1
|
Kundu S, Mallick S, Riebe J, Niemeyer J. Directional Macrocycle Transport, Release, and Recapture Enabled by a Rotaxane Transporter. Chemistry 2025:e202501106. [PMID: 40194924 DOI: 10.1002/chem.202501106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/09/2025]
Abstract
A transporter for a directional macrocycle transport, release, and recapture was constructed. This was achieved using a rotaxane featuring a dibenzo-24-crown-8 macrocycle, dibenzylammonium (DBA)/methyl triazolium (MTA) stations on the thread and anthracene/triisopropylsilyl-acetylene stoppers, respectively. In the protonated rotaxane, the macrocycle primarily resides on the DBA station, followed by directional shuttling to the MTA station upon treatment with base. Addition of fluoride as an additional chemical input cleaves the triisopropylsilyl stopper, leading to release of the macrocycle and the half-thread into solution. The released macrocycle can be recaptured by protonation, and the mechanical bond can be reestablished via CuAAC click reaction, enabled by the terminal acetylene unit on the half-thread. This generates an elongated second-generation rotaxane transporter, which was used for a second cycle of directional macrocycle transport and release, proving the possibility of an iterative operation of the rotaxane-transporter in this molecular design.
Collapse
Affiliation(s)
- Sohom Kundu
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
- Research Center for Trustworthy Data Science and Security (UA Ruhr), Joseph-von-Fraunhofer-Str. 25, 44227, Dortmund, Germany
| | - Shubhadip Mallick
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Jan Riebe
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| |
Collapse
|
2
|
Catalán AC, Peña-Zarate L, Cervantes R, Vela A, Tiburcio J. Macrocycle Unidirectional Transport Along a Linear Molecule by a Two-Step Chemical Reaction Sequence. ChemistryOpen 2025; 14:e202400244. [PMID: 39468858 DOI: 10.1002/open.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/29/2024] [Indexed: 10/30/2024] Open
Abstract
Chemical systems displaying directional motions are relevant to the operation of artificial molecular machines. Herein we present the functioning of a molecule capable of transporting a cyclic species in a preferential direction. Our system is based on a linear, non-symmetric, positively charged molecule. This cation integrates into its structure two different reactive regions. On one side features a bulky ester group that can be exchanged by a smaller substituent; the other extreme contains an acid/base responsive moiety that plays a dual role, as part of the recognition motif and as a terminal group. In the acidic state, a dibenzo-24-crown-8 ether slides into the linear component attracted by the positively charged recognition site. It does this selectively through the extreme that contains the azepanium group, since the other side is sterically hindered. After base addition, intermolecular interactions are lost; however, the macrocycle is unable to escape from the linear component since the energy barrier to slide over the neutral azepane is too large. Therefore, a metastable mechanically interlocked molecule is formed. A second reaction, now on the ester functionality, exchanges the bulky mesityl for a methyl group, small enough to allow macrocycle dissociation, completing the directional transit of the ring along the track.
Collapse
Affiliation(s)
- Aldo C Catalán
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Avenida IPN 2508, 07360, Mexico City, Mexico
| | - Lucio Peña-Zarate
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Avenida IPN 2508, 07360, Mexico City, Mexico
| | - Ruy Cervantes
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Avenida IPN 2508, 07360, Mexico City, Mexico
| | - Alberto Vela
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Avenida IPN 2508, 07360, Mexico City, Mexico
| | - Jorge Tiburcio
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Avenida IPN 2508, 07360, Mexico City, Mexico
| |
Collapse
|
3
|
1-[2,6-Dimethyl-4-(pent-4-yn-1-yloxy)phenyl]-4-phenyl-1,2,4-triazolidine-3,5-dione. MOLBANK 2023. [DOI: 10.3390/m1578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Urazolyl radicals are a class of persistent nitrogen-centered radicals. In a previous work, we successfully formed self-assembled monolayers of substituted urazolyl radicals on gold surfaces. To extend the scope of these investigations, we sought to form a self-assembled monolayer using a urazolyl radical species that we knew existed predominantly in the dimerized N-N form instead of existing predominantly as free N-centered radical species, as had previously been investigated. We successfully synthesized the precursor urazole compound needed to generate the desired urazolyl radical, and completely characterized its structure. Most importantly, it was determined that the alkyne functional group that is needed to adhere to the gold surface remained intact. Unfortunately, however, we only obtained ambiguous results from attempts at forming self-assembled monolayers of this species on gold.
Collapse
|
4
|
Wu Z, Wang S, Zhang Z, Zhang Y, Yin Y, Shi H, Jiao S. Solvent effects on the motion of a crown ether/amino rotaxane. RSC Adv 2022; 12:30495-30500. [PMID: 36337980 PMCID: PMC9597606 DOI: 10.1039/d2ra05453a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022] Open
Abstract
Solvents have been recognized as a significant factor for modulating the shuttle of rotaxanes and regulating their functions regarding molecular machines by a lot of published studies. The mechanism of the effects of solvents on the motion of crown ether/amino rotaxanes, however, remains unclear. In this work, a rotaxane, formed by dibenzo-24-crown-8 (C[8]) and a dumbbell-shaped axle with two positively charged amino groups, was investigated at the atom level. Two-dimensional free-energy landscapes characterizing the conformational change of C[8] and the shuttling motions in chloroform and water were mapped. The results indicated that the barriers in water were evidently lower than those in chloroform. By analyzing the trajectories, there was no obvious steric effect during shuttling. Instead, the main driving force of shuttling was verified from electrostatic interactions, especially strong hydrogen bonding interactions between the axle and water, which resulted in the fast shuttling rate of the rotaxane. All in all, the polarity and hydrogen bond-forming ability of solvents are the main factors in affecting the shuttling rate of a crown ether/amino rotaxane. In addition, C[8] would adopt S-shaped conformations during shuttling except for situating in the amino sites with C-shaped ones adopted due to π-π stacking interactions. The results of this research improve the comprehension of the solvent modulation ability for shuttling in crown ether-based rotaxanes and illustrate the effects of structural modifications on motions. These new insights are expected to serve the efficient design and construction of molecular machines.
