus the switching of a responsive molecular interface.
Collapse
Affiliation(s)
- Liwei Yan
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA +1-614-292-1685 +1-614-292-4707
| | - Ankur Saha
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA +1-614-292-1685 +1-614-292-4707
| | - Wei Zhao
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA +1-812-855-8300 +1-812-856-3642
| | - Jennifer F Neal
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA +1-614-292-1685 +1-614-292-4707
| | - Yusheng Chen
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA +1-812-855-8300 +1-812-856-3642
| | - Amar H Flood
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA +1-812-855-8300 +1-812-856-3642
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA +1-614-292-1685 +1-614-292-4707
| |
Collapse
|
12
|
Fadler RE, Flood AH. Rigidity and Flexibility in Rotaxanes and Their Relatives; On Being Stubborn and Easy-Going. Front Chem 2022; 10:856173. [PMID: 35464214 PMCID: PMC9022846 DOI: 10.3389/fchem.2022.856173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
Rotaxanes are an emerging class of molecules composed of two building blocks: macrocycles and threads. Rotaxanes, and their pseudorotaxane and polyrotaxane relatives, serve as prototypes for molecular-level switches and machines and as components in materials like elastic polymers and 3D printing inks. The rigidity and flexibility of these molecules is a characteristic feature of their design. However, the mechanical properties of the assembled rotaxane and its components are rarely examined directly, and the translation of these properties from molecules to bulk materials is understudied. In this Review, we consider the mechanical properties of rotaxanes by making use of concepts borrowed from physical organic chemistry. Rigid molecules have fewer accessible conformations with higher energy barriers while flexible molecules have more accessible conformations and lower energy barriers. The macrocycles and threads become rigidified when threaded together as rotaxanes in which the formation of intermolecular interactions and increased steric contacts collectively reduce the conformational space and raise barriers. Conversely, rotational and translational isomerism in rotaxanes adds novel modes of flexibility. We find that rigidification in rotaxanes is almost universal, but novel degrees of flexibility can be introduced. Both have roles to play in the function of rotaxanes.
Collapse
|
13
|
Li Z, Yang YW. Macrocycle-Based Porous Organic Polymers for Separation, Sensing, and Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107401. [PMID: 34676932 DOI: 10.1002/adma.202107401] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of materials science, porous organic polymers (POPs) have received remarkable attentions because of their unique properties such as the exceptionally high surface area and flexible molecular design. The ability to incorporate specific functions in a precise manner makes POPs promising platforms for a myriad of applications in molecular adsorption, separation, and catalysis. Therefore, many different types of POPs have been rationally designed and synthesized to expand the scope of advanced materials, endowing them with distinct structures and properties. Recently, supramolecular macrocycles with excellent host-guest complexation abilities are emerging as powerful crosslinkers for developing novel POPs with hierarchical structures and improved performance, which can be well-organized at different spatial scales. Macrocycle-based POPs could have unusual porous, adsorptive, and optical properties when compared to their nonmacrocycle-incorporated counterparts. This cooperation provides valuable insights for the molecular-level understanding of skeletal complexity and diversity. Here, the research advances of macrocycle-based POPs are aptly summarized by showing their syntheses, properties, and applications in terms of separation, sensing, and catalysis. Finally, the current challenging issues in this exciting research field are delineated and a comprehensive outlook is offered for their future directions.
Collapse
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
14
|
Liu Y, Parks FC, Sheetz EG, Chen CH, Flood AH. Polarity-Tolerant Chloride Binding in Foldamer Capsules by Programmed Solvent-Exclusion. J Am Chem Soc 2021; 143:3191-3204. [PMID: 33596052 DOI: 10.1021/jacs.0c12562] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Persistent anion binding in a wide range of solution environments is a key challenge that continues to motivate and demand new strategies in synthetic receptor design. Though strong binding in low-polarity solvents has become routine, our ability to maintain high affinities in high-polarity solvents has not yet reached the standard set by nature. Anions are bound and transported regularly in aqueous environments by proteins that use secondary and tertiary structure to isolate anion binding sites from water. Inspired by this principle of solvent exclusion, we created a sequence-defined foldameric capsule whose global minimum conformation displays a helical folded state and is preorganized for 1:1 anion complexation. The high stability of the folded geometry and its ability to exclude solvent were supported by solid-state and solution phase studies. This capsule then withstood a 4-fold increase in solvent dielectric constant (εr) from dichloromethane (9) to acetonitrile (36) while maintaining a high and solvent-independent affinity of 105 M-1; ΔG ∼ 28 kJ mol-1. This behavior is unusual. More typical of solvent-dependent behavior, Cl- affinities were seen to plummet in control compounds, such as aryl-triazole macrocycles and pentads, with their solvent-exposed binding cavities susceptible to dielectric screening. Finally, dimethyl sulfoxide denatures the foldamer by putative solvent binding, which then lowers the foldamer's Cl- affinity to normal levels. The design of this capsule demonstrates a new prototype for the development of potent receptors that can operate in polar solvents and has the potential to help manage hydrophilic anions present in the hydrosphere and biosphere.
