1
|
Sabatelle RC, Geller A, Li S, Van Heest A, Sachdeva UM, Bressler E, Korunes-Miller J, Tfayli B, Tal-Mason A, Kharroubi H, Colson YL, Grinstaff MW. Synthesis of Amphiphilic Amino Poly-Amido-Saccharide and Poly(lactic) Acid Block Copolymers and Fabrication of Paclitaxel-Loaded Mucoadhesive Nanoparticles. Bioconjug Chem 2024; 35:1429-1440. [PMID: 39159059 PMCID: PMC11948293 DOI: 10.1021/acs.bioconjchem.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Drug delivery to the esophagus through systemic administration remains challenging, as minimal drug reaches the desired target. Local delivery offers the potential for improved efficacy while minimizing off-target toxicities but necessitates bioadhesive properties for mucosal delivery. Herein, we describe the synthesis of two new mucoadhesive amphiphilic copolymers prepared by sequential ring-opening copolymerization or postpolymerization click conjugation. Both strategies yield block copolymers containing a hydrophilic amine-functionalized poly-amido-saccharide and either a hydrophobic alkyl derivatized poly-amido-saccharide or poly(lactic acid), respectively. The latter resulting copolymers readily self-assemble into spherical, ≈200 nm diameter, positively charged mucoadhesive nanoparticles. The NPs entrap ultrahigh levels of paclitaxel via encapsulation of free paclitaxel and paclitaxel conjugated to a biodegradable, biocompatible poly(1,2-glycerol carbonate). Paclitaxel-loaded NPs rapidly enter cells, release paclitaxel, are cytotoxic to esophageal OE33 and OE19 tumor cells in vitro, and, importantly, demonstrate improved mucoadhesion compared to conventional poly(ethylene glycol)-poly(lactic acid) nanoparticles to ex vivo esophageal tissue.
Collapse
Affiliation(s)
- Robert C. Sabatelle
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Abraham Geller
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Siyuan Li
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Audrey Van Heest
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Uma M. Sachdeva
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eric Bressler
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Jenny Korunes-Miller
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| | - Bassel Tfayli
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aya Tal-Mason
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hussein Kharroubi
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mark W. Grinstaff
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, MA 02215, USA
| |
Collapse
|
2
|
Singh S, Sahani H. Current Advancement and Future Prospects: Biomedical Nanoengineering. Curr Radiopharm 2024; 17:120-137. [PMID: 38058099 DOI: 10.2174/0118744710274376231123063135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Recent advancements in biomedicine have seen a significant reliance on nanoengineering, as traditional methods often fall short in harnessing the unique attributes of biomaterials. Nanoengineering has emerged as a valuable approach to enhance and enrich the performance and functionalities of biomaterials, driving research and development in the field. This review emphasizes the most prevalent biomaterials used in biomedicine, including polymers, nanocomposites, and metallic materials, and explores the pivotal role of nanoengineering in developing biomedical treatments and processes. Particularly, the review highlights research focused on gaining an in-depth understanding of material properties and effectively enhancing material performance through molecular dynamics simulations, all from a nanoengineering perspective.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| | - Hrishika Sahani
- Lifecell International Pvt. Ltd., NSP Office, Pearls Business Park, 8th Floor Office No-804, Netaji Subhash Palace Delhi, 110034, India
| |
Collapse
|
3
|
Thirunavukkarasu MK, Veerappapillai S, Karuppasamy R. Computational biophysics approach towards the discovery of multi-kinase blockers for the management of MAPK pathway dysregulation. Mol Divers 2023; 27:2093-2110. [PMID: 36260173 DOI: 10.1007/s11030-022-10545-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2022]
Abstract
The MAPK pathway is important in human lung cancer and is improperly activated in a substantial proportion through number of ways. Strategies on dual-targeting RAF and MEK are an alternative option to diminish the limitations in this pathway inhibition. Hence, we implemented parallel pharmacophore screening of 11,808 DrugBank compounds against RAF and MEK. ADHRR and DHHRR were modeled as a pharmacophore hypothesis for RAF and MEK respectively. Importantly, these hypotheses resulted an AUC value of > 0.90 with the external data set. As a result of phase screening, glide docking, and prime-MM/GBSA scoring, it is determined that DB08424 and DB08907 have the best chances of acting as multi-kinase inhibitors. The pi-cation interaction with key amino acid residues of both target receptors may responsible for the stronger binding with these kinases. Cumulative 600 ns MD simulation studies validate the binding ability of these compounds. Significantly, the hit compounds resulted higher number of stable conformational state with less atomic movements than the reference compound against both targets. The anti-cancer efficacy of the lead compounds was validated through machine learning-based approaches. These findings suggest that DB08424 and DB08907 might be novel molecules to be explored further experimentally to block the MAPK signaling in lung cancer patients.