Collapse
Affiliation(s)
- Zhen Wu
- School of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
| | - Shuangshuang Wang
- School of Chemistry and Chemical Engineering, Guangxi University Nanning 530004 China
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Zilin Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Yanjun Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Yanzhen Yin
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Haixin Shi
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| | - Shufei Jiao
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University Qinzhou 535011 China
| |
Collapse
|
5
|
Li X, Xie J, Du Z, Jiang L, Li G, Ling S, Zhu K. Docking rings in a solid: reversible assembling of pseudorotaxanes inside a zirconium metal-organic framework. Chem Sci 2022; 13:6291-6296. [PMID: 35733896 PMCID: PMC9159108 DOI: 10.1039/d2sc01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
An unprecedented zirconium metal–organic framework featuring a T-shaped benzimidazole strut was constructed and employed as a sponge-like material for selective absorption of macrocyclic guests. The neutral benzimidazole domain of the as-synthesized framework can be readily protonated and fully converted to benzimidazolium. Mechanical threading of [24]crown-8 ether wheels onto recognition sites to form pseudorotaxanes was evidenced by solution nuclear magnetic resonance, solid-state fluorescence, and infrared spectroscopy. Selective absorption of [24]crown-8 ether rather than its dibenzo counterpart was also observed. Further study reveals that this binding process is reversible and acid–base switchable. The success of docking macrocyclic guests in crystals via host–guest interactions provides an alternative route to complex functional materials with interpenetrated structures. A T-shaped ligand was designed as struts for building a zirconium metal–organic framework. Acid–base switchable docking and releasing a 24-membered crown ether inside crystals was successfully accomplished via post-synthetic modification.![]()
Collapse
Affiliation(s)
- Xia Li
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Jialin Xie
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Zhenglin Du
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Long Jiang
- Instrumental Analysis and Research Centre, Sun Yat-Sen University Guangzhou 510275 China
| | - Guangqin Li
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| | - Sanliang Ling
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
6
|
David AHG, García–Cerezo P, Campaña AG, Santoyo–González F, Blanco V. Vinyl sulfonyl chemistry-driven unidirectional transport of a macrocycle through a [2]rotaxane. Org Chem Front 2022. [DOI: 10.1039/d1qo01491a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pH- and chemically-driven unidirectional transport of a macrocycle through a [2]rotaxane based on the vinyl sulfonyl groups is reported.
Collapse
Affiliation(s)
- Arthur H. G. David
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| | - Pablo García–Cerezo
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| | - Araceli G. Campaña
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| | - Francisco Santoyo–González
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| | - Victor Blanco
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain
| |
Collapse
|
7
|
Zhao D, Zhang Z, Zhao J, Liu K, Liu Y, Li G, Zhang X, Bai R, Yang X, Yan X. A Mortise-and-Tenon Joint Inspired Mechanically Interlocked Network. Angew Chem Int Ed Engl 2021; 60:16224-16229. [PMID: 33979478 DOI: 10.1002/anie.202105620] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 11/08/2022]
Abstract
Mortise-and-tenon joints have been widely used for thousands of years in wooden architectures in virtue of their artistic and functional performance. However, imitation of similar structural and mechanical design philosophy to construct mechanically adaptive materials at the molecular level is a challenge. Herein, we report a mortise-and-tenon joint inspired mechanically interlocked network (MIN), in which the [2]rotaxane crosslink not only mimics the joint in structure, but also reproduces its function in modifying mechanical properties of the MIN. Benefiting from the hierarchical energy dissipative ability along with the controllable intramolecular movement of the mechanically interlocked crosslink, the resultant MIN simultaneously exhibits notable mechanical adaptivity and structural stability in a single system, as manifested by decent stiffness, strength, toughness, and deformation recovery capacity.
Collapse
Affiliation(s)
- Dong Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guangfeng Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Zhao D, Zhang Z, Zhao J, Liu K, Liu Y, Li G, Zhang X, Bai R, Yang X, Yan X. A Mortise‐and‐Tenon Joint Inspired Mechanically Interlocked Network. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dong Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guangfeng Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xue Yang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
9
|
Yang X, Cheng Q, Monnier V, Charles L, Karoui H, Ouari O, Gigmes D, Wang R, Kermagoret A, Bardelang D. Guest Exchange by a Partial Energy Ratchet in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xue Yang
- Aix Marseille Univ CNRS ICR Marseille France
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | - Valerie Monnier
- Aix Marseille Univ CNRS Centrale Marseille, FSCM Spectropole Marseille France
| | | | | | | | | | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | | | | |
Collapse
|
10
|
Yang X, Cheng Q, Monnier V, Charles L, Karoui H, Ouari O, Gigmes D, Wang R, Kermagoret A, Bardelang D. Guest Exchange by a Partial Energy Ratchet in Water. Angew Chem Int Ed Engl 2021; 60:6617-6623. [DOI: 10.1002/anie.202014399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/20/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Xue Yang
- Aix Marseille Univ CNRS ICR Marseille France
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | - Valerie Monnier
- Aix Marseille Univ CNRS Centrale Marseille, FSCM Spectropole Marseille France
| | | | | | | | | | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | | | | |
Collapse
|
11
|
Hu YX, Wu GY, Wang XQ, Yin GQ, Zhang CW, Li X, Xu L, Yang HB. Acid-Activated Motion Switching of DB24C8 between Two Discrete Platinum(II) Metallacycles. Molecules 2021; 26:molecules26030716. [PMID: 33573149 PMCID: PMC7866548 DOI: 10.3390/molecules26030716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
The precise operation of molecular motion for constructing complicated mechanically interlocked molecules has received considerable attention and is still an energetic field of supramolecular chemistry. Herein, we reported the construction of two tris[2]pseudorotaxanes metallacycles with acid-base controllable molecular motion through self-sorting strategy and host-guest interaction. Firstly, two hexagonal Pt(II) metallacycles M1 and M2 decorated with different host-guest recognition sites have been constructed via coordination-driven self-assembly strategy. The binding of metallacycles M1 and M2 with dibenzo-24-crown-8 (DB24C8) to form tris[2]pseudorotaxanes complexes TPRM1 and TPRM2 have been investigated. Furthermore, by taking advantage of the strong binding affinity between the protonated metallacycle M2 and DB24C8, the addition of trifluoroacetic acid (TFA) as a stimulus successfully induces an acid-activated motion switching of DB24C8 between the discrete metallacycles M1 and M2. This research not only affords a highly efficient way to construct stimuli-responsive smart supramolecular systems but also offers prospects for precisely control multicomponent cooperative motion.
Collapse
Affiliation(s)
- Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
| | - Gui-Yuan Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
| | - Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China; (G.-Q.Y.); (X.L.)
| | - Chang-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China; (G.-Q.Y.); (X.L.)
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
- Correspondence: (L.X.); (H.-B.Y.)
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China; (Y.-X.H.); (G.-Y.W.); (X.-Q.W.); (C.-W.Z.)
- Correspondence: (L.X.); (H.-B.Y.)
| |
Collapse
|
12
|
Fu H, Chipot C, Cai W, Shao X. Repurposing Existing Molecular Machines through Accurate Regulation of Cooperative Motions. J Phys Chem Lett 2021; 12:613-619. [PMID: 33382629 DOI: 10.1021/acs.jpclett.0c03444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To understand how different external stimuli affect the cooperative motions in a molecular machine consisting of multiple components, we have investigated at the atomic level the effects of pH, solvent, and ionic strength on the mechanism underlying the ring-through-ring movement in a saturated [3]rotaxane. Our results indicate that different external stimuli regulate the stable states, the shuttling rate, and the mechanism that governs the ring-through-ring motion by controlling the cooperative movement of the components and triggering a gamut of responses, thereby opening to a vast number of potential applications, such as quaternary logical calculations. The present work cogently demonstrates that with existing nanomachines possessing a simple topology, but using different external stimuli-an approach coined multidimensional regulation-challenging tasks requiring precise control of the molecular motions at play can be achieved, and our methodology is particularly germane for de novo design of intelligent molecular machines.
Collapse
Affiliation(s)
- Haohao Fu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, UMR No. 7019, Université de Lorraine, BP 70239, F-54506 Vandœuvre-lès-Nancy, France
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| |
Collapse
|
13
|
Li WX, Yin YF, Duan HY, Liu LJ, Kong LC, Zhan TG, Zhang KD. An orthogonal photoresponsive tristable [3]rotaxane with non-destructive readout. Org Chem Front 2021. [DOI: 10.1039/d0qo01441a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An orthogonal photoresponsive [3]rotaxane is constructed by introducing two orthogonal photoswitchable azobenzene binding sites, and it features reversible photoregulated tristate absorption spectral changes with non-destructive readout capability.