Collapse
Affiliation(s)
- Yun Liu
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Fred C Parks
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Edward G Sheetz
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chun-Hsing Chen
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Amar H Flood
- Department of Chemistry, Indiana University 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
15
|
Spadaro A, Basile L, Pappalardo M, Bonaccorso C, Rao M, Ronsisvalle S, Granata G, Guccione S. Quantum Chemical and Molecular Dynamics Studies of MUC1 Calix[4,8]arene Scaffold Based Anticancer Vaccine Candidates. J Chem Inf Model 2020; 60:5162-5171. [PMID: 32818373 DOI: 10.1021/acs.jcim.9b00989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Functional antitumor vaccine constructs are the basis for active tumor immunotherapy, which is useful in the treatment of many types of cancers. MUC1 is one key glycoprotein for targeting and designing new strategies for multicomponent vaccines. Two self-adjuvant tetravalent vaccine candidates were prepared by clustering four or eight PDTRP MUC1 core epitope sequences on calixarene scaffolds. In this work, the different activities of two molecules with calix[4]arene and calix[8]arene skeleton are rationalized. Quantum mechanics, docking, and molecular dynamics structural optimization were first carried out followed by metadynamics to calculate the energy profiles. Further insights were obtained by complementarity studies of molecular fields. The molecular modeling results are in strong agreement with the experimental in vivo immunogenicity data. In conclusion, the overall data shows that, in the designing of anticancer vaccines, scaffold flexibility has a pivotal role in obtaining a suitable electrostatic, hydrophobic, and steric complementarity with the biological target.
Collapse
Affiliation(s)
- Angelo Spadaro
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Livia Basile
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Matteo Pappalardo
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Carmela Bonaccorso
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Marco Rao
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Simone Ronsisvalle
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Giuseppe Granata
- Institute of Biomolecular Chemistry, CNR, Via P. Gaifami 18, I-95126 Catania, Italy
| | - Salvatore Guccione
- Department of Drug Sciences, University of Catania, Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
16
|
Zhao W, Flood AH, White NG. Recognition and applications of anion-anion dimers based on anti-electrostatic hydrogen bonds (AEHBs). Chem Soc Rev 2020; 49:7893-7906. [PMID: 32677649 DOI: 10.1039/d0cs00486c] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Based on Coulomb's Law alone, electrostatic repulsion between two anions is expected to prevent their dimerization. Contrary to that idea, this Tutorial Review will present evidence showing that anion-anion dimers of protic hydroxyanions can form readily, and describe conditions that facilitate their formation. From X-ray crystal structures, we learn that hydroxyanions dimerize and oligomerize by overcoming long-range electrostatic opposition. Common examples are hydroxyanions of phosphate, sulfate, and carbonate, often in partnership with charged and neutral receptors. Short-range hydrogen bonds between anionic donors and acceptors are defined as anti-electrostatic hydrogen bonds (AEHBs) with insight from theoretical studies. While anion dimers are difficult to identify unequivocally in solution, these solution dimers have recently been definitively identified. The development of the supramolecular chemistry of anion-anion dimers has led to applications in hierarchical assemblies, such as supramolecular polymers and hydrogen bonded organic frameworks.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
17
|
Dhara A, Sadhukhan T, Sheetz EG, Olsson AH, Raghavachari K, Flood AH. Zero-Overlap Fluorophores for Fluorescent Studies at Any Concentration. J Am Chem Soc 2020; 142:12167-12180. [PMID: 32539380 DOI: 10.1021/jacs.0c02450] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorophores are powerful tools for the study of chemistry, biology, and physics. However, fluorescence is severely impaired when concentrations climb above 5 μM as a result of effects like self-absorption and chromatic shifts in the emitted light. Herein, we report the creation of a charge-transfer (CT) fluorophore and the discovery that its emission color seen at low concentrations is unchanged even at 5 mM, some 3 orders of magnitude beyond typical limits. The fluorophore is composed of a triphenylamine-substituted cyanostar macrocycle, and it exhibits a remarkable Stokes shift of 15 000 cm-1 to generate emission at 633 nm. Crucial to the performance of this fluorophore is the observation that its emission spectrum shows near-zero overlap with the absorption band at 325 nm. We propose that reducing the spectral overlap to zero is a key to achieving full fluorescence across all concentrations. The triphenylamine donor and five cyanostilbene acceptor units of the macrocycle generate an emissive CT state. Unlike closely related donor-acceptor control compounds showing dual emission, the cyanostar framework inhibited emission from the second state to create a zero-overlap fluorophore. We demonstrated the use of emission spectroscopy for characterization of host-guest complexation at millimolar concentrations, which are typically the exclusive domain of NMR spectroscopy. The binding of the PF6- anion generates a 2:1 sandwich complex with blue-shifted emission. Distinct from twisted intramolecular charge-transfer (TICT) states, experiment-supported density functional theory shows a 67° twist inside an acceptor unit in the CT state instead of displaying a twist between the donor and acceptor; it is TICT-like. Inspired by the findings, we uncovered similar concentration-independent behavior from a control compound, strongly suggesting this behavior may be latent to other large Stokes-shift fluorophores. We discuss strategies capable of generating zero-overlap fluorophores to enable accurate fluorescence characterization of processes across all practical concentrations.
