1
|
Rapakousiou A, Minadakis MP, Chalkidis SG, Ruiz-González ML, Navio C, Vougioukalakis GC, Tagmatarchis N. Nanoarchitectured N-Heterocyclic Carbene-Pt Nanoparticles on Carbon Nanotubes: Toward Advanced Electrocatalysis in the Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28138-28150. [PMID: 40080448 PMCID: PMC12086845 DOI: 10.1021/acsami.5c02182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/15/2025]
Abstract
In response to the need for sustainable energy, this study focuses on advancing the electrocatalytic Hydrogen Evolution Reaction (HER). Considering platinum-based catalysts' efficacy, but acknowledging their cost and scarcity implications, our work pursues Pt content minimization, simultaneously upholding catalytic efficiency. Our approach introduces a precisely engineered nanoarchitecture, leveraging multiwalled carbon nanotubes (MWCNTs) bearing anchored N-heterocyclic carbenes (NHCs). These carbenes form robust covalent bonds with ultrastable, highly crystalline, platinum nanoparticles (PtNPs), establishing MWCNTs-NHC-PtNPs as a highly efficient electrocatalyst. The synergistic effect of NHCs and triazole moieties facilitates controlled nanoparticle growth and stabilization, yielding 2.0 ± 0.3 nm, uniformly distributed {1 1 1}-faceted PtNPs. The as-obtained MWCNTs-NHC-PtNPs nanomaterial exhibits exceptional HER efficiency in 0.5 M H2SO4 with an overpotential of 77 mV at -10 mA cm-2 and a 50 mV dec-1 Tafel slope, despite containing a merely 0.4% Pt/C atomic ratio content, as determined by XPS. Notably, at 200 mV overpotential, the mass activity reaches 8.6 A/mgPt and the specific activity is 53 mA/cm2Pt, highlighting the efficiency of each Pt site within this nanostructure. Cyclic voltammetry reveals a distinctive, reversible PtO/Pt redox process, demonstrating surface-controlled and diffusion-assisted kinetics with charge storage properties that stabilize the electrocatalyst's electron-surface and facilitate proton reduction. Equally important, the nanoarchitecture prevents aggregation and mitigates Pt irreversible oxidation, showcasing enhanced stability after extensive cycling and exposure to air. Comparative analyses with a control electrocatalyst lacking NHC-PtNPs ligation emphasize the unique role of NHC-Pt (0) bonding in enhancing electrocatalytic efficiency. Comprehensive surface and electronic property analyses validate the potential of the MWCNTs-NHC-PtNPs platform.
Collapse
Affiliation(s)
- Amalia Rapakousiou
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Michail P. Minadakis
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Savvas G. Chalkidis
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | | | - Cristina Navio
- IMDEA
Nanoscience, C/Faraday 9, Ciudad Universitaria
de Cantoblanco, 28049 Madrid, Spain
| | - Georgios C. Vougioukalakis
- Laboratory
of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Nikos Tagmatarchis
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| |
Collapse
|
2
|
Xu Q, Li L, Chen X, Huang C, Liu J, Ma W, Qi M, Zuo X, Liu X, Li M, Ouyang X, Fan C, Yao G. Programming One-Dimensional Open-Channel Superlattices with Edge-Bonding of Meta-DNA. Angew Chem Int Ed Engl 2025:e202504223. [PMID: 40329804 DOI: 10.1002/anie.202504223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/02/2025] [Accepted: 05/04/2025] [Indexed: 05/08/2025]
Abstract
The physicochemical properties of one-dimensional (1D) porous nanomaterials are fundamentally influenced by their channel geometrical and topological characteristics. However, synthesis of geometrically and topologically diversified 1D porous crystals spanning the mesoporous-to-macroporous range remains a significant challenge. Here, we present a universal strategy for constructing 1D open-channel superlattices through edge-to-edge assembly (edge-bonding) of DNA-sparsely modified meta-DNA (M-DNA). By programming the rigidity and length of sparsely distributed DNA bonds on M-DNA surfaces, we achieved long-range ordered assembly of triangular M-DNA 1D single-channel superlattice (3.7 ± 1.2 µm) with a macroporous structure. The generality of this approach was further demonstrated by assembling hexagonal M-DNA into 1D multi-channel superlattice (3.6 ± 1.0 µm) with a mesoporous structure, thereby reducing the pore size from 140 to 29 nm and the porosity from ∼94.2 to ∼87.5%. Furthermore, an ultrathin gold layer grown on the triangular M-DNA superlattice exhibited a ∼3.3-fold enhancement in electrocatalytic activity compared to non-assembled triangular M-DNA, attributed to the increased surface area and narrower bandgap. This work broadens the design framework for porous crystals assembled via DNA nanotechnology and highlights their potential applications in catalysis, energy conversion, and beyond.
Collapse
Affiliation(s)
- Qin Xu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Le Li
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Xiaoliang Chen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changmao Huang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Jiangbo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenhe Ma
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meiyuan Qi
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangyuan Ouyang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Chen S, Huang G, Sheng H, Huang G, Sa R, Chen Q, Bi J. Asymmetric electronic distribution induced enhancement in photocatalytic CO 2-to-CH 4 conversion via boron-doped covalent triazine frameworks. J Colloid Interface Sci 2025; 685:766-773. [PMID: 39864386 DOI: 10.1016/j.jcis.2025.01.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Covalent triazine frameworks (CTFs) are emerging as promising platform for photocatalysis, yet their highly symmetric structure leads to significant charge recombination. Herein, we employed a facile non-metallic boron (B) modification with precisely controlled doping site to introduce asymmetric local electron distribution in CTFs, achieving a 15-fold activity enhancement for CO2-to-CH4 conversion. Calculations including frontier orbitals, dipole moments and molecular electrostatic potentials firmly demonstrated the formation of localized polarized electron regions in CTF-1 via B doping. Noteworthily, the primary coordination-activation site for CO2 molecules shifted from triazine ring to benzene ring, with increased adsorption energy (-0.21 vs. -0.55 eV) and a reduced CO2 bond angle (156° vs. 139°). Furthermore, the CO2-to-CH4 pathway was thoroughly clarified based upon the in-situ DRIFTS and energy barriers calculations, where CTF-1 followed the formate route and B-doped CTF utilized the water gas shift reaction. The introduction of B doping lowered energy barrier of *CHO formation for improving CH4 selectivity. This study offers a strategy for enhancing product selectivity by breaking the electronic symmetry of photocatalysts.
Collapse
Affiliation(s)
- Shaokui Chen
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China
| | - Guiting Huang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China
| | - Hao Sheng
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China
| | - Rongjian Sa
- Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Minhou, Fujian 350108, China
| | - Qiaoshan Chen
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China.
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China; State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Minhou, Fujian 350108, China.
| |
Collapse
|
4
|
Cai H, Yang H, Li D, He S, Zhang X, Hu Q, He C. Combining the Active Site Construction and Microenvironment Regulation via a Bio-Inspired Strategy Boosts CO 2 Electroreduction Under Ampere-Level Current Densities. Angew Chem Int Ed Engl 2025; 64:e202425325. [PMID: 40088064 DOI: 10.1002/anie.202425325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 03/14/2025] [Indexed: 03/17/2025]
Abstract
Electrochemical reduction of CO2 reaction (CO2RR) is recognized as a complicated process involving multiple steps on the gas-electrode-solution interface. Hence, it is equally important to construct highly efficient active sites and regulate favorable microenvironments around the reaction interface. Herein, we propose a bio-inspired strategy to address both issues simultaneously in one catalytic system. We first evaporate isolated Au sites on the surface of the Cu layer to tune the intrinsic activity of the Cu catalyst, then fix hexanethiol (HEX) molecules onto the Au sites through Au─S bonds to regulate reaction microenvironments (CuAu-HEX). Specifically, those Au/Cu bimetallic active sites can decrease the energy barriers for the C─C coupling procedure and accelerate the generation of multicarbon products. More importantly, those stable and nondense HEX molecules on Au sites can ensure long-term hydrophobicity and high local concentration of CO2 around active sites, rather than block the channels for reactant transfer. Consequently, this unique structure is favorable for the pathways toward multicarbon products, generating >70% Faradaic efficiencies (FE) for multicarbon products even at 1 A cm-2. Intriguingly, this modification layer is very similar to animal hair follicles, which might present a new strategy to regulate the interfacial environments in various electrocatalytic reactions.
Collapse
Affiliation(s)
- Huizhu Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Deliang Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Sizhen He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xue Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
5
|
Chen Y, Wei K, Duan H, Sun H, Yu Z, Zohaib A, Zhu P, He J, Sun S. N-Heterocyclic Carbene Polymer-Stabilized Au Nanowires for Selective and Stable Reduction of CO 2. J Am Chem Soc 2025; 147:14845-14855. [PMID: 40238718 DOI: 10.1021/jacs.5c04742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The structural stability of nanocatalysts during electrochemical CO2 reduction (CO2RR) is crucial for practical applications. However, highly active nanocatalysts often reconstruct under reductive conditions, requiring stabilization strategies to maintain activity. Here, we demonstrate that the N-heterocyclic carbene (NHC) polymer stabilizes Au nanowire (NW) catalysts for selective CO2 reduction to CO over a broad potential range, enabling coupling with Cu NWs for one-step tandem conversion of CO2 to C2H4. By combining the hydrophobicity of the polystyrene chain and the strong binding of NHC to Au, the polymer stabilizes Au NWs and promotes CO2RR to CO with excellent selectivity (>90%) across -0.4 V to -1.0 V (vs RHE), a significantly broader range than unmodified Au NWs (-0.5 V to -0.7 V). Stable CO2RR at negative potentials yields a high jCO of 142 A/g Au at -1.0 V. In situ ATR-IR analysis indicates that the NHC polymer regulates the water microenvironment and suppresses hydrogen evolution at high overpotential. Moreover, NHC-Au NWs maintain excellent stability during 10 h of CO2RR testing, preserving the NW morphology and catalytic performance, while unmodified NWs degrade into nanoparticles with reduced activity and selectivity. NHC-Au NWs can be coupled with Cu NWs in a flow cell to catalyze CO2RR to C2H4 with 58% efficiency and a partial current density of 70 mA/cm2 (overall C2 product efficiency of 65%). This study presents an adaptable strategy to enhance the catalyst microenvironment, ensure stability, and enable efficient tandem CO2 conversion into value-added hydrocarbons.