Collapse
Affiliation(s)
- Wan-Xia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Yong-Fei Yin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Hong-Ying Duan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Li-Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Li-Chun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Tian-Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Kang-Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Science
- Zhejiang Normal University
- Jinhua 321004
- China
| |
Collapse
|
14
|
Li WJ, Hu Z, Xu L, Wang XQ, Wang W, Yin GQ, Zhang DY, Sun Z, Li X, Sun H, Yang HB. Rotaxane-Branched Dendrimers with Enhanced Photosensitization. J Am Chem Soc 2020; 142:16748-16756. [PMID: 32869633 DOI: 10.1021/jacs.0c07292] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the past few decades, fabrication of functional rotaxane-branched dendrimers has become one of the most attractive yet challenging topics within supramolecular chemistry and materials science. Herein, we present the successful fabrication of a family of new rotaxane-branched dendrimers containing up to 21 platinum atoms and 42 photosensitizer moieties through an efficient and controllable divergent approach. Notably, the photosensitization efficiencies of these rotaxane-branched dendrimers gradually increased with the increase of dendrimer generation. For example, third-generation rotaxane-branched dendrimer PG3 revealed 13.3-fold higher 1O2 generation efficiency than its corresponding monomer AN. The enhanced 1O2 generation efficiency was attributed to the enhancement of intersystem crossing (ISC) through the simple and efficient incorporation of multiple heavy atoms and photosensitizer moieties on the axles and wheels of the rotaxane units, respectively, which has been validated by UV-visible and fluorescence techniques, time-dependent density functional theory calculations, photolysis model reactions, and apparent activation energy calculations. Therefore, we develop a new promising platform of rotaxane-branched dendrimers for the preparation of effective photosensitizers.
Collapse
Affiliation(s)
- Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China.,College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P.R. China
| | - Dan-Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P.R. China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| |
Collapse
|
15
|
Rajappan SC, McCarthy DR, Campbell JP, Ferrell JB, Sharafi M, Ambrozaite O, Li J, Schneebeli ST. Selective Monofunctionalization Enabled by Reaction-History-Dependent Communication in Catalytic Rotaxanes. Angew Chem Int Ed Engl 2020; 59:16668-16674. [PMID: 32525593 DOI: 10.1002/anie.202006305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 12/24/2022]
Abstract
Selective monofunctionalization of substrates with distant, yet equally reactive functional groups is difficult to achieve, as it requires the second functional group to selectively modulate its reactivity once the first functional group has reacted. We now show that mechanically interlocked catalytic rings can effectively regulate the reactivity of stoppering groups in rotaxanes over a distance of about 2 nm. Our mechanism of communication is enabled by a unique interlocked design, which effectively removes the catalytic rings from the substrates by fast dethreading as soon as the first reaction has taken place. Our method not only led to a rare example of selective monofunctionalization, but also to a "molecular if function". Overall, the study presents a way to get distant functional groups to communicate with each other in a reaction-history-dependent manner by creating linkers that can ultimately perform logical operations at the molecular level.
Collapse
Affiliation(s)
- Sinu C Rajappan
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Dillon R McCarthy
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Joseph P Campbell
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Jonathon B Ferrell
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Mona Sharafi
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Ona Ambrozaite
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | | |
Collapse
|
16
|
Guo QH, Qiu Y, Kuang X, Liang J, Feng Y, Zhang L, Jiao Y, Shen D, Astumian RD, Stoddart JF. Artificial Molecular Pump Operating in Response to Electricity and Light. J Am Chem Soc 2020; 142:14443-14449. [DOI: 10.1021/jacs.0c06663] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qing-Hui Guo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xinyi Kuang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jiaqi Liang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dengke Shen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - R. Dean Astumian
- Department of Physics, University of Maine, 5709 Bennet Hall, Orono, Maine 04469, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
17
|
Rajappan SC, McCarthy DR, Campbell JP, Ferrell JB, Sharafi M, Ambrozaite O, Li J, Schneebeli ST. Selective Monofunctionalization Enabled by Reaction‐History‐Dependent Communication in Catalytic Rotaxanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sinu C. Rajappan
- Department of Chemistry University of Vermont Burlington VT 05405 USA
| | | | | | | | - Mona Sharafi
- Department of Chemistry University of Vermont Burlington VT 05405 USA
| | - Ona Ambrozaite
- Department of Chemistry University of Vermont Burlington VT 05405 USA
| | - Jianing Li
- Department of Chemistry University of Vermont Burlington VT 05405 USA
| | | |
Collapse
|
18
|
Wu GY, Shi X, Phan H, Qu H, Hu YX, Yin GQ, Zhao XL, Li X, Xu L, Yu Q, Yang HB. Efficient self-assembly of heterometallic triangular necklace with strong antibacterial activity. Nat Commun 2020; 11:3178. [PMID: 32576814 PMCID: PMC7311404 DOI: 10.1038/s41467-020-16940-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/21/2020] [Indexed: 12/02/2022] Open
Abstract
Sophisticated mechanically interlocked molecules (MIMs) with interesting structures, properties and applications have attracted great interest in the field of supramolecular chemistry. We herein report a highly efficient self-assembly of heterometallic triangular necklace 1 containing Cu and Pt metals with strong antibacterial activity. Single-crystal X-ray analysis shows that the finely arranged triangular necklace 1 has two racemic enantiomers in its solid state with intriguing packing motif. The superior antibacterial activity of necklace 1 against both standard and clinically drug-resistant pathogens implies that the presence of Cu(I) center and platinum(II) significantly enhance the bacterium-binding/damaging activity, which is mainly attributed to the highly positively charged nature, the possible synergistic effect of heterometals in the necklace, and the improved stability in culture media. This work clearly discloses the structure-property relationships that the existence of two different metal centers not only facilitates successful construction of heterometallic triangular necklace but also endows it with superior nuclease properties and antibacterial activities. Precise assembly of heterometallic complexes is a challenge. Here, the authors design a heterometallic triangular necklace through a highly efficient threading-and-ring-closing approach driven by metal-ligand coordination, which shows strong bacterium-binding and cell wall/plasma membrane-disrupting capacity for killing bacterial cells.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China.
| | - Hoa Phan
- Vinh University, 182 LeDuan Street, Vinh, Vietnam
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China.