Collapse
Affiliation(s)
- Ayan Dhara
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Tumpa Sadhukhan
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Edward G Sheetz
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Andrew H Olsson
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
18
|
Zhao W, Tropp J, Qiao B, Pink M, Azoulay JD, Flood AH. Tunable Adhesion from Stoichiometry-Controlled and Sequence-Defined Supramolecular Polymers Emerges Hierarchically from Cyanostar-Stabilized Anion-Anion Linkages. J Am Chem Soc 2020; 142:2579-2591. [PMID: 31931561 DOI: 10.1021/jacs.9b12645] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sequence-controlled supramolecular polymers offer new design paradigms for generating stimuli-responsive macromolecules with enhanced functionalities. The dynamic character of supramolecular links present challenges to sequence definition in extended supramolecular macromolecules, and design principles remain nascent. Here, we demonstrate the first example of using stoichiometry-control to specify the monomer sequence in a linear supramolecular polymer by synthesizing both a homopolymer and an alternating copolymer from the same glycol-substituted cyanostar macrocycle and phenylene-linked diphosphate monomers. A 2:1 stoichiometry between macrocycle and diphosphate produces a supramolecular homopolymer of general formula (A)n comprised of repeating units of cyanostar-stabilized phosphate-phosphate dimers. Using a 1:1 stoichiometry, an alternating (AB)n structure is produced with half the phosphate dimers now stabilized by the additional counter cations that emerge hierarchically after forming the stronger cyanostar-stabilized phosphate dimers. These new polymer materials and binding motifs are sufficient to bear normal and shear stress to promote significant and tunable adhesive properties. The homopolymer (A)n, consisting of cyanostar-stabilized anti-electrostatic linkages, shows adhesion strength comparable to commercial superglue formulations based on polycyanoacrylate but is thermally reversible. Unexpectedly, and despite including traditional ionic linkages, the alternating copolymer (AB)n shows weaker adhesion strength more similar to commercial white glue based on poly(vinyl acetate). Thus, the adhesion properties can be tuned over a wide range by simply controlling the stoichiometric ratio of monomers. This study offers new insight into supramolecular polymers composed of custom-designed anion and receptor monomers and demonstrates the utility of emerging functional materials based on anion-anion linkages.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Joshua Tropp
- School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive , Hattiesburg , Mississippi 39406 , United States
| | - Bo Qiao
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Maren Pink
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Jason D Azoulay
- School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive , Hattiesburg , Mississippi 39406 , United States
| | - Amar H Flood
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|
19
|
Wang Q, Zhong Y, Miller DP, Lu X, Tang Q, Lu ZL, Zurek E, Liu R, Gong B. Self-Assembly and Molecular Recognition in Water: Tubular Stacking and Guest-Templated Discrete Assembly of Water-Soluble, Shape-Persistent Macrocycles. J Am Chem Soc 2020; 142:2915-2924. [PMID: 31895977 DOI: 10.1021/jacs.9b11536] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supramolecular chemistry in aqueous media is an area with great fundamental and practical significance. To examine the role of multiple noncovalent interactions in controlled assembling and binding behavior in water, the self-association of five water-soluble hexakis(m-phenylene ethynylene) (m-PE) macrocycles, along with the molecular recognition behavior of the resultant assemblies, is investigated with UV-vis, fluorescence, CD, and NMR spectroscopy, mass spectrometry, and computational studies. In contrast to their different extents of self-aggregation in organic solvents, all five macrocycles remain aggregated in water at concentrations down to the micromolar (μM) range. CD spectroscopy reveals that 1-F6 and 1-H6, two macrocycles carrying chiral side chains and capable of H-bonded self-association, assemble into tubular stacks. The tubular stacks serve as supramolecular hosts in water, as exemplified by the interaction of macrocycles 1-H6 and 2-H6 and guests G1 through G4, each having a rod-like oligo(p-phenylene ethynylene) (p-PE) segment flanked by two hydrophilic chains. Fluorescence and 1H NMR spectroscopy revealed the formation of kinetically stable, discrete assemblies upon mixing 2-H6 and a guest. The binding stoichiometry, determined with fluorescence, 1H NMR, and ESI-MS, reveals that the discrete assemblies are novel pseudorotaxanes, each containing a pair of identical guest molecules encased by a tubular stack. The two guest molecules define the number of macrocyclic molecules that comprise the host, which curbs the "infinite" stack growth, resulting in a tubular stack with a cylindrical pore tailoring the length of the p-PE segment of the bound guests. Each complex is stabilized by the action of multiple noncovalent forces including aromatic stacking, side-chain H-bonding, and van der Waals interactions. Thus, the interplay of multiple noncovalent forces aligns the molecules of macrocycles 1 and 2 into tubular stacks with cylindrical inner pores that, upon binding rod-like guests, lead to tight, discrete, and well-ordered tubular assemblies that are unprecedented in water.
Collapse
Affiliation(s)
- Qiuhua Wang
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Yulong Zhong
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| | - Daniel P Miller
- Department of Chemistry , Hofstra University , Hempstead , New York 11549 , United States
| | - Xiaoxing Lu
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Quan Tang
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Zhong-Lin Lu
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Eva Zurek
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| | - Rui Liu
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Bing Gong
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| |
Collapse
|
20
|
Zhao W, Qiao B, Tropp J, Pink M, Azoulay JD, Flood AH. Linear Supramolecular Polymers Driven by Anion-Anion Dimerization of Difunctional Phosphonate Monomers Inside Cyanostar Macrocycles. J Am Chem Soc 2019; 141:4980-4989. [PMID: 30789722 DOI: 10.1021/jacs.9b00248] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Supramolecular polymers have enabled far-reaching fundamental science and the development of diverse macromolecular technologies owing to the reversible and noncovalent chemical connectivities that define their properties. Despite the unabated development of these materials using highly tailorable recognition elements, anion-based polymers remain rare as a result of the weak interactions they mediate. Here, we use design rules inspired by cation-driven polymers to demonstrate a new noncovalent link based on receptor-stabilized anion-anion interactions that enables the efficient linear polymerization of simple difunctional phosphonates. The linear main chain connectivity and molecular topology were confirmed by single crystal X-ray diffraction, which demonstrates the rare 2:2 stoichiometry between the anionic phosphonate end groups and a pair of π-stacked cyanostar macrocycles. The stability of these links enables rapid polymerization of difunctional phosphonates employing different aliphatic linkers (C6H12, C8H16, C10H20, C12H24). Diphosphonates with greater chain flexibility (C12H24) enable greater polymerization with an average degree of polymerization of nine emerging at 10 mM. Viscosity measurements show a transition from oligomers to polymers at the critical polymerization concentration of 5 mM. In a rare correlation, NMR spectroscopy shows a coincident molecular signature of the polymerization at 5 mM. These polymers are highly concentration dependent, reversibly polymerize with acid and base, and respond to competitive anions. They display the design simplicity of metallo-supramolecular polymers with transfer of the strong 2:2 recognition chemistry to macromolecules. The simplicity and understanding of this new class of supramolecular polymer is anticipated to open opportunities in tailoring anion-based functional materials.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Bo Qiao
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Joshua Tropp
- School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive , Hattiesburg , Mississippi 39406 , United States
| | - Maren Pink
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Jason D Azoulay
- School of Polymer Science and Engineering , The University of Southern Mississippi , 118 College Drive , Hattiesburg , Mississippi 39406 , United States
| | - Amar H Flood
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|
21
|
Nagai A, Nakamura T, Nabeshima T. A twisted macrocyclic hexanuclear palladium complex with internal bulky coordinating ligands. Chem Commun (Camb) 2019; 55:2421-2424. [DOI: 10.1039/c8cc09643k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A macrocyclic hexanuclear palladium complex, which accumulates coordination sites on metals inside the cavity, was found to take a uniquely-twisted conformation when six molecules of a bulky pyridine derivative coordinated to the palladium.