Collapse
Affiliation(s)
- Yuliang Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Kecheng Wei
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hanyi Duan
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Haobo Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ziyan Yu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ahsan Zohaib
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Pengcheng Zhu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
6
|
Weiß LJK, Nikić M, Simmel FC, Wolfrum B. Stochastic Impact Electrochemistry of Alkanethiolate-Functionalized Silver Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410306. [PMID: 40079073 PMCID: PMC12019921 DOI: 10.1002/smll.202410306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/28/2025] [Indexed: 03/14/2025]
Abstract
This study uses single-impact experiments to explore how the nanoparticles' surface chemistry influences their redox activity. 20 and 40 nm-sized silver nanoparticles are functionalized with alkanethiol ligands of various chain lengths (n = 3, 6, 8, and 11) and moieties (carboxyl ─COOH / hydroxyl ─OH), and the critical role of the particle shell is systematically examined. Short COOH-terminated ligands enable efficient charge transfer, resulting in higher impact rates and fast, high-amplitude transients. Even elevated potentials fail to overcome tunneling barriers for ligand lengths of n ≥ 6 and risk oxidizing the electrode, forming an insulating layer. Electrostatic interactions play a key role in governing reaction dynamics. In general, particles with a COOH-group exhibit higher impact rates and current amplitudes in KCl than those with an OH-group. This effect is more pronounced for 40 nm-sized particles; although, they rarely oxidize completely. The influence of electrolyte composition-concentration, pH, and a biologically relevant electrolyte-reveals that its impact on the redox activity can be as critical as that of the particle shell, with both determining particle adsorption and electron tunneling. These findings provide insights into the complex interdependencies at the electrode-particle-electrolyte interface, aiding the design of custom redox-active (silver) nanoparticles for ultrasensitive electrochemical sensing.
Collapse
Affiliation(s)
- Lennart J. K. Weiß
- Physics of Synthetic Biological Systems (E14)Department of BioscienceSchool of Natural SciencesTechnical University of Munich80333MünchenGermany
- NeuroelectronicsMunich Institute of Biomedical EngineeringSchool of ComputationInformation and TechnologyTechnical University of Munich80333MünchenGermany
| | - Marta Nikić
- NeuroelectronicsMunich Institute of Biomedical EngineeringSchool of ComputationInformation and TechnologyTechnical University of Munich80333MünchenGermany
| | - Friedrich C. Simmel
- Physics of Synthetic Biological Systems (E14)Department of BioscienceSchool of Natural SciencesTechnical University of Munich80333MünchenGermany
| | - Bernhard Wolfrum
- NeuroelectronicsMunich Institute of Biomedical EngineeringSchool of ComputationInformation and TechnologyTechnical University of Munich80333MünchenGermany
| |
Collapse
|
7
|
Zhang D, Liu X, Zhao Y, Zhang H, Rudnev AV, Li JF. In situ Raman spectroscopic studies of CO 2 reduction reactions: from catalyst surface structures to reaction mechanisms. Chem Sci 2025; 16:4916-4936. [PMID: 40007664 PMCID: PMC11848642 DOI: 10.1039/d5sc00569h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) has gained widespread attention as an important technology for carbon cycling and sustainable chemistry. In situ Raman spectroscopy, due to its molecular structure, sensitive advantage and real-time monitoring capability, has become an effective tool for studying the reaction mechanisms and structure-performance relationships in eCO2RR. This article reviews recent advancements in the application of in situ Raman spectroscopy in eCO2RR research, focusing on its critical role in monitoring reaction intermediates, analyzing catalyst surface states, and optimizing catalyst design. Through systematic studies of different catalysts and reaction conditions, in situ Raman spectroscopy has revealed the formation and transformation pathways of various intermediates, deeply exploring their relationship with the active sites of the catalysts. Furthermore, the review discusses the integration of in situ Raman spectroscopy with other characterization techniques to achieve a more comprehensive understanding of the reaction mechanisms. Finally, we summarize the current challenges and opportunities in this research area and look ahead to the future applications of in situ Raman spectroscopy in the field of eCO2RR.
Collapse
Affiliation(s)
- Dongao Zhang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Xuan Liu
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Yu Zhao
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
| | - Hua Zhang
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361102 China
| | - Alexander V Rudnev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences Leninsky Prospekt 31 119071 Moscow Russia
| | - Jian-Feng Li
- College of Materials, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Physical Science and Technology, Key Laboratory of High Performance Ceramics Fibers, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361102 China
| |
Collapse
|
8
|
Medvedeva XV, Medvedev JJ, Zhao X, Smith E, Klinkova A. The fate of nanoparticle surface chemistry during reductive electrosynthesis in aprotic media. NANOSCALE 2025; 17:6804-6814. [PMID: 39964028 DOI: 10.1039/d4nr04135f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little has been done towards the optimization of cathode materials at the nanoscale. Herein, we pave the way towards the use of metal nanoparticles (NPs) as electrocatalysts in EC by demonstrating the effects of NP surface chemistry on electroorganic transformations and the evolution of surface functionalization in the course of reductive electrosynthesis in aprotic media. Using spherical Au NPs capped with citrate or cetylpyridinium chloride (CPC) as our study subjects, we examined the effect of Au NP surface chemistry on the selectivity of EC of benzyl bromide in acetonitrile and determined the fate of the surface adsorbates of Au NPs in the course of the reaction using Raman spectroscopy and X-ray photoelectron spectroscopy. We show that the CPC-stabilized Au NPs outperform the citrate-stabilized NPs at a low applied potential of -1.5 V vs. Ag/Ag+ with the former showing an almost two-fold increase in the faradaic efficiency towards phenylacetic acid. This higher selectivity is attributed to the reaction on the liberated Au surface stemming from the stripping of CPC molecules. In contrast to the CPC-functionalized NPs, the citrate-stabilized Au NPs retain their adsorbates during the reaction, which undergo electrochemical transformations during EC.
Collapse
Affiliation(s)
- Xenia V Medvedeva
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Jury J Medvedev
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Xingya Zhao
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Elena Smith
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Anna Klinkova
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
9
|
Chandran A, Dominique NL, Kaur G, Clark V, Nalaoh P, Ekowo LC, Jensen IM, Aloisio MD, Crudden CM, Arroyo-Currás N, Jenkins DM, Camden JP. Forming N-heterocyclic carbene monolayers: not all deposition methods are the same. NANOSCALE 2025; 17:5413-5428. [PMID: 39895613 PMCID: PMC11788998 DOI: 10.1039/d4nr04428b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
N-Heterocyclic carbenes (NHCs) are unrivaled in their ability to form persistent and tunable monolayers on noble metal surfaces, with disciplines from heterogeneous catalysis to microelectronics fabrication rapidly adopting this technology. It is currently assumed that different NHC monolayer preparation protocols yield equivalent surfaces; however, a direct comparison of the leading synthetic protocols is yet to validate this assumption. Herein, we explore the binding of NHC ligands to gold (Au) surfaces prepared using the five most common NHC deposition methods and discover significant differences in the resulting monolayer composition and structure. In this work, NHC-Au systems are prepared according to literature procedures starting from either the free carbene, the CO2 adduct, the bicarbonate salt, or the triflate salt. The resulting surfaces are characterized with surface-enhanced Raman spectroscopy (SERS), laser desorption/ionization mass spectrometry (LDI-MS), electrochemistry, and X-ray photoelectron spectroscopy (XPS). These data indicate that the free carbene, vacuum annealing, and solvent annealing methods form chemisorbed NHC monolayers, as expected; however, the solution phase methods without annealing yield surfaces with a fundamentally different character. Although XPS is widely used to confirm the binding of NHCs to metal surfaces, it does not capture the differences in these deposition procedures and should be used with caution. Taken together, these results reveal a significant variation of the NHC surface structure as a function of deposition procedure and provide a critical benchmark to govern the design and preparation of future NHC monolayer systems.
Collapse
Affiliation(s)
- Aruna Chandran
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Gurkiran Kaur
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Vincent Clark
- Chemistry-Biology Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Lilian Chinenye Ekowo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Isabel M Jensen
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Mark D Aloisio
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, C2MCI, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, C2MCI, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Netzahualcóyotl Arroyo-Currás
- Chemistry-Biology Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
10
|
Dominique NL, Nalaoh P, Jenkins DM, Vaia R, Park K, Camden JP. One-step functionalization of gold nanorods with N-heterocyclic carbene ligands. RSC Adv 2025; 15:5007-5010. [PMID: 39957825 PMCID: PMC11826410 DOI: 10.1039/d5ra00754b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025] Open
Abstract
Here, we present a one-step approach to append N-heterocyclic carbenes (NHCs) to gold nanorods. The nanorods are treated with NHC gold or silver complexes in a mixture of water and dichloromethane. Surface-enhanced Raman spectroscopy and mass spectrometry characterization reveals that this procedure results in a ligand transfer yielding chemisorbed NHCs.