Collapse
Affiliation(s)
- Muthu Kumar Thirunavukkarasu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Maksudov F, Kliuchnikov E, Pierson D, Ujwal M, Marx KA, Chanda A, Barsegov V. Therapeutic phosphorodiamidate morpholino oligonucleotides: Physical properties, solution structures, and folding thermodynamics. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:631-647. [PMID: 36910708 PMCID: PMC9996446 DOI: 10.1016/j.omtn.2023.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Elucidating the structure-function relationships for therapeutic RNA mimicking phosphorodiamidate morpholino oligonucleotides (PMOs) is challenging due to the lack of information about their structures. While PMOs have been approved by the US Food and Drug Administration for treatment of Duchenne muscular dystrophy, no structural information on these unique, charge-neutral, and stable molecules is available. We performed circular dichroism and solution viscosity measurements combined with molecular dynamics simulations and machine learning to resolve solution structures of 22-mer, 25-mer, and 30-mer length PMOs. The PMO conformational dynamics are defined by the competition between non-polar nucleobases and uncharged phosphorodiamidate groups for shielding from solvent exposure. PMO molecules form non-canonical, partially helical, stable folded structures with a small 1.4- to 1.7-nm radius of gyration, low count of three to six base pairs and six to nine base stacks, characterized by -34 to -51 kcal/mol free energy, -57 to -103 kcal/mol enthalpy, and -23 to -53 kcal/mol entropy for folding. The 4.5- to 6.2-cm3/g intrinsic viscosity and Huggins constant of 4.5-9.9 are indicative of extended and aggregating systems. The results obtained highlight the importance of the conformational ensemble view of PMO solution structures, thermodynamic stability of their non-canonical structures, and concentration-dependent viscosity properties. These principles form a paradigm to understand the structure-properties-function relationship for therapeutic PMOs to advance the design of new RNA-mimic-based drugs.
Collapse
Affiliation(s)
- Farkhad Maksudov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
| | | | - Daniel Pierson
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
| | | | - Kenneth A. Marx
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
- Inciton, Inc., Andover, MA 01854, USA
| | - Arani Chanda
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
- Corresponding author: Arani Chanda, Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA.
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA
- Inciton, Inc., Andover, MA 01854, USA
- Corresponding author: Valeri Barsegov, Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA.
| |
Collapse
|
5
|
Synthesis and characterization of carbohydrate-based biosurfactant mimetics. Carbohydr Res 2022; 522:108697. [DOI: 10.1016/j.carres.2022.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
6
|
Xiao R, Zeng J, Bressler EM, Lu W, Grinstaff MW. Synthesis of bioactive (1→6)-β-glucose branched poly-amido-saccharides that stimulate and induce M1 polarization in macrophages. Nat Commun 2022; 13:4661. [PMID: 35945224 PMCID: PMC9363418 DOI: 10.1038/s41467-022-32346-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
β-Glucans are of significant interest due to their potent antitumor and immunomodulatory activities. Nevertheless, the difficulty in purification, structural heterogenicity, and limited solubility impede the development of structure-property relationships and translation to therapeutic applications. Here, we report the synthesis of a new class of (1→6)-β-glucose-branched poly-amido-saccharides (PASs) as β-glucan mimetics by ring-opening polymerization of a gentiobiose-based disaccharide β-lactam and its copolymerization with a glucose-based β-lactam, followed by post-polymerization deprotection. The molecular weight (Mn) and frequency of branching (FB) of PASs is readily tuned by adjusting monomer-to-initiator ratio and mole fraction of gentiobiose-lactam in copolymerization. Branched PASs stimulate mouse macrophages, and enhance production of pro-inflammatory cytokines in a FB-, dose-, and Mn-dependent manner. The stimulation proceeds via the activation of NF-κB/AP-1 pathway in a Dectin-1-dependent manner, similar to natural β-glucans. The lead PAS significantly polarizes primary human macrophages towards M1 phenotype compared to other β-glucans such as lentinan, laminarin, and curdlan.
Collapse
Affiliation(s)
- Ruiqing Xiao
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Shenzhen Middle School, Shenzhen, GD, 518001, China
| | - Jialiu Zeng
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Eric M Bressler
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Wei Lu
- Tosoh Bioscience LLC, King of Prussia, PA, 19406, USA
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Varghese M, Sockett KA, El-Arid S, Korunes-Miller J, Guigner JM, Grinstaff MW. Synthesis of Amphiphilic Diblock Poly-amido-saccharides and Self-Assembly of Polymeric Nanostructures. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, 75252 Paris Cedex 05, France
| | | |
Collapse
|
8
|
Varghese M, Rokosh RS, Haller CA, Chin SL, Chen J, Dai E, Xiao R, Chaikof EL, Grinstaff MW. Sulfated poly-amido-saccharides (sulPASs) are anticoagulants in vitro and in vivo. Chem Sci 2021; 12:12719-12725. [PMID: 34703558 PMCID: PMC8494039 DOI: 10.1039/d1sc02302k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/18/2021] [Indexed: 01/22/2023] Open
Abstract
Anticoagulant therapeutics are a mainstay of modern surgery and of clotting disorder management such as venous thrombosis, yet performance and supply limitations exist for the most widely used agent - heparin. Herein we report the first synthesis, characterization, and performance of sulfated poly-amido-saccharides (sulPASs) as heparin mimetics. sulPASs inhibit the intrinsic pathway of coagulation, specifically FXa and FXIa, as revealed by ex vivo human plasma clotting assays and serine protease inhibition assays. sulPASs activity positively correlates with molecular weight and degree of sulfation. Importantly, sulPASs are not degraded by heparanases and are non-hemolytic. In addition, their activity is reversed by protamine sulfate, unlike small molecule anticoagulants. In an in vivo murine model, sulPASs extend clotting time in a dose dependent manner with bleeding risk comparable to heparin. These findings support continued development of synthetic anticoagulants to address the clinical risks and shortages associated with heparin.