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, Shanghai, 200062, P. R. China.
| |
Collapse
|
19
|
Li WJ, Wang W, Wang XQ, Li M, Ke Y, Yao R, Wen J, Yin GQ, Jiang B, Li X, Yin P, Yang HB. Daisy Chain Dendrimers: Integrated Mechanically Interlocked Molecules with Stimuli-Induced Dimension Modulation Feature. J Am Chem Soc 2020; 142:8473-8482. [PMID: 32302108 DOI: 10.1021/jacs.0c02475] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The precise construction of the high-order mechanically interlocked molecules (MIMs) with well-defined topological arrangements of multiple mechanically interlocked units has been a great challenge. Herein, we present the first successful preparation of a new family of daisy chain dendrimers, in which the individual [c2]daisy chain rotaxane units serve as the branches of dendrimer skeleton. In particular, the third-generation daisy chain dendrimer with 21 [c2]daisy chain rotaxane moieties was realized, which might be among the most complicated discrete high-order MIMs comprised of multiple [c2]daisy chain rotaxane units. Interestingly, such unique topological arrangements of multiple stimuli-responsive [c2]daisy chain rotaxanes endowed the resultant daisy chain dendrimers controllable and reversible nanoscale dimension modulation through the collective and amplified extension/contraction of each [c2]daisy chain rotaxane branch upon the addition of acetate anions or DMSO molecules as external stimulus. Furthermore, on the basis of such an intriguing size switching feature of daisy chain dendrimers, dynamic composite polymer films were constructed through the incorporation of daisy chain dendrimers into polymer films, which could undergo fast, reversible, and controllable shape transformations when DMSO molecules were employed as stimulus. The successful merging of [c2]daisy chain rotaxanes and dendrimers described herein provides not only a brand-new type of high-order mechanically interlocked systems with well-defined topological arrangements of [c2]daisy chain rotaxanes, but also a successful and practical approach toward the construction of supramolecular dynamic materials.
Collapse
Affiliation(s)
- Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Rui Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Jin Wen
- Institute of Theoretical Chemistry, Faculty of Vienna, University of Vienna, Währinger Strasse 17, Vienna A-1090, Austria.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China.,Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Bo Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| |
Collapse
|
20
|
Zhang C, Wang H, Zhong J, Lei Y, Du R, Zhang Y, Shen L, Jiao T, Zhu Y, Zhu H, Li H, Li H. A mutually stabilized host-guest pair. SCIENCE ADVANCES 2019; 5:eaax6707. [PMID: 31976368 PMCID: PMC6957241 DOI: 10.1126/sciadv.aax6707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
By using click chemistry, a hexacationic cage was synthesized. The cage contains two triscationic π-electron-deficient trispyridiniumtriazine (TPZ3+) platforms that are bridged in a face-to-face manner by three ethylene-triazole-ethylene linkers. A diversity of π-electron-rich guests can be recognized within the pocket of the cage, driven by host-guest π-π interactions. The cage cavity acts as a protecting group, preventing an anthracene guest from undergoing Diels-Alder reaction. Under ultraviolet (UV) light, the pyridinium C─N bonds in TPZ3+ platforms are polarized and weakened, resulting in the occurrence of cage decomposition via β-elimination. Guest recognition could help to prevent this UV-stimulated cage decomposition by suppressing the excitation of the TPZ3+ units.
Collapse
|
21
|
David AHG, Casares R, Cuerva JM, Campaña AG, Blanco V. A [2]Rotaxane-Based Circularly Polarized Luminescence Switch. J Am Chem Soc 2019; 141:18064-18074. [PMID: 31638802 PMCID: PMC6975276 DOI: 10.1021/jacs.9b07143] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A rotaxane-based molecular shuttle
has been synthesized in which
the switching of the position of a fluorescent macrocycle on the thread
turns “on” or “off” the circularly polarized
luminescence (CPL) of the system while maintaining similar fluorescence
profiles and quantum yields in both states. The chiroptical activity
relies on the chiral information transfer from an ammonium salt incorporating d- or l-phenylalanine residues as chiral stereogenic
covalent units to an otherwise achiral crown ether macrocycle bearing
a luminescent 2,2′-bipyrene unit when they interact through
hydrogen bonding. Each enantiomeric thread induces CPL responses of
opposite signs on the macrocycle. Upon addition of base, the switching
of the position of the macrocycle to a triazolium group disables the
chiral information transfer to the macrocycle, switching “off”
the CPL response. The in situ switching upon several acid/base cycles
is also demonstrated.
Collapse
Affiliation(s)
- Arthur H G David
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ) , Universidad de Granada (UGR) , Avda. Fuente Nueva S/N , Granada 18071 , Spain
| | - Raquel Casares
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ) , Universidad de Granada (UGR) , Avda. Fuente Nueva S/N , Granada 18071 , Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ) , Universidad de Granada (UGR) , Avda. Fuente Nueva S/N , Granada 18071 , Spain
| | - Araceli G Campaña
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ) , Universidad de Granada (UGR) , Avda. Fuente Nueva S/N , Granada 18071 , Spain
| | - Victor Blanco
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ) , Universidad de Granada (UGR) , Avda. Fuente Nueva S/N , Granada 18071 , Spain
| |
Collapse
|
22
|
Qiu Y, Zhang L, Pezzato C, Feng Y, Li W, Nguyen MT, Cheng C, Shen D, Guo QH, Shi Y, Cai K, Alsubaie FM, Astumian RD, Stoddart JF. A Molecular Dual Pump. J Am Chem Soc 2019; 141:17472-17476. [PMID: 31622089 DOI: 10.1021/jacs.9b08927] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Artificial molecular machines (AMMs) built from mechanically interlocked molecules (MIMs) can use energy ratchets to control the unidirectional motion of their component parts. These energy ratchets are operated by the alteration of kinetic barriers and thermodynamic wells, which are, in turn, determined by the switching on and off of noncovalent interactions. Previously, we have developed artificial molecular pumps (AMPs) capable of pumping rings consecutively onto a collecting chain as part of a molecular dumbbell, leading to the formation of rotaxanes. Here, we report a molecular dual pump (MDP) consisting of two individual AMPs linked in a head-to-tail fashion, wherein a single ring is pumped, in a linear manner, on and off a dumbbell involving a [2]rotaxane intermediate by exploiting the redox properties of the two pumps. This MDP, defined by the finely tuned noncovalent interactions and fueled by either chemicals or electricity, utilizes an energy ratchet mechanism to capture a ring and subsequently release it back into solution. The unidirectional motion and the resulting controlled capture and release of the ring were followed by 1D and 2D 1H NMR spectroscopy and supported by control experiments. This molecular dual pump may be considered to be a forerunner of AMMs that are capable of pumping rings across a membrane in a way similar to how bacteriorhodopsin transports protons from one side of a membrane to the other under the influence of light. Such extensive multicomponent AMMs can lead potentially to molecular transporting platforms with positional and directional control of cargo uptake and release when, and only when, instructed.
Collapse
Affiliation(s)
- Yunyan Qiu
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Long Zhang
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Cristian Pezzato
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Yuanning Feng
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Weixingyue Li
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Minh T Nguyen
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Chuyang Cheng
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Dengke Shen
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Qing-Hui Guo
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Yi Shi
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Kang Cai
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Fehaid M Alsubaie
- Joint Center of Excellence in Integrated Nanosystems , King Abdulaziz City for Science and Technology , Riyadh 11442 , Kingdom of Saudi Arabia
| | - R Dean Astumian
- Department of Physics , University of Maine , 5709 Bennet Hall , Orono , Maine 04469 , United States
| | - J Fraser Stoddart
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Institute for Molecular Design and Synthesis , Tianjin University , Tianjin 300072 , P. R. China.,School of Chemistry , University of New South Wales , Sydney , NSW 2052 , Australia
| |
Collapse
|
23
|
Kwan CS, Wang T, Li M, Chan ASC, Cai Z, Leung KCF. Type III-C rotaxane dendrimers: synthesis, dual size modulation and in vivo evaluation. Chem Commun (Camb) 2019; 55:13426-13429. [PMID: 31642458 DOI: 10.1039/c9cc06200a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type III-C rotaxane dendrimers were synthesized by a divergent approach. Dual shuttling behavior and size modulation were observed from non-methylated/methylated rotaxane dendrimers under the same external stimuli. The biological distribution of dendrimers in C57BL/6J mice determined by MALDI-TOF-MS shows predominant accumulation in the spleen and liver. Drug encapsulations with chlorambucil and lithocholic acid were demonstrated.
