1
|
Liu Y, Wang L, Zhao L, Zhang Y, Li ZT, Huang F. Multiple hydrogen bonding driven supramolecular architectures and their biomedical applications. Chem Soc Rev 2024; 53:1592-1623. [PMID: 38167687 DOI: 10.1039/d3cs00705g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Lulu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
2
|
Lee J, Li K, Zimmerman SC. A Selective Alkylating Agent for CTG Repeats in Myotonic Dystrophy Type 1. ACS Chem Biol 2022; 17:1103-1110. [PMID: 35483041 DOI: 10.1021/acschembio.1c00949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Disease intervention at the DNA level generally has been avoided because of off-target effects. Recent advances in genome editing technologies using CRISPR-Cas9 have opened a new era in DNA-targeted therapeutic approaches. However, delivery of such systems remains a major challenge. Here, we report a selective DNA-modifying small molecule that targets a disease-specific structure and mismatches involved in myotonic dystrophy type 1 (DM1). This ligand alkylates T-T mismatch-containing hairpins formed in the expanded CTG repeats (d(CTG)exp) in DM1. Ligand alkylation of d(CTG)exp inhibits the transcription of d(CAG·CTG)exp, thereby reducing the level of the toxic r(CUG)exp transcript. The bioactivity of the ligand also included a reduction in DM1 pathological features such as disease foci formation and misregulation of pre-mRNA splicing in DM1 model cells. Furthermore, the CTG-alkylating ligand may change the d(CAG·CTG)exp repeat length dynamics in DM1 patient cells. Our strategy of linking an alkylating moiety to a DNA mismatch-selective small molecule may be generally applicable to other repeat expansion diseases such as Huntington's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- JuYeon Lee
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ke Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Steven C. Zimmerman
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Side Chain Functional Conjugated Porous Polymers for NIR Controlled Carbon Dioxide Adsorption and Release. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Liu W, Huang Y, Li Z, Li L, Zhao Y, Li M. Multivalent Engineering of Exosomes with Activatable Aptamer Probes for Specific Regulation and Monitoring of Cell Targeting. Anal Chem 2022; 94:3840-3848. [PMID: 35179366 DOI: 10.1021/acs.analchem.1c04741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reconstituting and probing exosome-cell interactions is critical for elucidating exosome-related cell biology and advancing their diagnostic and therapeutic potential. We report here an exosomal engineering strategy to achieve controlled regulation of exosome-cell interactions with activatable sensing capability. The approach relies on membrane-protein directed, programmable DNA self-assembly to construct a DNA polymeric scaffold with multivalent display of structure-switchable aptamer sensing probes on exosome surfaces. The engineered exosomes exhibit enhanced cancer cell targeting ability compared to exosomes modified with monovalent aptamers. Furthermore, the anchored aptamer probes could be activated by specific membrane protein targeting, followed by structural switching to report an output fluorescence signal, thus allowing dynamic monitoring of exosome-cell interactions both in vitro and in vivo. We envision this will provide a complementary tool for specific regulation and monitoring of exosome-cell docking interactions and will advance the development of exosome-based biomedical applications.
Collapse
Affiliation(s)
- Wenjing Liu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
6
|
Chen Z, Zhou C, Xu Y, Wen K, Song J, Bai S, Wu C, Huang W, Cai Q, Zhou K, Wang H, Wang Y, Feng X, Bai Y. An alternatingly amphiphilic, resistance-resistant antimicrobial oligoguanidine with dual mechanisms of action. Biomaterials 2021; 275:120858. [PMID: 34044257 DOI: 10.1016/j.biomaterials.2021.120858] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022]
Abstract
The increasing number of infections caused by multi-drug resistance (MDR) bacteria is an omen of a new global challenge. As one of the countermeasures under development, antimicrobial peptides (AMPs) and AMP mimics have emerged as a new family of antimicrobial agents with high potential, due to their low resistance generation rate and effectiveness against MDR bacterial strains resulted from their membrane-disrupting mechanism of action. However, most reported AMPs and AMP mimics have facially amphiphilic structures, which may lead to undesired self-aggregation and non-specific binding, as well as increased cytotoxicity toward mammalian cells, all of which put significant limits on their applications. Here, we report an oligomer with the size of short AMPs, with both hydrophobic carbon chain and cationic groups placed on its backbone, giving an alternatingly amphiphilic structure that brings better selectivity between mammalian and bacterial cell membranes. In addition, the oligomer shows affinity toward DNA, thus it can utilize bacterial DNA located in the vulnerable nucleoid as the second drug target. Benefiting from these designs, the oligomer shows higher therapeutic index and synergistic effect with other antibiotics, while its low resistance generation rate and effectiveness on multi-drug resistant bacterial strains can be maintained. We demonstrate that this alternatingly amphiphilic, DNA-binding oligomer is not only resistance-resistant, but is also able to selectively eliminate bacteria at the presence of mammalian cells. Importantly, the oligomer exhibits good in vivo activity: it cleans all bacteria on Caenorhabditis elegans without causing apparent toxicity, and significantly improves the survival rate of mice with severely infected wounds in a mice excision wound model study.