Collapse
Affiliation(s)
- Maria Varghese
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University Boston MA 02215 USA
| | - Rae S Rokosh
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Wyss Institute of Biologically Inspired Engineering of Harvard University Boston MA USA mailto:
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Wyss Institute of Biologically Inspired Engineering of Harvard University Boston MA USA mailto:
| | - Stacy L Chin
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University Boston MA 02215 USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Wyss Institute of Biologically Inspired Engineering of Harvard University Boston MA USA mailto:
| | - Erbin Dai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Wyss Institute of Biologically Inspired Engineering of Harvard University Boston MA USA mailto:
| | - Ruiqing Xiao
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University Boston MA 02215 USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Wyss Institute of Biologically Inspired Engineering of Harvard University Boston MA USA mailto:
| | - Mark W Grinstaff
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University Boston MA 02215 USA
| |
Collapse
|
9
|
Feng R, Zhu L, Heng X, Chen G, Chen H. Immune Effect Regulated by the Chain Length: Interaction between Immune Cell Surface Receptors and Synthetic Glycopolymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36859-36867. [PMID: 34333963 DOI: 10.1021/acsami.1c08785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glycopolymer-based drugs for immunotherapy have attracted increasing attention because the affinity between glycans and proteins plays an important role in immune responses. Previous studies indicate that the polymer chain length influences the affinity. In the studies on enhancing the immune response by glycans, it is found that both oligosaccharides and long-chain glycopolymers work well. However, there is a lack of systematic studies on the immune enhancement effect and the binding ability of oligomers and polymers to immune-related proteins. In this paper, to study the influence of the chain length, glycopolymers based on N-acetylglucosamine with different chain lengths were synthesized, and their interaction with immune-related proteins and their effect on dendritic cell maturation were evaluated. It was proved that compared with l-glycopolymers (degree of polymerization (DP) > 20), s-glycopolymers (DP < 20) showed better binding ability to the dendritic cell-specific ICAM-3-grabbing nonintegrin protein and the toll-like receptor 4 and myeloid differentiation factor 2 complex protein by quartz crystal microbalance and molecular docking simulation. When the total sugar unit amounts are equal, s-glycopolymers are proved to be superior in promoting dendritic cell maturation by detecting the expression level of CD80 and CD86 on the surface of dendritic cells. Through the combination of experimental characterization and theoretical simulation, a deep look into the interaction between immune-related proteins and glycopolymers with different chain lengths is helpful to improve the understanding of the immune-related interactions and provides a good theoretical basis for the design of new glycopolymer-based immune drugs.
Collapse
Affiliation(s)
- Ruyan Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Lijuan Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Xingyu Heng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
10
|
Chen AB, Shao Q, Hall CK. Molecular simulation study of 3,4-dihydroxyphenylalanine in the context of underwater adhesive design. J Chem Phys 2021; 154:144702. [PMID: 33858170 DOI: 10.1063/5.0044173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Adhesives that can stick to multiple surface types in underwater and high moisture conditions are critical for various applications such as marine coatings, sealants, and medical devices. The analysis of natural underwater adhesives shows that L-3,4-dihydroxyphenylalanine (DOPA) and functional amyloid nanostructures are key components that contribute to the adhesive powers of these natural glues. The combination of DOPA and amyloid-forming peptides into DOPA-amyloid(-forming peptide) conjugates provides a new approach to design generic underwater adhesives. However, it remains unclear how the DOPA monomers may interact with amyloid-forming peptides and how these interactions may influence the adhesive ability of the conjugates. In this paper, we investigate the behavior of DOPA monomers, (glycine-DOPA)3 chains, and a KLVFFAE and DOPA-glycine chain conjugate in aqueous environments using molecular simulations. The DOPA monomers do not aggregate significantly at concentrations lower than 1.0M. Simulations of (glycine-DOPA)3 chains in water were done to examine the intra-molecular interactions of the chain, wherein we found that there were unlikely to be interactions detrimental to the adhesion process. After combining the alternating DOPA-glycine chain with the amyloid-forming peptide KLVFFAE into a single chain conjugate, we then simulated the conjugate in water and saw the possibility of both intra-chain folding and no chain folding in the conjugate.