Collapse
Affiliation(s)
- Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| | - Phattananawee Nalaoh
- Department of Chemistry, University of Tennessee, Knoxville Knoxville Tennessee 37996 USA
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville Knoxville Tennessee 37996 USA
| | - Richard Vaia
- Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson AFB Ohio 45433-7702 USA
| | - Kyoungweon Park
- Materials and Manufacturing Directorate, Air Force Research Laboratory Wright-Patterson AFB Ohio 45433-7702 USA
- Bluehalo Dayton Ohio 45432 USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame Indiana 46556 USA
| |
Collapse
|
11
|
Badreldin A, Li Y. A critical appraisal of advances in integrated CO 2 capture and electrochemical conversion. Chem Sci 2025; 16:2483-2513. [PMID: 39867956 PMCID: PMC11758242 DOI: 10.1039/d4sc06642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025] Open
Abstract
This perspective work examines the current advancements in integrated CO2 capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate in situ generation of CO2 to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate. Furthermore, technoeconomic analysis (TEA) was conducted using a net present value (NPV) model to determine the minimum selling prices (MSPs) for CO, HCOOH, CH3OH, C2H5OH, and C2H4 as target products based on cell-performance metrics from contemporary literature for SCCC, eRCC, and ACC. Additionally, sensitivity analyses were performed, focusing on cell-level parameters (voltage requirements, Faradaic efficiencies, current density), production scale factors, and other relevant variables (levelized costs of electricity and stack). This analysis sheds light on the cost-driving factors influencing commercial viability, revealing key techno-economic challenges for eRCC, particularly with liquid products. However, it also identifies optimization opportunities in current designs. By pinpointing critical areas for improvement, this work helps advance electrochemical CO2 reduction technologies towards more sustainable and economically competitive applications at different scales.
Collapse
Affiliation(s)
- Ahmed Badreldin
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
| | - Ying Li
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
- Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station TX 77843 USA
| |
Collapse
|
12
|
Kong X, Zhu J, Xu Z, Geng Z. Fundamentals and Challenges of Ligand Modification in Heterogeneous Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202417562. [PMID: 39446379 DOI: 10.1002/anie.202417562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Indexed: 11/16/2024]
Abstract
The development of efficient catalytic materials in the energy field could promote the structural transformation from traditional fossil fuels to sustainable energy. In heterogeneous catalytic reactions, ligand modification is an effective way to regulate both electronic and steric structures of catalytic sites, thus paving a prospective avenue to design the interfacial structures of heterogeneous catalysts for energy conversion. Although great achievements have been obtained for the study and applications of heterogeneous ligand-modified catalysts, the systematical refinements of ligand modification strategies are still lacking. Here, we reviewed the ligand modification strategy from both the mechanistic and applicable scenarios by focusing on heterogeneous electrocatalysis. We elucidated the ligand-modified catalysts in detail from the perspectives of basic concepts, preparation, regulation of physicochemical properties of catalytic sites, and applications in different electrocatalysis. Notably, we bridged the electrocatalytic performance with the electronic/steric effects induced by ligand modification to gain intrinsic structure-performance relations. We also discussed the challenges and future perspectives of ligand modification strategies in heterogeneous catalysis.
Collapse
Affiliation(s)
- Xiangdong Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiangchen Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zifan Xu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
13
|
Lees EW, Tournassat C, Weber AZ, Gilbert PUPA. eCoral: How Electrolysis Could Restore Seawater Conditions Ideal for Coral Reefs. J Phys Chem Lett 2024; 15:12206-12211. [PMID: 39625846 DOI: 10.1021/acs.jpclett.4c02715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Coral reefs suffer from climate change, including long-term ocean acidification (OA) and warming and short-term bleaching, tropical storms, and pollution events, all of which are increasing in frequency and severity. It is urgent yet unclear how to intervene to save coral reefs. Reversal of the ocean pH to preindustrial levels could restore coral reefs to their preindustrial growth rates; however, strategies to reverse OA on environmentally relevant scales have not been established. Anecdotally, electrolysis seems to help coral reefs recover from acidification and short-term events, but few uncontrolled studies support such claims. Here, using two independent continuum simulation approaches (COMSOL and CrunchFlow), we show the effect of electrolysis on seawater chemistry relevant to coral reef survival and growth. We conclude that near the negative electrodes, the cathodes, seawater pH, supersaturation, and carbonate concentration all increase significantly. Electrolysis of seawater, therefore, can be used to restore preindustrial ocean conditions locally to save coral reefs, an approach termed eCoral here. We anticipate these simulation results to be the starting point for controlled experiments to test whether seawater electrolysis promotes coral reef growth and restoration, as these simulations predict.
Collapse
Affiliation(s)
- Eric W Lees
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Christophe Tournassat
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- ISTO, UMR 7327, Univ Orleans, CNRS, BRGM, OSUC, F-45071 Orléans, France
| | - Adam Z Weber
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Pupa U P A Gilbert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, United States
- Departments of Chemistry, Materials Science and Engineering, and Geoscience, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
14
|
Wang S, Yu X, Wang Y, Zhou B, Shen F, Cao H. N-Heterocyclic carbene-functionalized metal nanoparticles and nanoclusters for nanocatalysis. Dalton Trans 2024; 53:18440-18450. [PMID: 39422710 DOI: 10.1039/d4dt02434f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
N-Heterocyclic carbenes (NHCs) have recently emerged as a popular ligand for the functionalization of metal nanoparticles and atomically precise metal clusters. The strong electron-donating properties of NHCs and robust NHC-metal covalent bonding endow metal nanostructures with improved stability and enhanced catalytic performances. In this review, we focus on NHC-coordinated metal nanoparticles and nanoclusters for the electrochemical CO2 reduction reaction (eCO2RR), selective hydrogenation of unsaturated compounds, and asymmetrical catalytic reactions. We discuss the underlying factors that may be at play in determining the improved activity of NHC-functionalized metals and address a few promising perspectives of NHC functionalization for new and better catalytic metal nanostructures.
Collapse
Affiliation(s)
- Siyi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Xianli Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Yedong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Bingsong Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Fan Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Hai Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
15
|
Kaushik T, Ghosh S, Dolkar T, Biswas R, Dutta A. Noble Metal Plasmon-Molecular Catalyst Hybrids for Renewable Energy Relevant Small Molecule Activation. ACS NANOSCIENCE AU 2024; 4:273-289. [PMID: 39430376 PMCID: PMC11487674 DOI: 10.1021/acsnanoscienceau.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 10/22/2024]
Abstract
Significant endeavors have been dedicated to the advancement of materials for artificial photosynthesis, aimed at efficiently harvesting light and catalyzing reactions such as hydrogen production and CO2 conversion. The application of plasmonic nanomaterials emerges as a promising option for this purpose, owing to their excellent light absorption properties and ability to confine solar energy at the nanoscale. In this regard, coupling plasmonic particles with molecular catalysts offers a pathway to create high-performance hybrid catalysts. In this review, we discuss the plasmonic-molecular complex hybrid catalysts where the plasmonic nanoparticles serve as the light-harvesting unit and promote interfacial charge transfer in tandem with the molecular catalyst which drives chemical transformation. In the initial section, we provide a concise overview of plasmonic nanomaterials and their photophysical properties. We then explore recent breakthroughs, highlighting examples from literature reports involving plasmonic-molecular complex hybrids in various catalytic processes. The utilization of plasmonic materials in conjunction with molecular catalysts represents a relatively unexplored area with substantial potential yet to be realized. This review sets a strong basis and motivation to explore the plasmon-induced hot-electron mediated photelectrochemical small molecule activation reactions. Utilizing in situ spectroscopic investigations and ultrafast transient absorption spectroscopy, it presents a comprehensive template for scalable and sustainable antenna-reactor systems.
Collapse
Affiliation(s)
- Tannu Kaushik
- Interdisciplinary
Program Climate Studies, Indian Institute
of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Suchismita Ghosh
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
| | - Thinles Dolkar
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
| | - Rathindranath Biswas
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
| | - Arnab Dutta
- Interdisciplinary
Program Climate Studies, Indian Institute
of Technology Bombay, Mumbai, Maharashtra 400076, India
- Chemistry
Department, Indian Institute of Technology
Bombay, Mumbai, Maharashtra 400076, India
- National
Centre of Excellence in Carbon Capture and Utilization, Mumbai, Maharashtra 400076, India
| |
Collapse
|
16
|
Nguyen DTH, Salek S, Shultz-Johnson LR, Bélanger-Bouliga M, Jurca T, Byers JC, Nazemi A. Poly(N-Heterocyclic Carbene)-Capped Alloy and Core-Shell AuAg Bimetallic Nanoparticles. Angew Chem Int Ed Engl 2024; 63:e202409800. [PMID: 38887177 DOI: 10.1002/anie.202409800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
N-Heterocyclic carbene (NHC)-stabilized metal nanoparticles (NPs) have recently attracted considerable attention. While most efforts in the field have been devoted to the development of NHC-tethered monometallic NPs and enhancing their stabilities under various conditions, their bimetallic counterparts are rare in the literature. Herein, we demonstrate that the covalent immobilization of Au and Ag atoms on polymerized NHCs is a powerful method to access bimetallic AuAg NPs. In addition, we show that while AuAg alloy NPs are often obtained via this method, the use of bimetallic polymeric substrates with lower Ag content, relative to Au, results in the formation of core-shell NPs with Au core and Ag shell. Application of these nanomaterials for oxygen reduction reaction is demonstrated with all materials exhibiting electrocatalytic activity. This work demonstrates for the first time that while bimetallic poly(NHC-metal)s are viable substrates to access NHC-stabilized bimetallic NPs, careful adjustment of metal content in the polymeric substrates can finetune the microstructure of the resulting NPs, i.e. alloy vs. core-shell.