Collapse
Affiliation(s)
- Akira Nagai
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS)
- University of Tsukuba
- Tsukuba
- Japan
| | - Takashi Nakamura
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS)
- University of Tsukuba
- Tsukuba
- Japan
| | - Tatsuya Nabeshima
- Graduate School of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS)
- University of Tsukuba
- Tsukuba
- Japan
| |
Collapse
|
22
|
Parks FC, Liu Y, Debnath S, Stutsman SR, Raghavachari K, Flood AH. Allosteric Control of Photofoldamers for Selecting between Anion Regulation and Double-to-Single Helix Switching. J Am Chem Soc 2018; 140:17711-17723. [DOI: 10.1021/jacs.8b10538] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fred C. Parks
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yun Liu
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sibali Debnath
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sydney R. Stutsman
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Amar H. Flood
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
23
|
Assaf KI, Nau WM. The Chaotropic Effect as an Assembly Motif in Chemistry. Angew Chem Int Ed Engl 2018; 57:13968-13981. [PMID: 29992706 PMCID: PMC6220808 DOI: 10.1002/anie.201804597] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/01/2018] [Indexed: 11/26/2022]
Abstract
Following up on scattered reports on interactions of conventional chaotropic ions (for example, I- , SCN- , ClO4- ) with macrocyclic host molecules, biomolecules, and hydrophobic neutral surfaces in aqueous solution, the chaotropic effect has recently emerged as a generic driving force for supramolecular assembly, orthogonal to the hydrophobic effect. The chaotropic effect becomes most effective for very large ions that extend beyond the classical Hofmeister scale and that can be referred to as superchaotropic ions (for example, borate clusters and polyoxometalates). In this Minireview, we present a continuous scale of water-solute interactions that includes the solvation of kosmotropic, chaotropic, and hydrophobic solutes, as well as the creation of void space (cavitation). Recent examples for the association of chaotropic anions to hydrophobic synthetic and biological binding sites, lipid bilayers, and surfaces are discussed.
Collapse
Affiliation(s)
- Khaleel I. Assaf
- Department of Life Sciences and ChemistryJacobs University BremenCampus Ring 128759BremenGermany
| | - Werner M. Nau
- Department of Life Sciences and ChemistryJacobs University BremenCampus Ring 128759BremenGermany
| |
Collapse
|
24
|
Affiliation(s)
- Khaleel I. Assaf
- Department of Life Sciences and Chemistry; Jacobs University Bremen; Campus Ring 1 28759 Bremen Deutschland
| | - Werner M. Nau
- Department of Life Sciences and Chemistry; Jacobs University Bremen; Campus Ring 1 28759 Bremen Deutschland
| |
Collapse
|
25
|
Sengupta A, Liu Y, Flood AH, Raghavachari K. Anion‐Binding Macrocycles Operate Beyond the Electrostatic Regime: Interaction Distances Matter. Chemistry 2018; 24:14409-14417. [PMID: 30036449 DOI: 10.1002/chem.201802657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Arkajyoti Sengupta
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
- Current Address: Department of Chemistry Michigan State University East Lansing Michigan 48824 USA
| | - Yun Liu
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
- Current Address: Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Amar H. Flood
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| | - Krishnan Raghavachari
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington Indiana 47405 USA
| |
Collapse
|
26
|
Qiao B, Leverick GM, Zhao W, Flood AH, Johnson JA, Shao-Horn Y. Supramolecular Regulation of Anions Enhances Conductivity and Transference Number of Lithium in Liquid Electrolytes. J Am Chem Soc 2018; 140:10932-10936. [DOI: 10.1021/jacs.8b05915] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bo Qiao
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Graham M. Leverick
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wei Zhao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Amar H. Flood
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yang Shao-Horn
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Sheetz EG, Qiao B, Pink M, Flood AH. Programmed Negative Allostery with Guest-Selected Rotamers Control Anion–Anion Complexes of Stackable Macrocycles. J Am Chem Soc 2018; 140:7773-7777. [DOI: 10.1021/jacs.8b02993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Edward G. Sheetz
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Bo Qiao
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Amar H. Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
28
|
Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem. Proc Natl Acad Sci U S A 2018; 115:9391-9396. [PMID: 29735677 DOI: 10.1073/pnas.1719539115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The coordinated motion of many individual components underpins the operation of all machines. However, despite generations of experience in engineering, understanding the motion of three or more coupled components remains a challenge, known since the time of Newton as the "three-body problem." Here, we describe, quantify, and simulate a molecular three-body problem of threading two molecular rings onto a linear molecular thread. Specifically, we use voltage-triggered reduction of a tetrazine-based thread to capture two cyanostar macrocycles and form a [3]pseudorotaxane product. As a consequence of the noncovalent coupling between the cyanostar rings, we find the threading occurs by an unexpected and rare inchworm-like motion where one ring follows the other. The mechanism was derived from controls, analysis of cyclic voltammetry (CV) traces, and Brownian dynamics simulations. CVs from two noncovalently interacting rings match that of two covalently linked rings designed to thread via the inchworm pathway, and they deviate considerably from the CV of a macrocycle designed to thread via a stepwise pathway. Time-dependent electrochemistry provides estimates of rate constants for threading. Experimentally derived parameters (energy wells, barriers, diffusion coefficients) helped determine likely pathways of motion with rate-kinetics and Brownian dynamics simulations. Simulations verified intercomponent coupling could be separated into ring-thread interactions for kinetics, and ring-ring interactions for thermodynamics to reduce the three-body problem to a two-body one. Our findings provide a basis for high-throughput design of molecular machinery with multiple components undergoing coupled motion.