Collapse
Affiliation(s)
- Amelia B Chen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| |
Collapse
|
11
|
Liu L, Courtney KC, Huth SW, Rank LA, Weisblum B, Chapman ER, Gellman SH. Beyond Amphiphilic Balance: Changing Subunit Stereochemistry Alters the Pore-Forming Activity of Nylon-3 Polymers. J Am Chem Soc 2021; 143:3219-3230. [PMID: 33611913 PMCID: PMC7944571 DOI: 10.1021/jacs.0c12731] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 12/16/2022]
Abstract
Amphiphilic nylon-3 polymers have been reported to mimic the biological activities of natural antimicrobial peptides, with high potency against bacteria and minimal toxicity toward eukaryotic cells. Amphiphilic balance, determined by the proportions of hydrophilic and lipophilic subunits, is considered one of the most important features for achieving this activity profile for nylon-3 polymers and many other antimicrobial polymers. Insufficient hydrophobicity often correlates with weak activities against bacteria, whereas excessive hydrophobicity correlates with high toxicity toward eukaryotic cells. To ask whether factors beyond amphiphilic balance influence polymer activities, we synthesized and evaluated new nylon-3 polymers with two stereoisomeric subunits, each bearing an ethyl side chain and an aminomethyl side chain. Subunits that differ only in stereochemistry are predicted to contribute equally to amphiphilic balance, but we observed that the stereochemical difference correlates with significant changes in biological activity profile. Antibacterial activities were not strongly affected by subunit stereochemistry, but the ability to disrupt eukaryotic cell membranes varied considerably. Experiments with planar lipid bilayers and synthetic liposomes suggested that eukaryotic membrane disruption results from polymer-mediated formation of large pores. Collectively, our results suggest that factors other than amphiphilic balance influence the membrane activity profile of synthetic polymers. Subunits that differ in stereochemistry are likely to have distinct conformational propensities, which could potentially lead to differences in the average shapes of polymer chains, even when the subunits are heterochiral. These findings highlight a dimension of polymer design that should be considered more broadly in efforts to improve specificity and efficacy of antimicrobial polymers.
Collapse
Affiliation(s)
- Lei Liu
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kevin C. Courtney
- Department
of Neuroscience, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Howard
Hughes Medical Institute, University of
Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Sean W. Huth
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Leslie A. Rank
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Bernard Weisblum
- Department
of Pharmacology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Edwin R. Chapman
- Department
of Neuroscience, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Howard
Hughes Medical Institute, University of
Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Samuel H. Gellman
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Wang J, Wang D, Zhang Y, Dong J. Synthesis and Biopharmaceutical Applications of Sugar-Based Polymers: New Advances and Future Prospects. ACS Biomater Sci Eng 2021; 7:963-982. [PMID: 33523642 DOI: 10.1021/acsbiomaterials.0c01710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The rapid rise in research interest in carbohydrate-based polymers is undoubtedly due to the nontoxic nature of such materials in an in vivo environment and the versatile roles that the polymers can play in cellular functions. Such polymers have served as therapeutic tools for drug delivery, including antigens, proteins, and genes, as well as diagnostic devices. Our focus in the first half of this Review is on synthetic methods based on ring-opening polymerization and enzyme-catalyzed polymerization, along with controlled radical polymerization. In the second half of this Review, sugar-based polymers are discussed on the basis of their remarkable success in competitive receptor binding, as multifunctional nanocarriers of targeting inhibitors for cancer treatment, in genome-editing delivery, in immunotherapy based on endogenous antibody recruitment, and in treatment of respiratory diseases, including influenza A. Particular emphasis is put on the synthesis and biopharmaceutical applications of sugar-based polymers published in the most recent 5 years. A noticeable attribute of carbohydrate-based polymers is that the sugar-receptor interactions can be facilitated by the cooperative effect of multiple sugar units. Their diversified topology and structures will drive the development of new synthetic strategies and bring about important applications, including coronavirus-related drug therapy.