Collapse
Affiliation(s)
- Diep T H Nguyen
- Department of Chemistry, Université du Québec à Montréal, NanoQAM, Quebec Center for Advanced Materials (QCAM), C.P.8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | - Samaneh Salek
- Department of Chemistry, Université du Québec à Montréal, NanoQAM, Quebec Center for Advanced Materials (QCAM), C.P.8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | - Lorianne R Shultz-Johnson
- Department of Chemistry, Renewable Energy and Chemical Transformation Faculty Cluster, University of Central Florida, Orlando, Florida, 32816, USA
| | - Marilyne Bélanger-Bouliga
- Department of Chemistry, Université du Québec à Montréal, NanoQAM, Quebec Center for Advanced Materials (QCAM), C.P.8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | - Titel Jurca
- Department of Chemistry, Renewable Energy and Chemical Transformation Faculty Cluster, University of Central Florida, Orlando, Florida, 32816, USA
| | - Joshua C Byers
- Department of Chemistry, Université du Québec à Montréal, NanoQAM, Quebec Center for Advanced Materials (QCAM), C.P.8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| | - Ali Nazemi
- Department of Chemistry, Université du Québec à Montréal, NanoQAM, Quebec Center for Advanced Materials (QCAM), C.P.8888, Succursale Centre-Ville, Montreal, QC, H3C 3P8, Canada
| |
Collapse
|
17
|
Eisen C, Keppler BK, Chin JM, Su X, Reithofer MR. Fabrication of azido-PEG-NHC stabilized gold nanoparticles as a functionalizable platform. Chem Sci 2024:d4sc04112g. [PMID: 39430936 PMCID: PMC11487300 DOI: 10.1039/d4sc04112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 10/22/2024] Open
Abstract
Rapid and precise detection of biochemical markers is vital for accurate medical diagnosis. Gold nanoparticles (AuNPs) have emerged as promising candidates for diagnostic sensing due to their biocompatibility and distinctive physical properties. However, AuNPs functionalized with selective targeting vectors often suffer from reduced stability in complex biological environments. To address this, (N)-heterocyclic carbene (NHC) ligands have been investigated for their robust binding affinity to AuNP surfaces, enhancing stability. This study outlines an optimized top-down synthesis route for highly stable, azide-terminal PEGylated NHC (PEG-NHC) functionalized AuNPs. This process employs well-defined oleylamine-protected AuNPs and masked PEGylated NHC precursors. The activation and attachment mechanisms of the masked NHCs were elucidated through the identification of intermediate AuNPs formed during incomplete ligand exchange. The resulting PEG-NHC@AuNPs exhibit exceptional colloidal stability across various biologically relevant media, showing no significant aggregation or ripening over extended periods. These particles demonstrate superior stability compared to those synthesized via a bottom-up approach. Further functionalization of azide-terminal PEG-NHC@AuNPs was achieved through copper-catalyzed click- and bioorthogonal strain-promoted azide-alkyne cycloaddition reactions. The maintained colloidal stability and successful conjugation highlight the potential of azide-functionalized PEG-NHC@AuNPs as a versatile platform for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Constantin Eisen
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Jia Min Chin
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08-03 Singapore 138634 Singapore
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna Währinger Straße 42 1090 Vienna Austria
| |
Collapse
|
18
|
Lee H, Kwon S, Park N, Cha SG, Lee E, Kong TH, Cha J, Kwon Y. Scalable Low-Temperature CO 2 Electrolysis: Current Status and Outlook. JACS AU 2024; 4:3383-3399. [PMID: 39328755 PMCID: PMC11423314 DOI: 10.1021/jacsau.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
The electrochemical CO2 reduction (eCO2R) in membrane electrode assemblies (MEAs) has brought e-chemical production one step closer to commercialization because of its advantages of minimized ohmic resistance and stackability. However, the current performance of reported eCO2R in MEAs is still far below the threshold for economic feasibility where low overall cell voltage (<2 V) and extensive stability (>5 years) are required. Furthermore, while the production cost of e-chemicals heavily relies on the carbon capture and product separation processes, these areas have received much less attention compared to CO2 electrolysis, itself. In this perspective, we examine the current status of eCO2R technologies from both academic and industrial points of view. We highlight the gap between current capabilities and commercialization standards and offer future research directions for eCO2R technologies with the hope of achieving industrially viable e-chemical production.
Collapse
Affiliation(s)
- Hojeong Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seontaek Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Namgyoo Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sun Gwan Cha
- Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Eunyoung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae-Hoon Kong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jihoo Cha
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
19
|
Tang YF, Liu LB, Yu M, Liu S, Sui PF, Sun W, Fu XZ, Luo JL, Liu S. Strong effect-correlated electrochemical CO 2 reduction. Chem Soc Rev 2024; 53:9344-9377. [PMID: 39162094 DOI: 10.1039/d4cs00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Electrochemical CO2 reduction (ECR) holds great potential to alleviate the greenhouse effect and our dependence on fossil fuels by integrating renewable energy for the electrosynthesis of high-value fuels from CO2. However, the high thermodynamic energy barrier, sluggish reaction kinetics, inadequate CO2 conversion rate, poor selectivity for the target product, and rapid electrocatalyst degradation severely limit its further industrial-scale application. Although numerous strategies have been proposed to enhance ECR performances from various perspectives, scattered studies fail to comprehensively elucidate the underlying effect-performance relationships toward ECR. Thus, this review presents a comparative summary and a deep discussion with respect to the effects strongly-correlated with ECR, including intrinsic effects of materials caused by various sizes, shapes, compositions, defects, interfaces, and ligands; structure-induced effects derived from diverse confinements, strains, and fields; electrolyte effects introduced by different solutes, solvents, cations, and anions; and environment effects induced by distinct ionomers, pressures, temperatures, gas impurities, and flow rates, with an emphasis on elaborating how these effects shape ECR electrocatalytic activities and selectivity and the underlying mechanisms. In addition, the challenges and prospects behind different effects resulting from various factors are suggested to inspire more attention towards high-throughput theoretical calculations and in situ/operando techniques to unlock the essence of enhanced ECR performance and realize its ultimate application.
Collapse
Affiliation(s)
- Yu-Feng Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Lin-Bo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Mulin Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Shuo Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Peng-Fei Sui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jing-Li Luo
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
20
|
Ye J, Jin M, Wan D. Trace Thiol Moieties in the Ligand Layer Induce Superior Catalytic Gold Nanoclusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17622-17629. [PMID: 39115911 DOI: 10.1021/acs.langmuir.4c01977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We here show that the typical poison of thiols, if below a certain level, promotes rather than suppresses the catalytic activity of gold nanoclusters (AuNCs). A few thiol groups functionalized hyperbranched polyethylenimine (PEI, Mn = 2000 Da) patched on a mesoporous polymeric bead aid the direct synthesis of AuNCs. The nucleation efficiency of AuNC is 93-fold favored at a level of 2 thiols per PEI (0.04 equiv of the amino units) than that by neat PEI, and AuNCs (1.3 nm) are obtained up to a gold load of 6.3% on the support. Unexpectedly, the catalytic activity of AuNCs is favored by the thiol up to 2 thiols per PEI, as evaluated from the surface-normalized rate constant of the model reaction of 4-nitrophenol-reduction. The catalytic promotion by thiols probably stems from optimized electron density on AuNC. If the residual NH groups of PEI were further fully treated with glycidyltrimethylammonium chloride, the catalytic activity is again enhanced, where the accelerated mass transfer is responsible for the promotion. Overall, the catalytic activity reaches an unprecedented value (metal-normalized rate constant kc = 29.4 L mmol-1 s-1 and turnover frequency = 1623 h-1, as evaluated with the model reaction of 4-nitrophenol reduction) ever reported for supported AuNCs. Our results suggest that orthogonal ligand optimization is an effective manner of triggering the release of the catalytic potential of AuNCs, among which thiol is unique.
Collapse
Affiliation(s)
- Jingyun Ye
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Ming Jin
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Decheng Wan
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| |
Collapse
|
21
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
Woehl TJ, Alloyeau D. Direct nanoscopic imaging of the hydrated nanoparticle-ligand interface. Nat Chem 2024; 16:1223-1224. [PMID: 39054381 DOI: 10.1038/s41557-024-01583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Affiliation(s)
- Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD, USA.
| | - Damien Alloyeau
- Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS/Université Paris Diderot, Paris, France.
| |
Collapse
|
23
|
Fan H, Zheng J, Xie J, Liu J, Gao X, Yan X, Fan K, Gao L. Surface Ligand Engineering Ruthenium Nanozyme Superior to Horseradish Peroxidase for Enhanced Immunoassay. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300387. [PMID: 37086206 DOI: 10.1002/adma.202300387] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Nanozymes have great potential to be used as an alternative to natural enzymes in a variety of fields. However, low catalytic activity compared with natural enzymes limits their practical use. It is still challenging to design nanozymes comparable to their natural counterparts in terms of the specific activity. In this study, a surface engineering strategy is employed to improve the specific activity of Ru nanozymes using charge-transferrable ligands such as polystyrene sulfonate (PSS). PSS-modified Ru nanozyme exhibits a peroxidase-like specific activity of up to 2820 U mg-1 , which is twice that of horseradish peroxidase (1305 U mg-1 ). Mechanism studies suggest that PSS readily accepts negative charge from Ru, thus reducing the affinity between Ru and ·OH. Importantly, the modified Ru-peroxidase nanozyme is successfully used to develop an immunoassay for human alpha-fetoprotein and achieves a 140-fold increase in detection sensitivity compared with traditional horseradish-peroxidase-based enzyme-linked immunosorbent assay. Therefore, this work provides a feasible route to design nanozymes with high specific activity that meets the practical use as an alternative to natural enzymes.
Collapse
Affiliation(s)
- Huizhen Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiajia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaying Xie
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
24
|
Barekati NS, Farsi H, Farrokhi A, Moghiminia S. A comparison between 2D and 3D cobalt-organic framework as catalysts for electrochemical CO 2 reduction. Heliyon 2024; 10:e26281. [PMID: 38375310 PMCID: PMC10875588 DOI: 10.1016/j.heliyon.2024.e26281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Electrocatalytic CO2 reduction, as an effective way to reduce the CO2 concentration, has gained attention. In this study, we prepared ZIF-67 nanoparticles and nanosheets and investigated them as electrocatalysts for CO2 reduction. It was found that ZIF-67 nanosheets, because of their two-dimensional morphologies, provide more under-coordinated cobalt nodes and have lower overpotentials for both hydrogen evolution and CO2 reduction reactions. Also, the rate-determining step for hydrogen evolution changes from Volmer for ZIF-67 nanoparticles to Hyrovsky for ZIF-67 nanosheets. Also, the presence of Mg2+ ions in solution causes more facile CO2 reduction, especially for ZIF-67 nanosheets.