Collapse
|
29
|
Fatila EM, Pink M, Twum EB, Karty JA, Flood AH. Phosphate-phosphate oligomerization drives higher order co-assemblies with stacks of cyanostar macrocycles. Chem Sci 2018; 9:2863-2872. [PMID: 29780454 PMCID: PMC5941797 DOI: 10.1039/c7sc05290a] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/09/2018] [Indexed: 01/31/2023] Open
Abstract
The importance of phosphate in biology and chemistry has long motivated investigation of its recognition. Despite this interest, phosphate's facile oligomerization is only now being examined following the discovery of complexes of anion-anion dimers of hydroxyanions. Here we address how oligomerization dictates phosphate's recognition properties when engaged with planar cyanostar macrocycles that can also oligomerize by stacking. The crystal structure of cyanostar with phosphate shows an unprecedented tetrameric stack of cyanostar macrocycles threaded by a phosphate trimer, [H2PO4···H2PO4···H2PO4]3-. The solution behaviour, studied as a function of solvent quality, highlights how dimers and trimers of phosphate drive formation of higher order stacks of cyanostar into dimer, trimer and tetramer co-assemblies. Solution behaviors differ significantly from simpler complexes of bisulfate hydroxyanion dimers. Phosphate oligomerization is: (1) preferred over ion pairing with tetrabutylammonium cations, (2) inhibits disassembly of the complexes upon dilution, and (3) resists interference from competitive anion solvation. The phosphate oligomers also appear critical for stability; complexation of just one phosphate with cyanostars is unfavored. The cyanostar's ability to self-assemble is found to create a tubular, highly electropositive cavity that complements the size and shape of the phosphate oligomers as well as their higher charge. When given the opportunity, phosphate will cooperate with the receptor to form co-assembled architectures.
Collapse
Affiliation(s)
- Elisabeth M Fatila
- Department of Chemistry , Indiana University , Bloomington , IN 47405 , USA .
| | - Maren Pink
- Department of Chemistry , Indiana University , Bloomington , IN 47405 , USA .
| | - Eric B Twum
- Department of Chemistry , Indiana University , Bloomington , IN 47405 , USA .
| | - Jonathan A Karty
- Department of Chemistry , Indiana University , Bloomington , IN 47405 , USA .
| | - Amar H Flood
- Department of Chemistry , Indiana University , Bloomington , IN 47405 , USA .
| |
Collapse
|
30
|
Castillo HD, Espinosa-Duran JM, Dobscha JR, Ashley DC, Debnath S, Hirsch BE, Schrecke SR, Baik MH, Ortoleva PJ, Raghavachari K, Flood AH, Tait SL. Amphiphile self-assembly dynamics at the solution-solid interface reveal asymmetry in head/tail desorption. Chem Commun (Camb) 2018; 54:10076-10079. [DOI: 10.1039/c8cc04465a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Asymmetric dynamics in fundamental adsorption and desorption steps drive self-assembly at solution/solid interface.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mu-Hyun Baik
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | | | | | - Amar H. Flood
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | | |
Collapse
|
31
|
Zhong Y, Yang Y, Shen Y, Xu W, Wang Q, Connor AL, Zhou X, He L, Zeng XC, Shao Z, Lu ZL, Gong B. Enforced Tubular Assembly of Electronically Different Hexakis(m-Phenylene Ethynylene) Macrocycles: Persistent Columnar Stacking Driven by Multiple Hydrogen-Bonding Interactions. J Am Chem Soc 2017; 139:15950-15957. [DOI: 10.1021/jacs.7b09647] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yulong Zhong
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Yang
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Shen
- Bio-ID
Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenwu Xu
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Qiuhua Wang
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Alan L. Connor
- Department
of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Xibin Zhou
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lan He
- National Institute for Food and Drug Control, Beijing 100050, China
| | - Xiao Cheng Zeng
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Zhifeng Shao
- Bio-ID
Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhong-lin Lu
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bing Gong
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
- Department
of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
32
|
Zhao W, Qiao B, Chen C, Flood AH. High‐Fidelity Multistate Switching with Anion–Anion and Acid–Anion Dimers of Organophosphates in Cyanostar Complexes. Angew Chem Int Ed Engl 2017; 56:13083-13087. [DOI: 10.1002/anie.201707869] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Wei Zhao
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - Bo Qiao
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - Chun‐Hsing Chen
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - Amar H. Flood
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| |
Collapse
|
33
|
Zhao W, Qiao B, Chen C, Flood AH. High‐Fidelity Multistate Switching with Anion–Anion and Acid–Anion Dimers of Organophosphates in Cyanostar Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wei Zhao
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - Bo Qiao
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - Chun‐Hsing Chen
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - Amar H. Flood
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| |
Collapse
|
34
|
Rutledge KM, Hamlin TA, Baldisseri DM, Bickelhaupt FM, Peczuh MW. Macrocycles All Aflutter: Substitution at an Allylic Center Reveals the Conformational Dynamics of [13]‐Macrodilactones. Chem Asian J 2017; 12:2623-2633. [DOI: 10.1002/asia.201700997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/04/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Kelli M. Rutledge
- Department of Chemistry University of Connecticut 55 N. Eagleville Road U-3060 Storrs CT 06269 USA