Collapse
Affiliation(s)
- Jie Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Dong Wang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Yixian Zhang
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| | - Jian Dong
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang Province 312000, China
| |
Collapse
|
13
|
Balijepalli AS, Grinstaff MW. Poly-Amido-Saccharides (PASs): Functional Synthetic Carbohydrate Polymers Inspired by Nature. Acc Chem Res 2020; 53:2167-2179. [PMID: 32892620 DOI: 10.1021/acs.accounts.0c00263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carbohydrates are ubiquitous in nature, playing vital roles in all organisms ranging from metabolism to intercellular signaling. Polysaccharides, repeating units of small molecule carbohydrates, are hydrophilic, densely functionalized, stereoregular, and rigid macromolecules, and these characteristics are simultaneously advantageous in biomedical applications while presenting major hurdles for synthetic methodology and development of structure property relationships. While naturally obtained polysaccharides are widely utilized in the biochemical and medical literature, their poor physicochemical definition and the potential for contaminated samples hinders the clinical translation of this work. To address the need for new methods to synthesize carbohydrate polymers, we reported a novel class of biomaterials (Poly-Amido-Saccharides; PAS) in 2012. PASs share many properties with natural polysaccharides, such as hydrophilicity, dense hydroxyl functionality, stereoregularity, and a rigid backbone. PASs are connected by an α-1,2-amide linkage, instead of an ether linkage, that confers resistance to enzymatic and hydrolytic degradation and leads to a unique helical conformation. Importantly, our synthetic methodology affords control over molecular weight distribution resulting in pure, well-defined polymers. This Account provides an overview of the development of PAS, from the factors that initially motivated our research to current efforts to translate functional PAS to biomedical applications. We detail the synthesis of glucose- and galactose-based PAS and their biophysical properties including conformation analysis, lectin interactions, cell internalization, and water solubility. Additionally, we describe postpolymerization modification strategies to afford PASs that act as protein stabilizers. We also highlight our recent efforts toward a mechanistic understanding of monomer synthesis via [2 + 2] cycloaddition reactions in order to develop novel monomers with different stereochemistry and amine or alkyl functionality, thereby accessing functional carbohydrate polymers. Throughout our work, we apply computational and theoretical analysis to explain how properties at the monomer level (e.g., stereochemistry, functionality) significantly impact polymer properties, helical conformation, and bioactivities. Collectively, the results from the theoretical, synthetic, and applied aspects of this research advance us toward our goal of utilizing PASs in key biomedical applications as alternatives to natural polysaccharides. The importance of carbohydrates in nature and the versatility of their functions continue to inspire our investigation of new monomers, polymers, and copolymers, leveraging the advantageous properties of PAS to develop potential therapies.
Collapse
Affiliation(s)
- Anant S. Balijepalli
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Medicine, Boston University, 72 East Concord Street, Boston, Massachusetts 02118, United States
| |
Collapse
|
14
|
Balijepalli AS, Sabatelle RC, Chen M, Suki B, Grinstaff MW. A Synthetic Bioinspired Carbohydrate Polymer with Mucoadhesive Properties. Angew Chem Int Ed Engl 2020; 59:704-710. [PMID: 31701611 PMCID: PMC7754715 DOI: 10.1002/anie.201911720] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/17/2019] [Indexed: 01/26/2023]
Abstract
Mucoadhesive polymers are of significant interest to the pharmaceutical, medical device, and cosmetic industries. Polysaccharides possessing charged functional groups, such as chitosan, are known for mucoadhesive properties but suffer from poor chemical definition and solubility, while the chemical synthesis of polysaccharides is challenging with few reported examples of synthetic carbohydrate polymers with engineered-in ionic functionality. We report the design, synthesis, and evaluation of a synthetic, cationic, enantiopure carbohydrate polymer inspired by the structure of chitosan. These water-soluble, cytocompatible polymers are prepared via an anionic ring-opening polymerization of a bicyclic β-lactam sugar monomer. The synthetic method provides control over the site of amine functionalization and the length of the polymer while providing narrow dispersities. These well-defined polymers are mucoadhesive as documented in single-molecule scale (AFM), bulk solution phase (FRAP), and ex vivo tissue experiments. Polymer length and functionality affects bioactivity as long, charged polymers display higher mucoadhesivity than long, neutral polymers or short, charged polymers.
Collapse
Affiliation(s)
- Anant S Balijepalli
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Robert C Sabatelle
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Mingfu Chen
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Bela Suki
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
- Department of Chemistry, Boston University, 712 Beacon Street, Boston, MA, 02215, USA
- School of Medicine, Boston University, 72 East Concord Street, Boston, MA, 02118, USA
| |
Collapse
|
15
|
Piccini M, Leak DJ, Chuck CJ, Buchard A. Polymers from sugars and unsaturated fatty acids: ADMET polymerisation of monomers derived from d-xylose, d-mannose and castor oil. Polym Chem 2020. [DOI: 10.1039/c9py01809c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High molecular weight renewable polyesters are synthesised from an unsaturated fatty acid and structurally unmodified, hemicellulosic sugars, with post-polymerisation modification inducing semicrystallinity and allowing casting of transparent films.
Collapse
Affiliation(s)
- Marco Piccini
- Centre for Sustainable and Circular Technologies
- Department of Chemistry
- University of Bath
- Bath BA2 7AY
- UK
| | - David J. Leak
- Department of Biology and Biochemistry
- University of Bath
- Bath BA2 7AY
- UK
| | | | - Antoine Buchard
- Centre for Sustainable and Circular Technologies
- Department of Chemistry
- University of Bath
- Bath BA2 7AY
- UK
| |
Collapse
|
16
|
Balijepalli AS, Hamoud A, Grinstaff MW. Cationic poly-amido-saccharides: stereochemically-defined, enantiopure polymers from anionic ring-opening polymerization of an amino-sugar monomer. Polym Chem 2020. [DOI: 10.1039/c9py01691k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We expand the scope of the PAS methodology and evaluate multiple synthetic routes to generate a regioselectively-functionalized 6-amino carbohydrate polymer sharing key properties with natural polysaccharides, including high water-solubility.