Collapse
Affiliation(s)
| | - Hossein Farsi
- Department of Chemistry, University of Birjand, Birjand, Iran
- DNEP Research Lab, University of Birjand, Birjand, Iran
| | | | | |
Collapse
|
25
|
Singh R, Kumawat M, Gogoi H, Madhyastha H, Lichtfouse E, Daima HK. Engineered Nanomaterials for Immunomodulation: A Review. ACS APPLIED BIO MATERIALS 2024; 7:727-751. [PMID: 38166376 DOI: 10.1021/acsabm.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.
Collapse
Affiliation(s)
| | - Mamta Kumawat
- Department of Biotechnology, School of Sciences, JECRC University, Sitapura Extension, Jaipur 303905, Rajasthan, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, University of Miyazaki, Miyazaki 8891692, Japan
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Hemant Kumar Daima
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindari 305817, Ajmer, India
| |
Collapse
|
26
|
Jiang Y, Fu H, Liang Z, Zhang Q, Du Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem Soc Rev 2024; 53:714-763. [PMID: 38105711 DOI: 10.1039/d3cs00708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.
Collapse
Affiliation(s)
- Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
27
|
Munan S, Chang YT, Samanta A. Chronological development of functional fluorophores for bio-imaging. Chem Commun (Camb) 2024; 60:501-521. [PMID: 38095135 DOI: 10.1039/d3cc04895k] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Functional fluorophores represent an emerging research field, distinguished by their diverse applications, especially in sensing and cellular imaging. After the discovery of quinine sulfate and subsequent elucidation of the fluorescence mechanism by Sir George Stokes, research in the field of fluorescence gained momentum. Over the past few decades, advancements in sophisticated instruments, including super-resolution microscopy, have further promoted cellular imaging using traditional fluorophores. These advancements include deciphering sensing mechanisms via photochemical reactions and scrutinizing the applications of fluorescent probes that specifically target organelles. This approach elucidates molecular interactions with biomolecules. Despite the abundance of literature illustrating different classes of probe development, a concise summary of newly developed fluorophores remains inadequate. In this review, we systematically summarize the chronological discovery of traditional fluorophores along with new fluorophores. We briefly discuss traditional fluorophores ranging from visible to near-infrared (NIR) in the context of cellular imaging and in vivo imaging. Furthermore, we explore ten new core fluorophores developed between 2007 and 2022, which exhibit advanced optical properties, providing new insights into bioimaging. We illustrate the utilization of new fluorophores in cellular imaging of biomolecules, such as reactive oxygen species (ROS), reactive nitrogen species (RNS), and proteins and microenvironments, especially pH and viscosity. Few of the fluorescent probes provided new insights into disease progression. Furthermore, we speculate on the potential prospects and significant challenges of existing fluorophores and their potential biomedical research applications. By addressing these aspects, we intend to illuminate the compelling advancements in fluorescent probe development and their potential influence across various fields.
Collapse
Affiliation(s)
- Subrata Munan
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, NH 91, Tehsil Dadri 201314, Uttar Pradesh, India.
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, NH 91, Tehsil Dadri 201314, Uttar Pradesh, India.
| |
Collapse
|
28
|
Deng T, Jia S, Chen C, Jiao J, Chen X, Xue C, Xia W, Xing X, Zhu Q, Wu H, He M, Han B. Polymer Modification Strategy to Modulate Reaction Microenvironment for Enhanced CO 2 Electroreduction to Ethylene. Angew Chem Int Ed Engl 2024; 63:e202313796. [PMID: 38015565 DOI: 10.1002/anie.202313796] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/29/2023]
Abstract
Modulation of the microenvironment on the electrode surface is one of the effective means to improve the efficiency of electrocatalytic carbon dioxide reduction (eCO2 RR). To achieve high conversion rates, the phase boundary at the electrode surface should be finely controlled to overcome the limitation of CO2 solubility in the aqueous electrolyte. Herein, we developed a simple and efficient method to structure electrocatalyst with a superhydrophobic surface microenvironment by one-step co-electrodeposition of Cu and polytetrafluoroethylene (PTFE) on carbon paper. The super-hydrophobic Cu-based electrode displayed a high ethylene (C2 H4 ) selectivity with a Faraday efficiency (FE) of 67.3 % at -1.25 V vs. reversible hydrogen electrode (RHE) in an H-type cell, which is 2.5 times higher than a regular Cu electrode without PTFE. By using PTFE as a surface modifier, the activity of eCO2 RR is enhanced and water (proton) adsorption is inhibited. This strategy has the potential to be applied to other gas-conversion electrocatalysts.
Collapse
Affiliation(s)
- Ting Deng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Chunjun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Jiapeng Jiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Xiao Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Cheng Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Wei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for carbon neutral chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for carbon neutral chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
29
|
Dominique NL, Chandran A, Jensen IM, Jenkins DM, Camden JP. Unmasking the Electrochemical Stability of N-Heterocyclic Carbene Monolayers on Gold. Chemistry 2023:e202303681. [PMID: 38116819 DOI: 10.1002/chem.202303681] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
N-heterocyclic carbene (NHC) monolayers are transforming electrocatalysis and biosensor design via their increased performance and stability. Despite their increasing use in electrochemical systems, the integrity of the NHC monolayer during voltage perturbations remains largely unknown. Herein, we deploy surface-enhanced Raman spectroscopy (SERS) to measure the stability of two model NHCs on gold in ambient conditions as a function of applied potential and under continuous voltammetric interrogation. Our results illustrate that NHC monolayers exhibit electrochemical stability over a wide voltage window (-1 V to 0.5 V vs Ag|AgCl), but they are found to degrade at strongly reducing (< -1 V) or oxidizing (>0.5 V) potentials. We also address NHC monolayer stability under continuous voltammetric interrogation between 0.2 V and -0.5 V, a commonly used voltage window for sensing, showing they are stable for up to 43 hours. However, we additionally find that modifications of the backbone NHC structure can lead to significantly shorter operational lifetimes. While these results highlight the potential of NHC architectures for electrode functionalization, they also reveal potential pitfalls that have not been fully appreciated in electrochemical applications of NHCs.
Collapse
Affiliation(s)
- Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, United States
| | - Aruna Chandran
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, United States
| | - Isabel M Jensen
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN-37996
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN-37996
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, United States
| |
Collapse
|
30
|
Ye J, Li C, Yao X, Jin M, Wan D. Customizing a Hyperbranched Ligand Confers Supported Platinum Nanoclusters with Unexpected Catalytic Activity toward the Reduction of 4-Nitrophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38038684 DOI: 10.1021/acs.langmuir.3c02884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
We here show that a dendritic molecule combined with ligand merit confers supported platinum nanoclusters (PtNCs) with unprecedented catalytic performance. Branched polyethylenimine (PEI, Mn = 2000 D) patched on a porous bead is modified with 2-(diphenylphosphino)benzaldehyde (dppb) before being used to mediate a platinum nanoparticle/nanocluster (Pt0). The catalytic activity of Pt0 toward the reduction of 4-nitrophenol (4-NP) is evaluated from the parameter of Pt-normalized rate constant (kc). Optimization of the dppb level along with transformation of the PEI hydrogens into diol or trimethylammonium groups imparts supported Pt0 unprecedented activity (kc = 19.2 L mmol-1 s-1 and turnover frequency (TOF) = 1041 h-1). The supported Pt0 at an extremely low dosage of 0.1 ppm promotes 98% conversion of 4-NP within minutes and is well recyclable. The striking catalytic activity is attributed to the combination of orthogonal ligand properties such as weak ligand nature, catalyst-activating ability, excellent substrate affinity, and effect on PtNC-size mediation of the ligand.
Collapse
Affiliation(s)
- Jingyun Ye
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Chenhui Li
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Xiaoqiu Yao
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Ming Jin
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Decheng Wan
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| |
Collapse
|
31
|
Li Y, Stec GJ, Thorarinsdottir AE, McGillicuddy RD, Zheng SL, Mason JA. The role of metal accessibility on carbon dioxide electroreduction in atomically precise nanoclusters. Chem Sci 2023; 14:12283-12291. [PMID: 37969596 PMCID: PMC10631301 DOI: 10.1039/d3sc04085b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023] Open
Abstract
Atomically precise nanoclusters (NCs) can be designed with high faradaic efficiency for the electrochemical reduction of CO2 to CO (FECO) and provide useful model systems for studying the metal-catalysed CO2 reduction reaction (CO2RR). While size-dependent trends are commonly evoked, the effect of NC size on catalytic activity is often convoluted by other factors such as changes to surface structure, ligand density, and electronic structure, which makes it challenging to establish rigorous structure-property relationships. Herein, we report a detailed investigation of a series of NCs [AunAg46-n(C[triple bond, length as m-dash]CR)24Cl4(PPh3)2, Au24Ag20(C[triple bond, length as m-dash]CR)24Cl2, and Au43(C[triple bond, length as m-dash]CR)20/Au42Ag1(C[triple bond, length as m-dash]CR)20] with similar sizes and core structures but different ligand packing densities to investigate how the number of accessible metal sites impacts CO2RR activity and selectivity. We develop a simple method to determine the number of CO2-accessible sites for a given NC then use this to probe relationships between surface accessibility and CO2RR performance for atomically precise NC catalysts. Specifically, the NCs with the highest number of accessible metal sites [Au43(C[triple bond, length as m-dash]CR)20 and Au42Ag1(C[triple bond, length as m-dash]CR)20] feature a FECO of >90% at -0.57 V vs. the reversible hydrogen electrode (RHE), while NCs with lower numbers of accessible metal sites have a reduced FECO. In addition, CO2RR studies performed on other Au-alkynyl NCs that span a wider range of sizes further support the relationship between FECO and the number of accessible metal sites, regardless of NC size. This work establishes a generalizable approach to evaluating the potential of atomically precise NCs for electrocatalysis.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Grant J Stec
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Agnes E Thorarinsdottir
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Ryan D McGillicuddy
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Shao-Liang Zheng
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Jarad A Mason
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| |
Collapse
|
32
|
Yang Y, Jia H, Su S, Zhang Y, Zhao M, Li J, Ruan Q, Zhang CY. A Pd-based plasmonic photocatalyst for nitrogen fixation through an antenna-reactor mechanism. Chem Sci 2023; 14:10953-10961. [PMID: 37829007 PMCID: PMC10566465 DOI: 10.1039/d3sc02862c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
Plasmonic metal nanocrystals (e.g., Au, Ag, and Cu) hold great promise for driving photocatalytic reactions, but little is known about the plasmonic properties of Pd nanocrystals. Herein, we constructed a plasmonic Pd/Ru antenna-reactor photocatalyst through the controllable growth of a Ru nanoarray 'reactor' on a Pd nano-octahedron 'antenna' and demonstrated a plasmonic Pd-driven N2 photofixation process. The plasmonic properties of Pd nano-octahedrons were verified using finite-difference time-domain (FDTD) simulations and refractive index sensitivity tests in water-glycerol mixtures. Notably, the constructed plasmonic antenna-reactor nanostructures exhibited superior photocatalytic activities during N2 photofixation, with a maximum ammonia production rate of 117.5 ± 15.0 μmol g-1 h-1 under visible and near-infrared (NIR) light illumination. The mechanism can be attributed to the ability of the plasmonic Pd nanoantennas to harvest light to generate abundant hot electrons and the Ru nanoreactors to provide active sites for adsorption and activation of N2. This work paves the way for the development of Pd-based plasmonic photocatalysts for efficient N2 photofixation and sheds new light on the optimal design and construction of antenna-reactor nanostructures.