Collapse
Affiliation(s)
- Chak-Shing Kwan
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | - Tao Wang
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China
| | - Albert S C Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | - Ken Cham-Fai Leung
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
24
|
Abstract
Directed motion at the nanoscale is a central attribute of life, and chemically driven motor proteins are nature's choice to accomplish it. Motivated and inspired by such bionanodevices, in the past few decades chemists have developed artificial prototypes of molecular motors, namely, multicomponent synthetic species that exhibit directionally controlled, stimuli-induced movements of their parts. In this context, photonic and redox stimuli represent highly appealing modes of activation, particularly from a technological viewpoint. Here we describe the evolution of the field of photo- and redox-driven artificial molecular motors, and we provide a comprehensive review of the work published in the past 5 years. After an analysis of the general principles that govern controlled and directed movement at the molecular scale, we describe the fundamental photochemical and redox processes that can enable its realization. The main classes of light- and redox-driven molecular motors are illustrated, with a particular focus on recent designs, and a thorough description of the functions performed by these kinds of devices according to literature reports is presented. Limitations, challenges, and future perspectives of the field are critically discussed.
Collapse
Affiliation(s)
- Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , viale Fanin 44 , 40127 Bologna , Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Chimica "G. Ciamician" , Università di Bologna , via Selmi 2 , 40126 Bologna , Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , viale Fanin 44 , 40127 Bologna , Italy
| |
Collapse
|
25
|
Corra S, de Vet C, Groppi J, La Rosa M, Silvi S, Baroncini M, Credi A. Chemical On/Off Switching of Mechanically Planar Chirality and Chiral Anion Recognition in a [2]Rotaxane Molecular Shuttle. J Am Chem Soc 2019; 141:9129-9133. [PMID: 31129959 PMCID: PMC6693800 DOI: 10.1021/jacs.9b00941] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
We
exploit a reversible acid–base triggered molecular shuttling
process to switch an appropriately designed rotaxane between prochiral
and mechanically planar chiral forms. The mechanically planar enantiomers
and their interconversion, arising from ring shuttling, have been
characterized by NMR spectroscopy. We also show that the supramolecular
interaction of the positively charged rotaxane with optically active
anions causes an imbalance in the population of the two enantiomeric
coconformations. This result represents an unprecedented example of
chiral molecular recognition and can disclose innovative approaches
to enantioselective sensing and catalysis.
Collapse
Affiliation(s)
- Stefano Corra
- Center for Light Activated Nanostructures (CLAN), Dipartimento di Scienze e Tecnologie Agroalimentari , Università di Bologna , Via Gobetti 101 , 40129 Bologna , Italy
| | - Christiaan de Vet
- Center for Light Activated Nanostructures (CLAN), Dipartimento di Scienze e Tecnologie Agroalimentari , Università di Bologna , Via Gobetti 101 , 40129 Bologna , Italy
| | - Jessica Groppi
- Center for Light Activated Nanostructures (CLAN), Dipartimento di Scienze e Tecnologie Agroalimentari , Università di Bologna , Via Gobetti 101 , 40129 Bologna , Italy
| | - Marcello La Rosa
- Center for Light Activated Nanostructures (CLAN), Dipartimento di Scienze e Tecnologie Agroalimentari , Università di Bologna , Via Gobetti 101 , 40129 Bologna , Italy
| | - Serena Silvi
- Dipartimento di Chimica "G. Ciamician" , Università di Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Massimo Baroncini
- Center for Light Activated Nanostructures (CLAN), Dipartimento di Scienze e Tecnologie Agroalimentari , Università di Bologna , Via Gobetti 101 , 40129 Bologna , Italy.,Istituto per la Sintesi Organica e la Fotoreattività , Consiglio Nazionale delle Ricerche , Via Gobetti 101 , 40129 Bologna , Italy
| | - Alberto Credi
- Center for Light Activated Nanostructures (CLAN), Dipartimento di Scienze e Tecnologie Agroalimentari , Università di Bologna , Via Gobetti 101 , 40129 Bologna , Italy.,Istituto per la Sintesi Organica e la Fotoreattività , Consiglio Nazionale delle Ricerche , Via Gobetti 101 , 40129 Bologna , Italy
| |
Collapse
|
26
|
David AHG, García-Cerezo P, Campaña AG, Santoyo-González F, Blanco V. [2]Rotaxane End-Capping Synthesis by Click Michael-Type Addition to the Vinyl Sulfonyl Group. Chemistry 2019; 25:6170-6179. [PMID: 30762912 DOI: 10.1002/chem.201900156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Indexed: 01/23/2023]
Abstract
We report the application of the click Michael-type addition reaction to vinyl sulfone or vinyl sulfonate groups in the synthesis of rotaxanes through the threading-and-capping method. This methodology has proven to be efficient and versatile as it allowed the preparation of rotaxanes using template approaches based on different noncovalent interactions (i.e., donor-acceptor π-π interactions or hydrogen bonding) in yields of generally 60-80 % and up to 91 % aided by the mild conditions required (room temperature or 0 °C and a mild base such as Et3 N or 4-(N,N-dimethylamino)pyridine (DMAP)). Furthermore, the use of vinyl sulfonate moieties, which are suitable motifs for coupling-and-decoupling (CAD) chemistry, implies another advantage because it allows the controlled chemical disassembly of the rotaxanes into their components through nucleophilic substitution of the sulfonates resulting from the capping step with a thiol under mild conditions (Cs2 CO3 and room temperature).
Collapse
Affiliation(s)
- Arthur H G David
- Departamento de Química Orgánica, Universidad de Granada, Facultad de Ciencias, Avda. Fuente Nueva, S/N, 18071, Granada, Spain
| | - Pablo García-Cerezo
- Departamento de Química Orgánica, Universidad de Granada, Facultad de Ciencias, Avda. Fuente Nueva, S/N, 18071, Granada, Spain
| | - Araceli G Campaña
- Departamento de Química Orgánica, Universidad de Granada, Facultad de Ciencias, Avda. Fuente Nueva, S/N, 18071, Granada, Spain
| | - Francisco Santoyo-González
- Departamento de Química Orgánica, Universidad de Granada, Facultad de Ciencias, Avda. Fuente Nueva, S/N, 18071, Granada, Spain
| | - Victor Blanco
- Departamento de Química Orgánica, Universidad de Granada, Facultad de Ciencias, Avda. Fuente Nueva, S/N, 18071, Granada, Spain
| |
Collapse
|
27
|
Yu JJ, Zhao LY, Shi ZT, Zhang Q, London G, Liang WJ, Gao C, Li MM, Cao XM, Tian H, Feringa BL, Qu DH. Pumping a Ring-Sliding Molecular Motion by a Light-Powered Molecular Motor. J Org Chem 2019; 84:5790-5802. [PMID: 30971085 DOI: 10.1021/acs.joc.9b00783] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Designing artificial molecular machines to execute complex mechanical tasks, like coupling rotation and translation to accomplish transmission of motion, continues to provide important challenges. Herein, we demonstrated a novel molecular machine comprising a second-generation light-driven molecular motor and a bistable [1]rotaxane unit. The molecular motor can rotate successfully even in an interlocked [1]rotaxane system through a photoinduced cis-to -trans isomerization and a thermal helix inversion, resulting in concomitant transitional motion of the [1]rotaxane. The transmission process was elucidated via 1H NMR, 1H-1H COSY, HMQC, HMBC, and 2D ROESY NMR spectroscopies, UV-visible absorption spectrum, and density functional theory calculations. This is the first demonstration of a molecular motor to rotate against the appreciably noncovalent interactions between dibenzo-24-crown-8 and N-methyltriazolium moieties comprising the rotaxane unit, showing operational capabilities of molecular motors to perform more complex tasks.