Collapse
Affiliation(s)
| | | | - Mark W. Grinstaff
- Department of Biomedical Engineering
- Boston University
- Boston
- USA
- Department of Chemistry
| |
Collapse
|
17
|
Balijepalli AS, Sabatelle RC, Chen M, Suki B, Grinstaff MW. A Synthetic Bioinspired Carbohydrate Polymer with Mucoadhesive Properties. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anant S. Balijepalli
- Department of Biomedical Engineering Boston University 44 Cummington Mall Boston MA 02215 USA
| | - Robert C. Sabatelle
- Department of Biomedical Engineering Boston University 44 Cummington Mall Boston MA 02215 USA
| | - Mingfu Chen
- Department of Biomedical Engineering Boston University 44 Cummington Mall Boston MA 02215 USA
| | - Bela Suki
- Department of Biomedical Engineering Boston University 44 Cummington Mall Boston MA 02215 USA
| | - Mark W. Grinstaff
- Department of Biomedical Engineering Boston University 44 Cummington Mall Boston MA 02215 USA
- Department of Chemistry Boston University 712 Beacon Street Boston MA 02215 USA
- School of Medicine Boston University 72 East Concord Street Boston MA 02118 USA
| |
Collapse
|
18
|
Zhang K, Du Y, Si Z, Liu Y, Turvey ME, Raju C, Keogh D, Ruan L, Jothy SL, Reghu S, Marimuthu K, De PP, Ng OT, Mediavilla JR, Kreiswirth BN, Chi YR, Ren J, Tam KC, Liu XW, Duan H, Zhu Y, Mu Y, Hammond PT, Bazan GC, Pethe K, Chan-Park MB. Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. Nat Commun 2019; 10:4792. [PMID: 31636263 PMCID: PMC6803644 DOI: 10.1038/s41467-019-12702-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
The treatment of bacterial infections is hindered by the presence of biofilms and metabolically inactive persisters. Here, we report the synthesis of an enantiomeric block co-beta-peptide, poly(amido-D-glucose)-block-poly(beta-L-lysine), with high yield and purity by one-shot one-pot anionic-ring opening (co)polymerization. The co-beta-peptide is bactericidal against methicillin-resistant Staphylococcus aureus (MRSA), including replicating, biofilm and persister bacterial cells, and also disperses biofilm biomass. It is active towards community-acquired and hospital-associated MRSA strains which are resistant to multiple drugs including vancomycin and daptomycin. Its antibacterial activity is superior to that of vancomycin in MRSA mouse and human ex vivo skin infection models, with no acute in vivo toxicity in repeated dosing in mice at above therapeutic levels. The copolymer displays bacteria-activated surfactant-like properties, resulting from contact with the bacterial envelope. Our results indicate that this class of non-toxic molecule, effective against different bacterial sub-populations, has promising potential for the treatment of S. aureus infections. The authors report the synthesis of an enantiomeric block co-beta-peptide that kills methicillin-resistant Staphylococcus aureus, including biofilm and persister bacterial cells, and disperses biofilms. The copolymer displays antibacterial activity in human ex vivo and mouse in vivo infection models without toxicity.
Collapse
Affiliation(s)
- Kaixi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yu Du
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, 350002, Fuzhou, China
| | - Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yang Liu
- Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Michelle E Turvey
- Infectious Disease Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology Centre, 1 Create Way, Singapore, 138602, Singapore
| | - Cheerlavancha Raju
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Damien Keogh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Lin Ruan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Subramanion L Jothy
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Sheethal Reghu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Kalisvar Marimuthu
- Department of Infectious Diseases, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore, 308442, Singapore
| | - Partha Pratim De
- Department of Laboratory Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Oon Tek Ng
- Department of Infectious Diseases, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,National Centre for Infectious Diseases, 16 Jalan Tan Tock Seng, Singapore, 308442, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - José R Mediavilla
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jinghua Ren
- Cancer Center, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430022, Hubei, China
| | - Kam C Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Xue-Wei Liu
- Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yabin Zhu
- Medical School of Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Guillermo C Bazan
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106-9510, USA
| | - Kevin Pethe
- Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore. .,Centre for Antimicrobial Bioengineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
19
|
Chen L, Feng J, Yang D, Tian F, Ye X, Qian Q, Wei S, Zhou Y. Sequence isomerism-dependent self-assembly of glycopeptide mimetics with switchable antibiofilm properties. Chem Sci 2019; 10:8171-8178. [PMID: 31857883 PMCID: PMC6837002 DOI: 10.1039/c9sc00193j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
In biological systems, diverse amino acid sequences and functional decorations endow proteins with specific functions. Functionally modified oligopeptides are attractive building blocks to assemble stimuli-responsive biomimetic superstructures for mimicking soft structures in nature and biomaterial applications. In this work, we selectively synthesized the structurally simplest isomeric tripeptides (i.e., Ala-Gly-Gly-OH, Gly-Ala-Gly-OH and Gly-Gly-Ala-OH) to demonstrate how the subtlest change in sequence isomerism influences the self-assembly of glycopeptides. To impart self-assembly capability and stimuli-responsiveness, the isomeric tripeptides were modified with a hydrophobic n-butylazobenzene tail at the N-terminal. We observed three different self-assembled 1-D morphologies (i.e., nanotwists, nanoribbons and nanofibers) from the azobenzene-glycopeptides (AGPs) under the same conditions when the position of the Ala residue was switched. Experimental methods including transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and circular dichroism (CD) spectroscopy were used to characterize the structural details of glycopeptide mimetic assemblies. Martini coarse-grained molecular dynamics (MD) simulations confirmed such structural observations and investigated the differences in assembly mechanisms. Furthermore, the glycopeptide mimetic assemblies showed a reversible disassembly-assembly process in response to temperature, light or host-guest chemistry, and can be used as switchable antibiofilm nanoagents.