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling Vrije Universiteit Amsterdam, NL- 1081 HV Amsterdam The Netherlands
| | - Donna M. Baldisseri
- Bruker BioSpin Corporation 15 Fortune Drive, Manning Park Billerica MA 01821 USA
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling Vrije Universiteit Amsterdam, NL- 1081 HV Amsterdam The Netherlands
- Institute of Molecules and Materials Radboud University 6525 AJ Nijmegen The Netherlands
| | - Mark W. Peczuh
- Department of Chemistry University of Connecticut 55 N. Eagleville Road U-3060 Storrs CT 06269 USA
| |
Collapse
|
35
|
|
36
|
Castro-Fernández S, Yang R, García AP, Garzón IL, Xu H, Petrovic AG, Alonso-Gómez JL. Diverse Chiral Scaffolds from Diethynylspiranes: All-Carbon Double Helices and Flexible Shape-Persistent Macrocycles. Chemistry 2017; 23:11747-11751. [DOI: 10.1002/chem.201702986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Silvia Castro-Fernández
- Departamento de Química Orgánica; Universidade de Vigo; Lagoas-Marcosende s/n Vigo 36310 Spain
| | - Ren Yang
- College of Chemistry and Chemical Engineering; Central South University; 932 Lushan S Rd, Yuelu, Changsha Hunan P. R. China
| | - A. Patricio García
- Instituto de Física; Universidad Nacional Autónoma de México; Apartado Postal 20-364 01000 México, D. F. México
| | - Ignacio L. Garzón
- Instituto de Física; Universidad Nacional Autónoma de México; Apartado Postal 20-364 01000 México, D. F. México
| | - Hai Xu
- College of Chemistry and Chemical Engineering; Central South University; 932 Lushan S Rd, Yuelu, Changsha Hunan P. R. China
| | - Ana G. Petrovic
- Department of Life Sciences; New York Institute of Technology; 1855 Broadway New York NY 10023 USA
| | - J. Lorenzo Alonso-Gómez
- Departamento de Química Orgánica; Universidade de Vigo; Lagoas-Marcosende s/n Vigo 36310 Spain
| |
Collapse
|
37
|
Fatila EM, Twum EB, Karty JA, Flood AH. Ion Pairing and Co‐facial Stacking Drive High‐Fidelity Bisulfate Assembly with Cyanostar Macrocyclic Hosts. Chemistry 2017; 23:10652-10662. [DOI: 10.1002/chem.201701763] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Elisabeth M. Fatila
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - Eric B. Twum
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - Jonathan A. Karty
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| | - Amar H. Flood
- Department of Chemistry Indiana University 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| |
Collapse
|
38
|
Qiao B, Hirsch BE, Lee S, Pink M, Chen CH, Laursen BW, Flood AH. Ion-Pair Oligomerization of Chromogenic Triangulenium Cations with Cyanostar-Modified Anions That Controls Emission in Hierarchical Materials. J Am Chem Soc 2017; 139:6226-6233. [DOI: 10.1021/jacs.7b01937] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bo Qiao
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Brandon E. Hirsch
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Semin Lee
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chun-Hsing Chen
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Bo W. Laursen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, København Ø 2100, Denmark
| | - Amar H. Flood
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
39
|
Abstract
Millisecond-scale conformational transitions represent a seminal challenge for traditional molecular dynamics simulations, even with the help of high-end supercomputer architectures. Such events are particularly relevant to the study of molecular motors-proteins or abiological constructs that convert chemical energy into mechanical work. Here, we present a hybrid-simulation scheme combining an array of methods including elastic network models, transition path sampling, and advanced free-energy methods, possibly in conjunction with generalized-ensemble schemes to deliver a viable option for capturing the millisecond-scale motor steps of biological motors. The methodology is already implemented in large measure in popular molecular dynamics programs, and it can leverage the massively parallel capabilities of petascale computers. The applicability of the hybrid method is demonstrated with two examples, namely cyclodextrin-based motors and V-type ATPases.
Collapse
Affiliation(s)
- Abhishek Singharoy
- Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7565, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801
| |
Collapse
|
40
|
Chen Z, Sahli BJ, MacLachlan MJ. Self-Assembly of Extended Head-to-Tail Triangular Pt3 Macrocycles into Nanotubes. Inorg Chem 2017; 56:5383-5391. [DOI: 10.1021/acs.inorgchem.7b00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhengyu Chen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian J. Sahli
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mark J. MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
41
|
Li T, Zhang D, Wang R, Fan Y, Guo X, Liu S, Ma Y, Zhao D. Synthesis, solvent-dependent emission and two-photon absorption of a triangular –[D–π–A]3– macrocycle. Org Chem Front 2017. [DOI: 10.1039/c6qo00845c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A large π–conjugated macrocycle featuring a –[D–π–A]3– backbone is synthesized, exhibiting strongly solvent-dependent fluorescence and evident two-photon absorption ability.
Collapse
Affiliation(s)
- Tian Li
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| | - Di Zhang
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| | - Ranran Wang
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| | - Yuanpeng Fan
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| | - Xinyan Guo
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| | - Shuai Liu
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences
- Centre for the Soft Matter Science and Engineering and the Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing
| |
Collapse
|
42
|
Ali MA, Alam MA. Theoretical studies on the structure and thermochemistry of cyclicparaphenylenediazenes. RSC Adv 2017. [DOI: 10.1039/c7ra06409h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Comparison of thermochemistry of carbon nanoring structures.