Collapse
Affiliation(s)
- Jing-Jing Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Li-Yang Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Zhao-Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Gabor London
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , AG Groningen 9747 , The Netherlands.,Institute of Organic Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar, tudósok körútja 2 , Budapest 1117 , Hungary
| | - Wen-Jing Liang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Chuan Gao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Ming-Ming Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Xiao-Ming Cao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China.,Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , AG Groningen 9747 , The Netherlands
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
28
|
Zhou HY, Han Y, Shi Q, Chen CF. Directional Transportation of a Helic[6]arene along a Nonsymmetric Molecular Axle. J Org Chem 2019; 84:5872-5876. [PMID: 30900452 DOI: 10.1021/acs.joc.9b00229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Zheng XL, Tao RR, Gu RR, Wang WZ, Qu DH. A switchable [2]rotaxane with two active alkenyl groups. Beilstein J Org Chem 2018; 14:2074-2081. [PMID: 30202460 PMCID: PMC6122368 DOI: 10.3762/bjoc.14.181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/17/2018] [Indexed: 11/23/2022] Open
Abstract
A novel functional [2]rotaxane containing two alkenyl bonds was designed, synthesized and characterized by 1H, 13C NMR spectroscopy and HRESI mass spectrometry. The introduction of alkenyl bonds endowed the [2]rotaxane a fascinating ability to react with versatile functional groups such as alkenyl and thiol functional groups. The reversible shuttling movement of the macrocycle between two different recognition sites on the molecular thread can be driven by external acid and base. This kind of rotaxane bearing functional groups provides a powerful platform for preparing stimuli-responsive polymers.
Collapse
Affiliation(s)
- Xiu-Li Zheng
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rong-Rong Tao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rui-Rui Gu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wen-Zhi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
30
|
Zhang Z, Shao L, Yang J. A phosphonated copillar[5]arene: Synthesis and application in the construction of pH-responsive supramolecular polymer in water. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Toward a translational molecular ratchet: face-selective translation coincident with deuteration in a pseudo-rotaxane. Sci Rep 2018; 8:8950. [PMID: 29895967 PMCID: PMC5997654 DOI: 10.1038/s41598-018-27226-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/23/2018] [Indexed: 11/08/2022] Open
Abstract
In the molecular world, molecular ratchets can realize the unidirectional movement in molecular machines. However, construction of artificial molecular ratchets has been still a great challenge. In this study, we investigate the formation of pseudo-rotaxane of a newly designed two-station axis molecule with α-cyclodextrin (α-CD) and the deuteration of acidic protons in the axis in D2O by 1H NMR at varying temperatures. Using the NMR data, we roughly estimate apparent rate constants for association, dissociation, and translation of α-CD during the pseudo-rotaxane formation based on a simplified kinetic model. These rate constants are indicative of face-selective and ratchet-like translation of α-CD on the axis because of the 2-methylpyridinium residues in the axis. We also evaluate apparent first-order rate constants for the deuteration. Comparison of these rate constants indicates that the face-selective translation of α-CD somehow couples with the deuteration. On the basis of this study, it is concluded that a translational molecular ratchet can be constructed using a large energy gradient with appropriate energy barriers and an enthalpically-driven coupled reaction.
Collapse
|
32
|
Saura-Sanmartin A, Martinez-Cuezva A, Pastor A, Bautista D, Berna J. Light-driven exchange between extended and contracted lasso-like isomers of a bistable [1]rotaxane. Org Biomol Chem 2018; 16:6980-6987. [DOI: 10.1039/c8ob02234h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A photoactive hydrogen-bonded lasso having an amide-based [1]rotaxane structure has been constructed from acyclic precursors through a self-templating approach. The stability, structural integrity and switching are described.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Aurelia Pastor
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | | | - Jose Berna
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| |
Collapse
|
33
|
Shi Q, Meng Z, Xiang JF, Chen CF. Efficient control of movement in non-photoresponsive molecular machines by a photo-induced proton-transfer strategy. Chem Commun (Camb) 2018; 54:3536-3539. [DOI: 10.1039/c8cc01570h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The first successful application of a PIPT strategy executed by the photoacid 1-MEH in controlling the switch of MIM systems has been demonstrated.
Collapse
Affiliation(s)
- Qiang Shi
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry, Chinese Academy of Sciences
- Beijing 100190
- China
| | - Zheng Meng
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry, Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jun-Feng Xiang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry, Chinese Academy of Sciences
- Beijing 100190
- China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry, Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
34
|
Wang Y, Tian Y, Chen YZ, Niu LY, Wu LZ, Tung CH, Yang QZ, Boulatov R. A light-driven molecular machine based on stiff stilbene. Chem Commun (Camb) 2018; 54:7991-7994. [DOI: 10.1039/c8cc04542a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report a new molecular design for optically triggered nm-scale translation of a submolecular component relative to another.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Radiopharmaceuticals
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Yancong Tian
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| | - Yu-Zhe Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Roman Boulatov
- Department of Chemistry
- University of Liverpool
- Liverpool L69 7ZD
- UK
| |
Collapse
|
35
|
Erbas-Cakmak S, Fielden SDP, Karaca U, Leigh DA, McTernan CT, Tetlow DJ, Wilson MR. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 2017; 358:340-343. [DOI: 10.1126/science.aao1377] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022]
|
36
|
Shi Q, Han Y, Chen CF. Complexation Between (O-Methyl) 6 -2,6-Helic[6]arene and Tertiary Ammonium Salts: Acid/Base- or Chloride-Ion-Responsive Host-Guest Systems and Synthesis of [2]Rotaxane. Chem Asian J 2017; 12:2576-2582. [PMID: 28703463 DOI: 10.1002/asia.201700857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/12/2017] [Indexed: 02/02/2023]
Abstract
Complexation between (O-methyl)6 -2,6-helic[6]arene and a series of tertiary ammonium salts was described. It was found that the macrocycle could form stable complexes with the tested aromatic and aliphatic tertiary ammonium salts, which were evidenced by 1 H NMR spectra, ESI mass spectra, and DFT calculations. In particular, the binding and release process of the guests in the complexes could be efficiently controlled by acid/base or chloride ions, which represents the first acid/base- and chloride-ion-responsive host-guest systems based on macrocyclic arenes and protonated tertiary ammonium salts. Moreover, the first 2,6-helic[6]arene-based [2]rotaxane was also synthesized from the condensation between the host-guest complex and isocyanate.