Collapse
Affiliation(s)
- Limin Chen
- School of Ophthalmology and Optometry , Eye Hospital , School of Biomedical Engineering , Wenzhou Medical University , Wenzhou 325000 , P. R. China .
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province , Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou 325000 , P. R. China
| | - Jie Feng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province , Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou 325000 , P. R. China
| | - Dan Yang
- School of Ophthalmology and Optometry , Eye Hospital , School of Biomedical Engineering , Wenzhou Medical University , Wenzhou 325000 , P. R. China .
| | - Falin Tian
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province , Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou 325000 , P. R. China
| | - Xiaomin Ye
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province , Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou 325000 , P. R. China
| | - Qiuping Qian
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province , Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou 325000 , P. R. China
| | - Shuai Wei
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , USA .
| | - Yunlong Zhou
- School of Ophthalmology and Optometry , Eye Hospital , School of Biomedical Engineering , Wenzhou Medical University , Wenzhou 325000 , P. R. China .
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province , Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou 325000 , P. R. China
| |
Collapse
|
20
|
Agrahari AK, Muskan M, George Priya Doss C, Siva R, Zayed H. Computational insights of K1444N substitution in GAP-related domain of NF1 gene associated with neurofibromatosis type 1 disease: a molecular modeling and dynamics approach. Metab Brain Dis 2018; 33:1443-1457. [PMID: 29804243 DOI: 10.1007/s11011-018-0251-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
Abstract
The NF1 gene encodes for neurofibromin protein, which is ubiquitously expressed, but most highly in the central nervous system. Non-synonymous SNPs (nsSNPs) in the NF1 gene were found to be associated with Neurofibromatosis Type 1 disease, which is characterized by the growth of tumors along nerves in the skin, brain, and other parts of the body. In this study, we used several in silico predictions tools to analyze 16 nsSNPs in the RAS-GAP domain of neurofibromin, the K1444N (K1423N) mutation was predicted as the most pathogenic. The comparative molecular dynamic simulation (MDS; 50 ns) between the wild type and the K1444N (K1423N) mutant suggested a significant change in the electrostatic potential. In addition, the RMSD, RMSF, Rg, hydrogen bonds, and PCA analysis confirmed the loss of flexibility and increase in compactness of the mutant protein. Further, SASA analysis revealed exchange between hydrophobic and hydrophilic residues from the core of the RAS-GAP domain to the surface of the mutant domain, consistent with the secondary structure analysis that showed significant alteration in the mutant protein conformation. Our data concludes that the K1444N (K1423N) mutant lead to increasing the rigidity and compactness of the protein. This study provides evidence of the benefits of the computational tools in predicting the pathogenicity of genetic mutations and suggests the application of MDS and different in silico prediction tools for variant assessment and classification in genetic clinics.
Collapse
Affiliation(s)
- Ashish Kumar Agrahari
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Meghana Muskan
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - R Siva
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
21
|
Guevara-Carrion G, Gaponenko Y, Mialdun A, Janzen T, Shevtsova V, Vrabec J. Interplay of structure and diffusion in ternary liquid mixtures of benzene + acetone + varying alcohols. J Chem Phys 2018; 149:064504. [PMID: 30111131 DOI: 10.1063/1.5044431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Fick diffusion coefficient matrix of ternary mixtures containing benzene + acetone + three different alcohols, i.e., methanol, ethanol, and 2-propanol, is studied by molecular dynamics simulation and Taylor dispersion experiments. Aiming to identify common features of these mixtures, it is found that one of the main diffusion coefficients and the smaller eigenvalue do not depend on the type of alcohol along the studied composition path. Two mechanisms that are responsible for this invariant behavior are discussed in detail, i.e., the interplay between kinetic and thermodynamic contributions to Fick diffusion coefficients and the presence of microscopic heterogeneities caused by hydrogen bonding. Experimental work alone cannot explain these mechanisms, while present simulations on the molecular level indicate structural changes and uniform intermolecular interactions between benzene and acetone molecules in the three ternary mixtures. The main diffusion coefficients of these ternary mixtures exhibit similarities with their binary subsystems. Analyses of radial distribution functions and hydrogen bonding statistics quantitatively evidence alcohol self-association and cluster formation, as well as component segregation. Furthermore, the excess volume of the mixtures is analyzed in the light of intermolecular interactions, further demonstrating the benefits of the simultaneous use of experiment and simulation. The proposed framework for studying diffusion coefficients of a set of ternary mixtures, where only one component varies, opens the way for further investigations and a better understanding of multicomponent diffusion. The presented numerical results may also give an impulse to the development of predictive approaches for multicomponent diffusion.