Collapse
Affiliation(s)
| | - Mohammad A. Alam
- Department of Chemistry and Physics
- College of Science and Mathematics
- Arkansas State University
- Jonesboro
- USA
| |
Collapse
|
43
|
Yang LP, Jia F, Pan F, Pan ZS, Rissanen K, Jiang W. Effects of side chains of oxatub[4]arene on its conformational interconversion, molecular recognition and macroscopic self-assembly. Chem Commun (Camb) 2017; 53:12572-12575. [DOI: 10.1039/c7cc07630d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The side-chain length of oxatub[4]arenes was shown to affect its conformational interconversion, molecular recognition and macroscopic self-assembly behavior.
Collapse
Affiliation(s)
- Liu-Pan Yang
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- China
| | - Fei Jia
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- China
- Institut für Chemie und Biochemie
| | - Fangfang Pan
- College of Chemistry
- Central China Normal University Wuhan
- China
| | - Zhi-Sheng Pan
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- China
| | - Kari Rissanen
- Department of Chemistry and Nanoscience Center
- University of Jyvaskyla
- Jyvaskyla
- Finland
| | - Wei Jiang
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- China
| |
Collapse
|
44
|
Qi Y, Lee J, Singharoy A, McGreevy R, Schulten K, Im W. CHARMM-GUI MDFF/xMDFF Utilizer for Molecular Dynamics Flexible Fitting Simulations in Various Environments. J Phys Chem B 2016; 121:3718-3723. [PMID: 27936734 DOI: 10.1021/acs.jpcb.6b10568] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
X-ray crystallography and cryo-electron microscopy are two popular methods for the structure determination of biological molecules. Atomic structures are derived through the fitting and refinement of an initial model into electron density maps constructed by both experiments. Two computational approaches, MDFF and xMDFF, have been developed to facilitate this process by integrating the experimental data with molecular dynamics simulation. However, the setup of an MDFF/xMDFF simulation requires knowledge of both experimental and computational methods, which is not straightforward for nonexpert users. In addition, sometimes it is desirable to include realistic environments, such as explicit solvent and lipid bilayers during the simulation, which poses another challenge even for expert users. To alleviate these difficulties, we have developed MDFF/xMDFF Utilizer in CHARMM-GUI that helps users to set up an MDFF/xMDFF simulation. The capability of MDFF/xMDFF Utilizer is greatly enhanced by integration with other CHARMM-GUI modules, including protein structure manipulation, a diverse set of lipid types, and all-atom CHARMM and coarse-grained PACE force fields. With this integration, various simulation environments are available for MDFF Utilizer (vacuum, implicit/explicit solvent, and bilayers) and xMDFF Utilizer (vacuum and solution). In this work, three examples are shown to demonstrate the usage of MDFF/xMDFF Utilizer.
Collapse
Affiliation(s)
- Yifei Qi
- Department of Biological Sciences and Bioengineering Program, Lehigh University , 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Jumin Lee
- Department of Biological Sciences and Bioengineering Program, Lehigh University , 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Abhishek Singharoy
- Beckman Institute and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Ryan McGreevy
- Beckman Institute and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Klaus Schulten
- Beckman Institute and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering Program, Lehigh University , 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
45
|
Li X, Yuan X, Deng P, Chen L, Ren Y, Wang C, Wu L, Feng W, Gong B, Yuan L. Macrocyclic shape-persistency of cyclo[6]aramide results in enhanced multipoint recognition for the highly efficient template-directed synthesis of rotaxanes. Chem Sci 2016; 8:2091-2100. [PMID: 28451329 PMCID: PMC5399641 DOI: 10.1039/c6sc04714a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
Abstract
Examples of using two-dimensional shape-persistent macrocycles, i.e. those having noncollapsible and geometrically well-defined skeletons, for constructing mechanically interlocked molecules are scarce, which contrasts the many applications of these macrocycles in molecular recognition and functional self-assembly. Herein, we report the crucial role played by macrocyclic shape-persistency in enhancing multipoint recognition for the highly efficient template-directed synthesis of rotaxanes. Cyclo[6]aramides, with a near-planar conformation, are found to act as powerful hosts that bind bipyridinium salts with high affinities. This unique recognition module, composed of two macrocyclic molecules with one bipyridinium ion thread through the cavity, is observed both in the solid state and in solution, with unusually high binding constants ranging from ∼1013 M-2 to ∼1015 M-2 in acetone. The high efficacy of this recognition motif is embodied by the formation of compact [3]rotaxanes in excellent yields based on either a "click-capping" (91%) or "facile one-pot" (85%) approach, underscoring the great advantage of using H-bonded aromatic amide macrocycles for the highly efficient template-directed synthesis of mechanically interlocked structures. Furthermore, three cyclo[6]aramides bearing different peripheral chains 1-3 demonstrate high specificity in the synthesis of a [3]rotaxane from 1 and 2, and a [2]rotaxane from 3via a "facile one-pot" approach, in each case as the only isolated product. Analysis of the crystal structure of the [3]rotaxane reveals a highly compact binding mode that would be difficult to access using other macrocycles with a flexible backbone. Leveraging this unique recognition motif, resulting from the shape-persistency of these oligoamide macrocycles, in the template-directed synthesis of compact rotaxanes may open up new opportunities for the development of higher order interlocked molecules and artificial molecular machines.