Collapse
Affiliation(s)
- Qiang Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Yang S, Luan Z, Gao C, Yu J, Qu D. Triggering a [2]rotaxane molecular shuttle through hydrogen sulfide. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9104-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
De Bo G, Gall MAY, Kitching MO, Kuschel S, Leigh DA, Tetlow DJ, Ward JW. Sequence-Specific β-Peptide Synthesis by a Rotaxane-Based Molecular Machine. J Am Chem Soc 2017; 139:10875-10879. [DOI: 10.1021/jacs.7b05850] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Guillaume De Bo
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Malcolm A. Y. Gall
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Matthew O. Kitching
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sonja Kuschel
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Daniel J. Tetlow
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - John W. Ward
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
39
|
Waelès P, Fournel-Marotte K, Coutrot F. Distinguishing Two Ammonium and Triazolium Sites of Interaction in a Three-Station [2]Rotaxane Molecular Shuttle. Chemistry 2017; 23:11529-11539. [PMID: 28594431 DOI: 10.1002/chem.201701912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Indexed: 11/11/2022]
Abstract
This paper reports on the synthesis of a tri-stable [2]rotaxane molecular shuttle, in which the motion of the macrocycle is triggered by either selective protonation/deprotonation or specific carbamoylation/decarbamoylation of an alkylbenzylamine. The threaded axle is surrounded by a dibenzo[24]crown[8] (DB24C8) macrocycle and contains three sites of different binding affinities towards the macrocycle. An N-methyltriazolium moiety acts as a molecular station that has weak affinity for the DB24C8 macrocycle and is located in the centre of the molecular axle. Two other molecular stations, arylammonium and alkylbenzylammonium moieties, sit on either side of the triazolium moiety along the molecular axle and have stronger affinities for the DB24C8 macrocycle. These two ammonium moieties are covalently linked to two different stopper groups at each extremity of the thread: a tert-butylphenyl group and a substituted DB24C8 unit. Owing to steric hindrance, the former does not allow any π-π stacking interactions with the encircling DB24C8 macrocycle, whereas the latter residue does; therefore, this allows the discrimination of the two ammonium stations by the surrounding DB24C8 macrocycle in the fully protonated state. In the deprotonated state, the contrasting reactivity of the amine functional groups, as either a base or a nucleophile, allows for selective reactions that trigger the controlled shuttling of the macrocycle around the three molecular stations.
Collapse
Affiliation(s)
- Philip Waelès
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM), Univ. Montpellier, UMR 5247 CNRS, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Karine Fournel-Marotte
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM), Univ. Montpellier, UMR 5247 CNRS, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Frédéric Coutrot
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM), Univ. Montpellier, UMR 5247 CNRS, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| |
Collapse
|
40
|
Han X, Li Z, Xu Z, Zhao Z, Liu SH, Yin J. Construction of Crown Ether-Stoppering [3]Rotaxanes Based on N
-Hetero Crown Ether Host. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xie Han
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University; Wuhan Hubei 430079 China
| | - Ziyong Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University; Wuhan Hubei 430079 China
- College of Food and Drug, Luoyang Normal University; Luoyang Henan 471022 China
| | - Zhiqiang Xu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University; Wuhan Hubei 430079 China
| | - Zhiyong Zhao
- College of Chemical Engineering and Technology; Wuhan University of Science and Technology; Wuhan Hubei 430081 China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University; Wuhan Hubei 430079 China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University; Wuhan Hubei 430079 China
| |
Collapse
|
41
|
Yang LP, Jia F, Cui JS, Lu SB, Jiang W. Light-Controlled Switching of a Non-photoresponsive Molecular Shuttle. Org Lett 2017; 19:2945-2948. [DOI: 10.1021/acs.orglett.7b01184] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liu-Pan Yang
- Department
of Chemistry, South University of Science and Technology of China, Xueyuan Boulevard 1088, Nanshan District, Shenzhen 518055, P. R. China
- Dalian
Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China
| | - Fei Jia
- Department
of Chemistry, South University of Science and Technology of China, Xueyuan Boulevard 1088, Nanshan District, Shenzhen 518055, P. R. China
| | - Jie-Shun Cui
- Department
of Chemistry, South University of Science and Technology of China, Xueyuan Boulevard 1088, Nanshan District, Shenzhen 518055, P. R. China
| | - Song-Bo Lu
- Department
of Chemistry, South University of Science and Technology of China, Xueyuan Boulevard 1088, Nanshan District, Shenzhen 518055, P. R. China
| | - Wei Jiang
- Department
of Chemistry, South University of Science and Technology of China, Xueyuan Boulevard 1088, Nanshan District, Shenzhen 518055, P. R. China
| |
Collapse
|
42
|
Tseng T, Lu HF, Kao CY, Chiu CW, Chao I, Prabhakar C, Yang JS. Redox-Gated Tristable Molecular Brakes of Geared Rotation. J Org Chem 2017; 82:5354-5366. [PMID: 28440080 DOI: 10.1021/acs.joc.7b00729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
p-Bis(arylcarbonyl)pentiptycenes 2 (aryl = 4-(trifluoromethyl)phenyl) and 3 (aryl = mesityl) have been prepared and investigated as redox-gated molecular rotors. For 2, rotations about the pentiptycene-carbonyl bond (the α rotation) and about the aryl-carbonyl bond (the β rotation) are independent, and the rotation barriers are 11.3 and 9.5 kcal mol-1, respectively, at 298 K. In contrast, the α and β rotations in 3 are correlated (geared) in a 2-fold cogwheel pathway between the aryl and the pentiptycene groups with a much lower rotation barrier of 6.5 kcal mol-1 at 298 K in spite of the bulkier aryl groups. Electrochemical reduction of the neutral forms led first to radical anions (2•- and 3•-) and then to a bis(radical anion) for 22- but a dianion for 32-. The redox operations switch the independent α and β rotations in 2 into a geared rotation in both 2•- and 22- and result in a slow-fast-stop rotation mode for 2-2•--22-. The two redox states 3•- and 32- retain the geared α and β rotations and follow a fast-slow-stop mode for 3-3•--32-. Both molecular systems mimic tristable molecular brakes and display 8-9 orders of magnitude difference in rotation rate through the redox switching.