Collapse
Affiliation(s)
- Gabriela Guevara-Carrion
- Thermodynamics and Energy Technology, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Yuri Gaponenko
- Microgravity Research Center, Université Libre de Bruxelles, CP-165/62, Ave. F.D. Roosevelt, 50, B-1050 Brussels, Belgium
| | - Aliaksandr Mialdun
- Microgravity Research Center, Université Libre de Bruxelles, CP-165/62, Ave. F.D. Roosevelt, 50, B-1050 Brussels, Belgium
| | - Tatjana Janzen
- Thermodynamics and Energy Technology, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Valentina Shevtsova
- Microgravity Research Center, Université Libre de Bruxelles, CP-165/62, Ave. F.D. Roosevelt, 50, B-1050 Brussels, Belgium
| | - Jadran Vrabec
- Thermodynamics and Energy Technology, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| |
Collapse
|
22
|
Xiao R, Zeng J, Grinstaff MW. Biologically Active Branched Polysaccharide Mimetics: Synthesis via Ring-Opening Polymerization of a Maltose-Based β-Lactam. ACS Macro Lett 2018; 7:772-777. [PMID: 35650766 DOI: 10.1021/acsmacrolett.8b00302] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stereoregular poly-amido-saccharides bearing α-glucopyranose branches (Mal-PASs) are synthesized by anionic ring-opening polymerization of a maltose-based β-lactam monomer followed by debenzylation. The polymerization affords high molecular weight polymers (up to 31500 g/mol) with narrow dispersities (Đ < 1.1). Deprotected Mal-PASs are highly soluble in water and adopt a left-handed helical conformation in solution. Turbidimetric assay shows that Mal-PASs are multivalent ligands to lectin Concanavalin A.
Collapse
|
23
|
López-Vidal EM, Gregory GL, Kociok-Köhn G, Buchard A. Polymers from sugars and CS2: synthesis and ring-opening polymerisation of sulfur-containing monomers derived from 2-deoxy-d-ribose and d-xylose. Polym Chem 2018. [DOI: 10.1039/c8py00119g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cyclic thionocarbonate and xanthate monomers were synthesised directly from ribose- and xylose-derived diols and CS2, and yielded novel sugar-based polymers with regioregular sulfur-containing linkages.
Collapse
Affiliation(s)
| | - Georgina L. Gregory
- Department of Chemistry
- University of Bath
- Bath BA2 7AY
- UK
- Centre for Doctoral Training in Sustainable Chemical Technologies
| | - Gabriele Kociok-Köhn
- Chemical Characterisation and Analysis Facilities
- University of Bath
- Bath BA2 7AY
- UK
| | | |
Collapse
|
24
|
|
25
|
Xiao R, Dane EL, Zeng J, McKnight CJ, Grinstaff MW. Synthesis of Altrose Poly-amido-saccharides with β-N-(1→2)-d-amide Linkages: A Right-Handed Helical Conformation Engineered in at the Monomer Level. J Am Chem Soc 2017; 139:14217-14223. [DOI: 10.1021/jacs.7b07405] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ruiqing Xiao
- Department
of Chemistry and ‡Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Physiology and Biophysics and ∥Department of
Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Eric L. Dane
- Department
of Chemistry and ‡Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Physiology and Biophysics and ∥Department of
Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Jialiu Zeng
- Department
of Chemistry and ‡Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Physiology and Biophysics and ∥Department of
Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Christopher J. McKnight
- Department
of Chemistry and ‡Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Physiology and Biophysics and ∥Department of
Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Mark W. Grinstaff
- Department
of Chemistry and ‡Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Physiology and Biophysics and ∥Department of
Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| |
Collapse
|
26
|
Gregory GL, López-Vidal EM, Buchard A. Polymers from sugars: cyclic monomer synthesis, ring-opening polymerisation, material properties and applications. Chem Commun (Camb) 2017; 53:2198-2217. [DOI: 10.1039/c6cc09578j] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article gives an overview of sugar-based polymers that can be made by ring-opening-polymerisation and their applications.
Collapse
|