Collapse
Affiliation(s)
- Xiaowei Li
- College of Chemistry , Key Laboratory for Radiation Physics and Technology of Ministry of Education , Analytical & Testing Center , Sichuan University , Chengdu 610064 , Sichuan , China . ; ; Tel: +86-28-85412890
| | - Xiangyang Yuan
- College of Chemistry , Key Laboratory for Radiation Physics and Technology of Ministry of Education , Analytical & Testing Center , Sichuan University , Chengdu 610064 , Sichuan , China . ; ; Tel: +86-28-85412890
| | - Pengchi Deng
- College of Chemistry , Key Laboratory for Radiation Physics and Technology of Ministry of Education , Analytical & Testing Center , Sichuan University , Chengdu 610064 , Sichuan , China . ; ; Tel: +86-28-85412890
| | - Lixi Chen
- College of Chemistry , Key Laboratory for Radiation Physics and Technology of Ministry of Education , Analytical & Testing Center , Sichuan University , Chengdu 610064 , Sichuan , China . ; ; Tel: +86-28-85412890
| | - Yi Ren
- College of Chemistry , Key Laboratory for Radiation Physics and Technology of Ministry of Education , Analytical & Testing Center , Sichuan University , Chengdu 610064 , Sichuan , China . ; ; Tel: +86-28-85412890
| | - Chengyuan Wang
- College of Chemistry , Key Laboratory for Radiation Physics and Technology of Ministry of Education , Analytical & Testing Center , Sichuan University , Chengdu 610064 , Sichuan , China . ; ; Tel: +86-28-85412890
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun 130012 , China
| | - Wen Feng
- College of Chemistry , Key Laboratory for Radiation Physics and Technology of Ministry of Education , Analytical & Testing Center , Sichuan University , Chengdu 610064 , Sichuan , China . ; ; Tel: +86-28-85412890
| | - Bing Gong
- Department of Chemistry , The State University of New York , Buffalo , New York 14260 , USA
| | - Lihua Yuan
- College of Chemistry , Key Laboratory for Radiation Physics and Technology of Ministry of Education , Analytical & Testing Center , Sichuan University , Chengdu 610064 , Sichuan , China . ; ; Tel: +86-28-85412890
| |
Collapse
|
46
|
Benson CR, Fatila EM, Lee S, Marzo MG, Pink M, Mills MB, Preuss KE, Flood AH. Extreme Stabilization and Redox Switching of Organic Anions and Radical Anions by Large-Cavity, CH Hydrogen-Bonding Cyanostar Macrocycles. J Am Chem Soc 2016; 138:15057-15065. [DOI: 10.1021/jacs.6b09459] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Christopher R. Benson
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Elisabeth M. Fatila
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Semin Lee
- The
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew G. Marzo
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Michelle B. Mills
- Department
of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kathryn E. Preuss
- Department
of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Amar H. Flood
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
47
|
Fatila EM, Twum EB, Sengupta A, Pink M, Karty JA, Raghavachari K, Flood AH. Anions Stabilize Each Other inside Macrocyclic Hosts. Angew Chem Int Ed Engl 2016; 55:14057-14062. [PMID: 27712022 DOI: 10.1002/anie.201608118] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 11/07/2022]
Abstract
Contrary to the simple expectations from Coulomb's law, Weinhold proposed that anions can stabilize each other as metastable dimers, yet experimental evidence for these species and their mutual stabilization is missing. We show that two bisulfate anions can form such dimers, which stabilize each other with self-complementary hydrogen bonds, by encapsulation inside a pair of cyanostar macrocycles. The resulting 2:2 complex of the bisulfate homodimer persists across all states of matter, including in solution. The bisulfate dimer's OH⋅⋅⋅O hydrogen bonding is seen in a 1 H NMR peak at 13.75 ppm, which is consistent with borderline-strong hydrogen bonds.
Collapse
Affiliation(s)
- Elisabeth M Fatila
- Dept. of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Eric B Twum
- Dept. of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Arkajyoti Sengupta
- Dept. of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Maren Pink
- Dept. of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Jonathan A Karty
- Dept. of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Krishnan Raghavachari
- Dept. of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Amar H Flood
- Dept. of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA.
| |
Collapse
|
48
|
Fatila EM, Twum EB, Sengupta A, Pink M, Karty JA, Raghavachari K, Flood AH. Anions Stabilize Each Other inside Macrocyclic Hosts. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Elisabeth M. Fatila
- Dept. of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Ave. Bloomington IN 47405 USA
| | - Eric B. Twum
- Dept. of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Ave. Bloomington IN 47405 USA
| | - Arkajyoti Sengupta
- Dept. of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Ave. Bloomington IN 47405 USA
| | - Maren Pink
- Dept. of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Ave. Bloomington IN 47405 USA
| | - Jonathan A. Karty
- Dept. of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Ave. Bloomington IN 47405 USA
| | - Krishnan Raghavachari
- Dept. of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Ave. Bloomington IN 47405 USA
| | - Amar H. Flood
- Dept. of Chemistry; Indiana University Bloomington; 800 E. Kirkwood Ave. Bloomington IN 47405 USA
| |
Collapse
|
49
|
Qiao B, Liu Y, Lee S, Pink M, Flood AH. A high-yield synthesis and acid–base response of phosphate-templated [3]rotaxanes. Chem Commun (Camb) 2016; 52:13675-13678. [DOI: 10.1039/c6cc08113d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We show a high-yielding synthesis (80%) of [3]rotaxanes using shape-persistent macrocycles, cyanostars, and anionic organo-phosphate templates catalyzed by low steric-demand click chemistry.
Collapse
Affiliation(s)
- Bo Qiao
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | - Yun Liu
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | - Semin Lee
- Department of Chemistry
- Indiana University
- Bloomington
- USA
- Beckman Institute for Advanced Science and Technology
| | - Maren Pink
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | - Amar H. Flood
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| |
Collapse
|
50
|
Qiao B, Anderson JR, Pink M, Flood AH. Size-matched recognition of large anions by cyanostar macrocycles is saved when solvent-bias is avoided. Chem Commun (Camb) 2016; 52:8683-6. [DOI: 10.1039/c6cc03463b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bulky cyanostar that only forms 1 : 1 complexes was created to study the poorly understood size dependent recognition of large anions by shape-persistent macrocycles.
Collapse
Affiliation(s)
- Bo Qiao
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | | | - Maren Pink
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | - Amar H. Flood
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| |
Collapse
|