Collapse
Affiliation(s)
- Yuanyuan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Henglei Jia
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Sihua Su
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information Systems, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology Shenzhen 518055 China
| | - Yidi Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Mengxuan Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Jingzhao Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information Systems, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology Shenzhen 518055 China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| |
Collapse
|
33
|
Cho JH, Ma J, Kim SY. Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO 2 reduction: Strategy and challenge. EXPLORATION (BEIJING, CHINA) 2023; 3:20230001. [PMID: 37933280 PMCID: PMC10582615 DOI: 10.1002/exp.20230001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/30/2023] [Indexed: 11/08/2023]
Abstract
The realization of a complete techno-economy through a significant carbon dioxide (CO2) reduction in the atmosphere has been explored to promote a low-carbon economy in various ways. CO2 reduction reactions (CO2RRs) can be induced using sustainable energy, including electric and solar energy, using systems such as electrochemical (EC) CO2RR and photoelectrochemical (PEC) systems. This study summarizes various fabrication strategies for non-noble metal, copper-based, and metal-organic framework-based catalysts with excellent Faradaic efficiency (FE) for target carbon compounds, and for noble metals with low overvoltage. Although EC and PEC systems achieve high energy conversion efficiency with excellent catalysts, they still require external power and lack complete bias-free operation. Therefore, photovoltaics, which can overcome the limitations of these systems, have been introduced. The utilization of silicon and perovskite-based solar cells for photovoltaics-assisted EC (PV-EC) and photovoltaics-assisted PEC (PV-PEC) CO2RR systems are cost-efficient, and the III-V semiconductor photoabsorbers achieved high solar-to-carbon efficiency. This work focuses on PV-EC and PV-PEC CO2RR systems and their components and then summarizes the special cell configurations, including the tandem and stacked structures. Additionally, the study discusses current issues, such as low energy conversion, expensive PV, theoretical limits, and industrial scale-up, along with proposed solutions.
Collapse
Affiliation(s)
- Jin Hyuk Cho
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Joonhee Ma
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Soo Young Kim
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| |
Collapse
|
34
|
Luo Q, Duan H, McLaughlin MC, Wei K, Tapia J, Adewuyi JA, Shuster S, Liaqat M, Suib SL, Ung G, Bai P, Sun S, He J. Why surface hydrophobicity promotes CO 2 electroreduction: a case study of hydrophobic polymer N-heterocyclic carbenes. Chem Sci 2023; 14:9664-9677. [PMID: 37736633 PMCID: PMC10510627 DOI: 10.1039/d3sc02658b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023] Open
Abstract
We report the use of polymer N-heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO2 electroreduction. Three polymer NHC ligands were designed with different hydrophobicity: hydrophilic poly(ethylene oxide) (PEO-NHC), hydrophobic polystyrene (PS-NHC), and amphiphilic block copolymer (BCP) (PEO-b-PS-NHC). All three polymer NHCs exhibited enhanced reactivity of gold nanoparticles (AuNPs) during CO2 electroreduction by suppressing proton reduction. Notably, the incorporation of hydrophobic PS segments in both PS-NHC and PEO-b-PS-NHC led to a twofold increase in the partial current density for CO formation, as compared to the hydrophilic PEO-NHC. While polymer ligands did not hinder ion diffusion, their hydrophobicity altered the localized hydrogen bonding structures of water. This was confirmed experimentally and theoretically through attenuated total reflectance surface-enhanced infrared absorption spectroscopy and molecular dynamics simulation, demonstrating improved CO2 diffusion and subsequent reduction in the presence of hydrophobic polymers. Furthermore, NHCs exhibited reasonable stability under reductive conditions, preserving the structural integrity of AuNPs, unlike thiol-ended polymers. The combination of NHC binding motifs with hydrophobic polymers provides valuable insights into controlling the microenvironment of metal nanocatalysts, offering a bioinspired strategy for the design of artificial metalloenzymes.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Hanyi Duan
- Polymer Program, Institute of Materials Science, University of Connecticut Storrs CT 06269 USA
| | | | - Kecheng Wei
- Department of Chemistry, Brown University Providence Rhode Island 02912 USA
| | - Joseph Tapia
- Department of Chemical Engineering, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Joseph A Adewuyi
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Seth Shuster
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Maham Liaqat
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Steven L Suib
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Gaël Ung
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Peng Bai
- Department of Chemical Engineering, University of Massachusetts Amherst Massachusetts 01003 USA
| | - Shouheng Sun
- Department of Chemistry, Brown University Providence Rhode Island 02912 USA
| | - Jie He
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
- Polymer Program, Institute of Materials Science, University of Connecticut Storrs CT 06269 USA
| |
Collapse
|
35
|
Ye C, Dattila F, Chen X, López N, Koper MTM. Influence of Cations on HCOOH and CO Formation during CO 2 Reduction on a Pd MLPt(111) Electrode. J Am Chem Soc 2023; 145:19601-19610. [PMID: 37651736 PMCID: PMC10510319 DOI: 10.1021/jacs.3c03786] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 09/02/2023]
Abstract
Understanding the role of cations in the electrochemical CO2 reduction (CO2RR) process is of fundamental importance for practical application. In this work, we investigate how cations influence HCOOH and CO formation on PdMLPt(111) in pH 3 electrolytes. While only (a small amount of adsorbed) CO forms on PdMLPt(111) in the absence of metal cations, the onset potential of HCOOH and CO decreases with increasing cation concentrations. The cation effect is stronger on HCOOH formation than that on CO formation on PdMLPt(111). Density functional theory simulations indicate that cations facilitate both hydride formation and CO2 activation by polarizing the electronic density at the surface and stabilizing *CO2-. Although the upshift of the metal work function caused by high coverage of adsorbates limits hydride formation, the cation-induced electric field counterbalances this effect in the case of *H species, sustaining HCOOH production at mild negative potentials. Instead, at the high *CO coverages observed at very negative potentials, surface hydrides do not form, preventing the HCOOH route both in the absence and presence of cations. Our results open the way for a consistent evaluation of cationic electrolyte effects on both activity and selectivity in CO2RR on Pd-Pt catalysts.
Collapse
Affiliation(s)
- Chunmiao Ye
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Federico Dattila
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute
of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Xiaoting Chen
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Núria López
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute
of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
36
|
Matsuda S, Yamanaka S, Umeda M. Influence of Water Molecules on CO 2 Reduction at the Pt Electrocatalyst in the Membrane Electrode Assembly System. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42676-42684. [PMID: 37642425 DOI: 10.1021/acsami.3c09131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
CO2 electroreduction using a Pt catalyst in an aqueous solution system is known to produce only H2. Recently, a remarkable result has been reported that CH4 can be obtained by reducing CO2 using a membrane electrode assembly (MEA) containing a Pt catalyst. A big difference that exists between the two systems is the number of water molecules. Therefore, this study investigated the influence of water molecules on the CO2-reduction process at the Pt electrocatalyst in the MEA system. As a result, cyclic voltammetry indicated that adsorbed CO (COads) was formed by CO2 reduction in the MEA system more preferably than the aqueous solution system. In detail, the ratio of COads at the atop sites (linear CO, COL) on Pt, which participates in the CH4 generation reaction, to the total COads formed by the CO2 reduction became higher as the lower relative humidity (RH) at 50 °C in the MEA system. Cyclic voltammetry combined with in-line mass spectrometry revealed that the amount of COL and CH4 generated by the CO2 reduction reached their maximums at 63.1% RH. CH4 production by the extremely low-overpotential CO2 reduction was significantly achieved under all the RH conditions. Consequently, the Faradaic efficiency of the CH4 production at 63.1% RH was improved by 1.35 times compared to that at 100% RH. These results would be mainly obtained based on the H2O-involved chemical equilibrium of the reactions for the COads and CH4 formation. Overall, the present study experimentally clarified that the formation of COads (particularly COL) and the following CH4 from the CO2 reduction at the Pt electrocatalyst in the MEA system was facilitated by appropriately controlling the water-molecule content.
Collapse
Affiliation(s)
- Shofu Matsuda
- Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Shota Yamanaka
- Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Minoru Umeda
- Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
37
|
Richstein R, Eisen C, Ge L, Chalermnon M, Mayer F, Keppler BK, Chin JM, Reithofer MR. NHC stabilized copper nanoparticles via reduction of a copper NHC complex. Chem Commun (Camb) 2023; 59:9738-9741. [PMID: 37477599 PMCID: PMC10408246 DOI: 10.1039/d3cc02745g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
The bottom-up synthesis of plasmonic NHC@CuNPs from common starting reagents, via the formation of the synthetically accessible NHC-Cu(I)-Br complex and its reduction by NH3·BH3 is reported. The resulting NHC@CuNPs have been characterized in detail by XPS, TEM and NMR spectroscopy. The stability of NHC@CuNPs was investigated under both inert and ambient conditions using UV-Vis analysis. While the NHC@CuNPs are stable under inert conditions for an extended period of time, the NPs oxidize under air to form CuxO with concomitant release of the stabilizing NHC ligand.