Collapse
Affiliation(s)
- Ting Tseng
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Hsiu-Feng Lu
- Institute of Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Chen-Yi Kao
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Chun-Wei Chiu
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| | - Ito Chao
- Institute of Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Chetti Prabhakar
- Department of Chemistry, National Institute of Technology , Kurukshetra 136119, India
| | - Jye-Shane Yang
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
| |
Collapse
|
43
|
Zhang GW, Li PF, Wang HX, Han Y, Chen CF. Complexation of Racemic 2,6-Helic[6]arene and Its Hexamethyl-Substituted Derivative with Quaternary Ammonium Salts, N-Heterocyclic Salts, and Tetracyanoquinodimethane. Chemistry 2017; 23:3735-3742. [PMID: 28054424 DOI: 10.1002/chem.201605394] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Indexed: 12/28/2022]
Abstract
Complexation of racemic 2,6-helic[6]arene 1 and its hexamethyl-substituted derivative 2 with quaternary ammonium salts, N-heterocyclic salts, and tetracyanoquinodimethane have been described in detail. It was found that host 2 could form stable complexes with acetyl choline, thiaacetyl choline, N,N,N-trimethylbenzenammonium salt, pyridinium, and 4,4'-bipyridinium salts in solution and/or in the solid state. The unsubstituted macrocycle 1 showed more significant complexation with the widely tested quaternary ammonium salts and N-heterocyclic salts, and exhibited stronger complexation towards the guests than its derivative 2. Moreover, it was found that macrocycle 1 and its derivative 2 could also complex with neutral electron-deficient tetracyanoquinodimethane (TCNQ), and the association constants were determined to be 2840±94 and 1358±46 m-1 , respectively. These results could make this new macrocycle and its derivatives find wide applications in the design and construction of functional supramolecular assemblies.
Collapse
Affiliation(s)
- Geng-Wu Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Peng-Fei Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Han-Xiao Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
44
|
Kang K, Huang W, Fu Y, Chen L, Hu J, Ren Y, Feng W, Yuan L. Pyridine-incorporated cyclo[6]aramide for recognition of urea and its derivatives with two different binding modes. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1282614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kang Kang
- Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, China
| | - Wei Huang
- Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, China
| | - Yonghong Fu
- Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, China
| | - Lixi Chen
- Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, China
| | - Jinchuan Hu
- Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, China
| | - Yi Ren
- Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, China
| | - Wen Feng
- Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, China
| | - Lihua Yuan
- Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Sun HL, Zhang HY, Dai Z, Han X, Liu Y. Insights into the Difference Between Rotaxane and Pseudorotaxane. Chem Asian J 2017; 12:265-270. [PMID: 27897389 DOI: 10.1002/asia.201601545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 12/17/2022]
Abstract
Rotaxane and pseudorotaxane are two types of mechanically interlocked molecular architectures, and there is a clear topological difference and boundary between them. In this work, a "suggested [2]rotaxane 1⊂α-CD" was constructed based on axle molecule 1 bearing two terminal ferrocene groups and a wheel component α-cyclodextrin (α-CD), but the result obtained indicated that the ferrocene group cannot prevent α-CD dethreading under UV irradiation. That is, 1⊂α-CD is just a pseudo[2]rotaxane. Furthermore, the two ferrocene groups in 1⊂α-CD were encapsulated by two cucurbit[7]uril (CB[7]) units to obtain a heteropseudo[4]rotaxane 1⊂α-CD⋅2CB[7]. This heteropseudo[4]rotaxane displayed high stability towards harsh temperatures and the isomerization of azobenzene in 1, so it can be regarded as a [2]rotaxane. In this [2]rotaxane, the stoppers are not the bulky groups covalently bonded to the axle, but the cyclic CB[7] units connected through noncovalent interactions.
Collapse
Affiliation(s)
- He-Lue Sun
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Heng-Yi Zhang
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P.R. China
| | - Zhen Dai
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Xu Han
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yu Liu
- Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
46
|
Zhang GW, Shi Q, Chen CF. Formation of charge-transfer complexes based on a tropylium cation and 2,6-helic[6]arenes: a visible redox stimulus-responsive process. Chem Commun (Camb) 2017; 53:2582-2585. [DOI: 10.1039/c7cc00600d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Charge-transfer complexes between 2,6-helic[6]arenes and a tropylium cation formed, and they could undergo visible redox stimulus-responsive and switchable complexation processes.
Collapse
Affiliation(s)
- Geng-Wu Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
47
|
Huo J, Hu H, Zhang M, Hu X, Chen M, Chen D, Liu J, Xiao G, Wang Y, Wen Z. A mini review of the synthesis of poly-1,2,3-triazole-based functional materials. RSC Adv 2017. [DOI: 10.1039/c6ra27012c] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Most recent advances of the synthesis of poly-1,2,3-triazole-based functional materials.
Collapse
Affiliation(s)
- Jingpei Huo
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Huawen Hu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Min Zhang
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Xiaohong Hu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Min Chen
- College of Materials Science and Energy Engineering
- Foshan University
- China
- Department of Chemistry
- University of Oslo
| | - Dongchu Chen
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Jinwen Liu
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Guifeng Xiao
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Yang Wang
- College of Materials Science and Energy Engineering
- Foshan University
- China
| | - Zhongliu Wen
- College of Materials Science and Energy Engineering
- Foshan University
- China
| |
Collapse
|
48
|
Cao ZQ, Wang YC, Zou AH, London G, Zhang Q, Gao C, Qu DH. Reversible switching of a supramolecular morphology driven by an amphiphilic bistable [2]rotaxane. Chem Commun (Camb) 2017; 53:8683-8686. [DOI: 10.1039/c7cc05008a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A supra-amphiphilic [2]rotaxane-based switch could self-assemble into spherical vesicles in aqueous solution and transform into worm-like micelles in a basic environment.
Collapse
Affiliation(s)
- Zhan-Qi Cao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai
- China
| | - Yi-Chuan Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai
- China
| | - Ai-Hua Zou
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai
- China
| | - Gábor London
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest
- Hungary
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai
- China
| | - Chuan Gao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai
- China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecular Engineering
- East China University of Science & Technology
- Shanghai
- China
| |
Collapse
|
49
|
Mao L, Pan W, Fu Y, Chen L, Xu M, Ren Y, Feng W, Yuan L. Reversibly Tunable Lower Critical Solution Temperature Behavior Induced by H-Bonded Aromatic Amide Macrocycle and Imidazolium Host–Guest Complexation. Org Lett 2016; 19:18-21. [DOI: 10.1021/acs.orglett.6b03125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lijun Mao
- College of Chemistry, Key
Laboratory for Radiation Physics and Technology of Ministry of Education,
Institute of Nuclear Science and Technology, Key State Laboratory
of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Wang Pan
- College of Chemistry, Key
Laboratory for Radiation Physics and Technology of Ministry of Education,
Institute of Nuclear Science and Technology, Key State Laboratory
of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Yonghong Fu
- College of Chemistry, Key
Laboratory for Radiation Physics and Technology of Ministry of Education,
Institute of Nuclear Science and Technology, Key State Laboratory
of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Lixi Chen
- College of Chemistry, Key
Laboratory for Radiation Physics and Technology of Ministry of Education,
Institute of Nuclear Science and Technology, Key State Laboratory
of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Min Xu
- College of Chemistry, Key
Laboratory for Radiation Physics and Technology of Ministry of Education,
Institute of Nuclear Science and Technology, Key State Laboratory
of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Yi Ren
- College of Chemistry, Key
Laboratory for Radiation Physics and Technology of Ministry of Education,
Institute of Nuclear Science and Technology, Key State Laboratory
of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Wen Feng
- College of Chemistry, Key
Laboratory for Radiation Physics and Technology of Ministry of Education,
Institute of Nuclear Science and Technology, Key State Laboratory
of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- College of Chemistry, Key
Laboratory for Radiation Physics and Technology of Ministry of Education,
Institute of Nuclear Science and Technology, Key State Laboratory
of Biotherapy, Sichuan University, Chengdu 610064, China
| |
Collapse
|