Collapse
Affiliation(s)
- Robert Richstein
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Constantin Eisen
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Lingcong Ge
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Monnaya Chalermnon
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Florian Mayer
- Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Jia Min Chin
- Institute of Inorganic Chemistry - Functional Materials, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| | - Michael R Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna 1090, Austria.
| |
Collapse
|
38
|
Kong X, Zhao J, Xu Z, Wang Z, Wu Y, Shi Y, Li H, Ma C, Zeng J, Geng Z. Dynamic Metal-Ligand Coordination Boosts CO 2 Electroreduction. J Am Chem Soc 2023. [PMID: 37312284 DOI: 10.1021/jacs.3c04143] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interfacial structure of heterogeneous catalysts determines the reaction rate by adjusting the adsorption behavior of reaction intermediates. Unfortunately, the catalytic performance of conventionally static active sites has always been limited by the adsorbate linear scaling relationship. Herein, we develop a triazole-modified Ag crystal (Ag crystal-triazole) with dynamic and reversible interfacial structures to break such a relationship for boosting the catalytic activity of CO2 electroreduction into CO. On the basis of surface science measurements and theoretical calculations, we demonstrated the dynamic transformation between adsorbed triazole and adsorbed triazolyl on the Ag(111) facet induced by metal-ligand conjugation. During CO2 electroreduction, Ag crystal-triazole with the dynamically reversible transformation of ligands exhibited a faradic efficiency for CO of 98% with a partial current density for CO as high as -802.5 mA cm-2. The dynamic metal-ligand coordination not only reduced the activation barriers of CO2 protonation but also switched the rate-determining step from CO2 protonation to the breakage of C-OH in the adsorbed COOH intermediate. This work provided an atomic-level insight into the interfacial engineering of the heterogeneous catalysts toward highly efficient CO2 electroreduction.
Collapse
Affiliation(s)
- Xiangdong Kong
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiankang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zifan Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhengya Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yingying Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yaohui Shi
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuanxu Ma
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
39
|
Kandathil V, Manoj N. Advances in CO 2 utilization employing anisotropic nanomaterials as catalysts: a review. Front Chem 2023; 11:1175132. [PMID: 37304687 PMCID: PMC10248019 DOI: 10.3389/fchem.2023.1175132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Anisotropic nanomaterials are materials with structures and properties that vary depending on the direction in which they are measured. Unlike isotropic materials, which exhibit uniform physical properties in all directions, anisotropic materials have different mechanical, electrical, thermal, and optical properties in different directions. Examples of anisotropic nanomaterials include nanocubes, nanowires, nanorods, nanoprisms, nanostars, and so on. These materials have unique properties that make them useful in a variety of applications, such as electronics, energy storage, catalysis, and biomedical engineering. One of the key advantages of anisotropic nanomaterials is their high aspect ratio, which refers to the ratio of their length to their width, which can enhance their mechanical and electrical properties, making them suitable for use in nanocomposites and other nanoscale applications. However, the anisotropic nature of these materials also presents challenges in their synthesis and processing. For example, it can be difficult to align the nanostructures in a specific direction to impart modulation of a specific property. Despite these challenges, research into anisotropic nanomaterials continues to grow, and scientists are working to develop new synthesis methods and processing techniques to unlock their full potential. Utilization of carbon dioxide (CO2) as a renewable and sustainable source of carbon has been a topic of increasing interest due to its impact on reducing the level of greenhouse gas emissions. Anisotropic nanomaterials have been used to improve the efficiency of CO2 conversion into useful chemicals and fuels using a variety of processes such as photocatalysis, electrocatalysis, and thermocatalysis. More study is required to improve the usage of anisotropic nanomaterials for CO2 consumption and to scale up these technologies for industrial use. The unique properties of anisotropic nanomaterials, such as their high surface area, tunable morphology, and high activity, make them promising catalysts for CO2 utilization. This review article discusses briefly about various approaches towards the synthesis of anisotropic nanomaterials and their applications in CO2 utilization. The article also highlights the challenges and opportunities in this field and the future direction of research.
Collapse
|
40
|
Wu H, Singh-Morgan A, Qi K, Zeng Z, Mougel V, Voiry D. Electrocatalyst Microenvironment Engineering for Enhanced Product Selectivity in Carbon Dioxide and Nitrogen Reduction Reactions. ACS Catal 2023; 13:5375-5396. [PMID: 37123597 PMCID: PMC10127282 DOI: 10.1021/acscatal.3c00201] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/23/2023] [Indexed: 04/08/2023]
Abstract
Carbon and nitrogen fixation strategies are regarded as alternative routes to produce valuable chemicals used as energy carriers and fertilizers that are traditionally obtained from unsustainable and energy-intensive coal gasification (CO and CH4), Fischer-Tropsch (C2H4), and Haber-Bosch (NH3) processes. Recently, the electrocatalytic CO2 reduction reaction (CO2RR) and N2 reduction reaction (NRR) have received tremendous attention, with the merits of being both efficient strategies to store renewable electricity while providing alternative preparation routes to fossil-fuel-driven reactions. To date, the development of the CO2RR and NRR processes is primarily hindered by the competitive hydrogen evolution reaction (HER); however, the corresponding strategies for inhibiting this undesired side reaction are still quite limited. Considering such complex reactions involve three gas-liquid-solid phases and successive proton-coupled electron transfers, it appears meaningful to review the current strategies for improving product selectivity in light of their respective reaction mechanisms, kinetics, and thermodynamics. By examining the developments and understanding in catalyst design, electrolyte engineering, and three-phase interface modulation, we discuss three key strategies for improving product selectivity for the CO2RR and NRR: (i) targeting molecularly defined active sites, (ii) increasing the local reactant concentration at the active sites, and (iii) stabilizing and confining product intermediates.
Collapse
Affiliation(s)
- Huali Wu
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
| | - Amrita Singh-Morgan
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Kun Qi
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, P. R. China
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier 34000, France
| |
Collapse
|
41
|
Li M, Hu Y, Dong G, Wu T, Geng D. Achieving Tunable Selectivity and Activity of CO 2 Electroreduction to CO via Bimetallic Silver-Copper Electronic Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207242. [PMID: 36631289 DOI: 10.1002/smll.202207242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Limited comprehension of the reaction mechanism has hindered the development of catalysts for CO2 reduction reactions (CO2 RR). Here, the bimetallic AgCu nanocatalyst platform is employed to understand the effect of the electronic structure of catalysts on the selectivity and activity for CO2 electroreduction to CO. The atomic arrangement and electronic state structure vary with the atomic ratio of Ag and Cu, enabling tunable d-band centers to optimize the binding strength of key intermediates. Density functional theory calculations confirm that the variation of Cu content greatly affects the free energy of *COOH, *CO (intermediate of CO), and *H (intermediates of H2 ), which leads to the change of the rate-determining step. Specifically, Ag96 Cu4 reduces the free energy of the formation of *COOH while maintaining a relatively high theoretical overpotential for hydrogen evolution reaction(HER), thus achieving the best CO selectivity. While Ag70 Cu30 shows relatively low formation energy of both *COOH and *H, the compromised thermodynamic barrier and product selectivity allows Ag70 Cu30 the best CO partial current density. This study realizes the regulation of the selectivity and activity of electrocatalytic CO2 to CO, which provides a promising way to improve the intrinsic performance of CO2 RR on bimetallic AgCu.
Collapse
Affiliation(s)
- Meng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gang Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Tianci Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Dongsheng Geng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
42
|
Nguyen DTH, Shultz LR, Jurca T, Nazemi A. Monomeric and Polymeric Mesoionic N-Heterocyclic Carbene-Tethered Silver Nanoparticles: Synthesis, Stability, and Catalytic Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3204-3215. [PMID: 36821834 DOI: 10.1021/acs.langmuir.2c02864] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, N-heterocyclic carbenes (NHCs) have garnered significant attention as promising alternatives to thiols to stabilize metallic nanoparticles and planar surfaces. While most studies thus far have focused on NHC-functionalized gold nanoparticles (AuNPs), as an ideal platform to investigate the role of NHCs in stabilizing such nanoparticles, their ability to protect more unstable coinage metal nanoparticles, such as silver nanoparticles (AgNPs), has been largely overlooked. This is despite the fact that AgNPs possess a much more sensitive optical response that, upon their enhanced stability, can broaden their scope of application in various fields, including nanomedicine and catalysis. In this study, the synthesis and use of monomeric and polymeric mesoionic NHC-Ag(I) complexes as precursors to mono- and multidentate NHC-tethered AgNPs are reported. The polymeric analog was obtained by first synthesizing a polymer, containing 1,2,3-triazole repeat units, employing the copper-catalyzed alkyne-azide cycloaddition click polymerization of monomers containing diazide- and dialkyne functional groups. Subsequent quaternization of the triazole moieties and Ag insertion yielded the target NHC-Ag-containing polymer. Using this polymer as well as its monomeric analog as substrates, AgNPs with either catenated networks of NHCs or monomeric NHCs were fabricated by their reduction using borane-tert-butylamine complex. Our stability studies demonstrate that while monomeric NHCs impart some degree of stability to AgNPs, particularly at elevated temperatures in aqueous as well as organic medium, their polymeric analogs further enhance their stability in acidic environment (pH = 2) and against glutathione (3 mM), as an example of a biologically relevant thiol, in aqueous media. To highlight the application of these NHC-functionalized AgNPs in catalysis, we explore the aqueous phase reduction of methyl orange and 4-nitrophenol.
Collapse
Affiliation(s)
- Diep Thi Hong Nguyen
- Department of Chemistry, NanoQAM, Quebec Centre for Advanced Materials, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Lorianne R Shultz
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
- Renewable Energy and Chemical Transformation Faculty Cluster, University of Central Florida, Orlando, Florida 32816, United States
| | - Ali Nazemi
- Department of Chemistry, NanoQAM, Quebec Centre for Advanced Materials, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
43
|
Sufyan SA, van Devener B, Perez P, Nigra MM. Electronic Tuning of Gold Nanoparticle Active Sites for Reduction Catalysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1210-1218. [PMID: 36580656 DOI: 10.1021/acsami.2c18786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electronic tuning of active sites in heterogeneous catalysis with organic ligands remains challenging since the ligands are often bound to the most active sites on the catalysts' surfaces. In this work, gold nanoparticles, which are on average less than 2 nm in diameter, are synthesized with strongly binding thiol and phosphine ligands and have measurable quantities of accessible sites on their surfaces in both cases. Triphenylphosphine (TPP) is used as the phosphine ligand, while triphenylmethyl mercaptan (TPMT) serves as the thiol ligand. Phosphines are chosen because they are electron-donating ligands when bound to Au, and thiols are selected because they are electron-withdrawing on the Au surface. X-ray photoelectron spectroscopy (XPS) results show differences in the Au 4f binding energies between the TPP- and TPMT-bound Au nanoparticles. Fourier transform infrared spectroscopy (FTIR) measurements of bound CO indicate that the TPP-bound Au nanoparticles are more electron-rich than the TPMT-bound Au nanoparticles. The number of binding sites on the surface is quantified using 2-naphthalenethiol titration experiments. It is observed that the number of binding sites on the thiol and phosphine-bound Au nanoparticles is similar in both cases. The Au nanoparticles are used for three different reactions: resazurin reduction, CO oxidation, and benzyl alcohol oxidation. For both CO oxidation and benzyl alcohol oxidation, which are performed with the ligands attached, TPP- and TPMT-bound nanoparticles are both catalytically active. However, for resazurin reduction, the TPMT-bound Au nanoparticles are not active, while the TPP-bound Au nanoparticles are catalytically active. These results illustrate that the catalytic activity can be tuned using bound organic ligands with different electronic properties for reduction reactions using Au nanoparticle catalysts.
Collapse
Affiliation(s)
- Sayed Abu Sufyan
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Brian van Devener
- Electron Microscopy and Surface Analysis Laboratory, University of Utah, Salt Lake City, Utah 84112, United States
| | - Paulo Perez
- Electron Microscopy and Surface Analysis Laboratory, University of Utah, Salt Lake City, Utah 84112, United States
| | - Michael M Nigra
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
44
|
Kim M, Yi J, Park SH, Park SS. Heterogenization of Molecular Electrocatalytic Active Sites through Reticular Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203791. [PMID: 35853171 DOI: 10.1002/adma.202203791] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical conversion of small molecules, such as CO2 , O2 , and H2 O, has received significant attention as a potential engine for sustainable life. Metal-organic frameworks (MOFs) are a promising class of electrocatalytic materials for such processes. An attractive aspect of utilizing this class of materials as electrocatalysts is that well-known molecular active sites can be introduced to well-defined crystalline heterogeneous catalytic systems with high tunability. This review offers strategic insights into recent studies on MOF-based electrocatalysts by discussing the notable active sites that have been utilized in both homogeneous and heterogeneous catalysts, while highlighting instances where such active sites have been introduced into MOFs. In addition, material design principles enabling the integration of electrochemically active components with the MOF platform are outlined. Viewpoints on the viability of MOFs as an alternative to currently used electrocatalysts are also discussed. Finally, the future direction of MOF-based electrocatalysis research is established.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaekyung Yi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seong-Hyeon Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sarah S Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
45
|
Wang Y, Zhu Y, Zhu X, Shi J, Ren X, Zhang L, Li S. Selective Hydrogenation of CO 2 to CH 3OH on a Dynamically Magic Single-Cluster Catalyst: Cu 3/MoS 2/Ag(111). ACS Catal 2022. [DOI: 10.1021/acscatal.2c05072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yawan Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yandi Zhu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaowen Zhu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Jinlei Shi
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
- School of Physics and Electrical Engineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Xiaoyan Ren
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Shunfang Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
46
|
Wei Z, Price A, Wei K, Luo Q, Thanneeru S, Sun S, He J. Polymer N-Heterocyclic Carbene (NHC) Ligands for Silver Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55227-55237. [PMID: 36459050 DOI: 10.1021/acsami.2c17706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polymer N-heterocyclic carbenes (NHCs) are a class of robust surface ligands to provide superior colloidal stability for metal nanoparticles (NPs) under various harsh conditions. We report a general method to prepare polymeric NHCs and demonstrate that these polymer NHC-AgNPs are stable against oxidative etching and show high peroxidase activity. We prepared three imidazolium-terminated poly(methyl methacrylate) (PMMA), polystyrene (PS), and poly(2-(2-methoxyethoxy)ethyl methacrylate) (PMEO2MA) through atom-transfer radical polymerization with an imidazole-containing initiator. The imidazolium end group was further converted to NHC-Ag(I) in the presence of Ag2O at room temperature. Polymer NHC-Ag(I) can transmetalate to AgNPs through ligand exchange at the interface of oil/water within 2 min. All the three polymers can modify metal NPs, such as AgNPs, Ag nanowires, and AuNPs, providing excellent thermal, oxidative, and chemical stabilities for AgNPs. As an example, in the presence of hydrogen peroxide, AgNPs modified by polymer NHCs were resistant against oxidative etching with a rate of ∼700 times slower than those grafted with thiolates. AgNPs modified by polymer NHCs also showed higher peroxidase activity, 4 times more active than those capped by citrate and polyvinylpyrrolidone (PVP) and 2 times more active than those with polymer thiolate. Our studies demonstrate a great potential of using polymer NHCs to stabilize metallic NPs for various applications.
Collapse
Affiliation(s)
- Zichao Wei
- Department of Chemistry, University of Connecticut, Storrs, Connecticut06269, United States
| | - Aleisha Price
- Department of Chemistry, University of Connecticut, Storrs, Connecticut06269, United States
| | - Kecheng Wei
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Qiang Luo
- Department of Chemistry, University of Connecticut, Storrs, Connecticut06269, United States
| | - Srinivas Thanneeru
- Department of Chemistry, University of Connecticut, Storrs, Connecticut06269, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, Connecticut06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut06269, United States
| |
Collapse
|
47
|
Wang Z, Völker LA, Robinson TC, Kaeffer N, Menzildjian G, Jabbour R, Venkatesh A, Gajan D, Rossini AJ, Copéret C, Lesage A. Speciation and Structures in Pt Surface Sites Stabilized by N-Heterocyclic Carbene Ligands Revealed by Dynamic Nuclear Polarization Enhanced Indirectly Detected 195Pt NMR Spectroscopic Signatures and Fingerprint Analysis. J Am Chem Soc 2022; 144:21530-21543. [DOI: 10.1021/jacs.2c08300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Zhuoran Wang
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN à hauts champs de Lyon, UMR 5082, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Laura A. Völker
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich CH-8093, Switzerland
| | - Thomas C. Robinson
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN à hauts champs de Lyon, UMR 5082, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Nicolas Kaeffer
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich CH-8093, Switzerland
| | - Georges Menzildjian
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN à hauts champs de Lyon, UMR 5082, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Ribal Jabbour
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN à hauts champs de Lyon, UMR 5082, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Amrit Venkatesh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - David Gajan
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN à hauts champs de Lyon, UMR 5082, 5 rue de la Doua, Villeurbanne F-69100, France
| | - Aaron J. Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich CH-8093, Switzerland
| | - Anne Lesage
- Université de Lyon, CNRS, ENS Lyon, Université Lyon 1, Centre de RMN à hauts champs de Lyon, UMR 5082, 5 rue de la Doua, Villeurbanne F-69100, France
| |
Collapse
|
48
|
Nugegoda D, Tzouras NV, Nolan SP, Delcamp JH. N-Heterocyclic Carbene Gold Complexes in a Photocatalytic CO 2 Reduction Reaction. Inorg Chem 2022; 61:18802-18809. [DOI: 10.1021/acs.inorgchem.2c03487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dinesh Nugegoda
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University Park 38677, Mississippi, United States
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, Ghent 9000 S-3, Belgium
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, Ghent 9000 S-3, Belgium
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University Park 38677, Mississippi, United States
| |
Collapse
|
49
|
Paterson R, Alharbi HY, Wills C, Chamberlain TW, Bourne RA, Griffiths A, Collins SM, Wu K, Simmons MD, Menzel R, Masey AF, Knight JG, Doherty S. Highly Efficient and Selective Partial Reduction of Nitroarenes to N-Arylhydroxylamines Catalysed by Phosphine Oxide-Decorated Polymer Immobilized Ionic Liquid Stabilized Ruthenium Nanoparticles. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Zoubir O, Atourki L, Ait Ahsaine H, BaQais A. Current state of copper-based bimetallic materials for electrochemical CO 2 reduction: a review. RSC Adv 2022; 12:30056-30075. [PMID: 36329940 PMCID: PMC9585392 DOI: 10.1039/d2ra05385c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The increasing CO2 concentration in the atmosphere has caused profound environmental issues such as global warming. The use of CO2 as a feedstock to replace traditional fossil sources holds great promise to reduce CO2 emissions. The electrochemical conversion of CO2 has attracted much attention because it can be powered by renewable sources such as solar energy. In this review article, we provide insight into the important parameters when studying CO2RR and give a comprehensive review on the description of synthesis methods with electrocatalytic CO2 reduction over bimetallic copper-based materials. Due to the important bibliographic data on Cu bimetallic materials, we have limited this review to Sn, In, Pd, Zn and Ag. At the end of this review, challenges and perspectives for further upgrading have been included to briefly highlight the important future considerations of this rapidly growing technology.
Collapse
Affiliation(s)
- Otmane Zoubir
- MANAPSE Lab, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - Lahoucine Atourki
- MANAPSE Lab, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - Hassan Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - Amal BaQais
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| |
Collapse
|