Collapse
Affiliation(s)
- Zhiyong Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Cailing Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; School of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Yangfan Xu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; School of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Kang Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Junfeng Song
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Silei Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Chenxuan Wu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Wei Huang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Qingyun Cai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong, 518035, China; The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, China
| | - Hui Wang
- Department of Clinical Laboratories, Peking University People's Hospital, Beijing, 100044, China
| | - Yingjie Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518055, China
| | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yugang Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
7
|
Zhang K, Huang Y, Shen YJ, Zhang LF, Ma S, Chen TT, Zheng Z, Zhang S, Li B. Imine bond transformation of a dynamic Sm(III) macrocycle-based chemosensor: The indirect approach for detecting cyanuric chloride. Anal Chim Acta 2021; 1144:34-42. [PMID: 33453795 DOI: 10.1016/j.aca.2020.11.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 01/24/2023]
Abstract
Herein, we report our strategy to develop the efficient chemosensor and real-time monitoring technique for cyanuric chloride (TCT) detection. A luminescent macrocyclic mononuclear Sm(III) complex Sm-2k bearing with two dynamic imine bonds has been constructed via the template synthesis between dialdehyde H2Qk and matched diamine 1,2-bis(2-aminoethoxy)ethane. Sensing experiments reveal that complex Sm-2k exhibits the turn-off fluorescent and colorimetric response for TCT in CH3OH. It is especially encouraging that this optical sensing process is not only rapid within 60 s but also high-efficient in the presence of TCT analogues as well as sensitive with the low limit of detection (LOD, 1.74 μM) and wide linear sensing range. Mechanism studies demonstrate that TCT sensing is mainly based on the imine bond transformation of probe Sm-2k, which is due to the increased acidity induced by TCT. Meanwhile, a smartphone-based analytical method was developed to make complex Sm-2k accessible for the real-time TCT detection by RGB value outputs. It is believed that this work can shed some constructive lights on design of chemosensors and convenient detection technique for highly reactive analytes.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China.
| | - Yan Huang
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Yin-Jing Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Lin-Feng Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Shuang Ma
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Ting-Ting Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Ziqiang Zheng
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Shishen Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| | - Benxia Li
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Higher Education District, Hangzhou, 310018, PR China
| |
Collapse
|
8
|
Chen Z, Huang W, Zheng N, Bai Y. Design and synthesis of a polyguanidium vector with enhanced DNA binding ability for effective gene delivery at a low N/P ratio. Polym Chem 2020. [DOI: 10.1039/c9py01481k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A polyguanidium polymer has extra affinity toward DNA and can mediate transfection efficiently at a low polymer to DNA ratio.
Collapse
Affiliation(s)
- Zhiyong Chen
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chem/Biosensing and Chemometrics
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Wei Huang
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chem/Biosensing and Chemometrics
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Nan Zheng
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- China
| | - Yugang Bai
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chem/Biosensing and Chemometrics
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology
- College of Chemistry and Chemical Engineering
- Hunan University
| |
Collapse
|
9
|
Wu PC, Tzeng SL, Chang CK, Kao YF, Waring MJ, Hou MH. Cooperative recognition of T:T mismatch by echinomycin causes structural distortions in DNA duplex. Nucleic Acids Res 2019; 46:7396-7404. [PMID: 29741655 PMCID: PMC6101601 DOI: 10.1093/nar/gky345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/25/2018] [Indexed: 12/16/2022] Open
Abstract
Small-molecule compounds that target mismatched base pairs in DNA offer a novel prospective for cancer diagnosis and therapy. The potent anticancer antibiotic echinomycin functions by intercalating into DNA at CpG sites. Surprisingly, we found that the drug strongly prefers to bind to consecutive CpG steps separated by a single T:T mismatch. The preference appears to result from enhanced cooperativity associated with the binding of the second echinomycin molecule. Crystallographic studies reveal that this preference originates from the staggered quinoxaline rings of the two neighboring antibiotic molecules that surround the T:T mismatch forming continuous stacking interactions within the duplex. These and other associated changes in DNA conformation allow the formation of a minor groove pocket for tight binding of the second echinomycin molecule. We also show that echinomycin displays enhanced cytotoxicity against mismatch repair-deficient cell lines, raising the possibility of repurposing the drug for detection and treatment of mismatch repair-deficient cancers.
Collapse
Affiliation(s)
- Pei-Ching Wu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shu-Ling Tzeng
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chung-Ke Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Fen Kao
- Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Michael J Waring
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 40227, Taiwan.,Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
10
|
Lei L, Xu Z, Hu X, Lai Y, Xu J, Hou B, Wang Y, Yu H, Tian Y, Zhang W. Bioinspired Multivalent Peptide Nanotubes for Sialic Acid Targeting and Imaging-Guided Treatment of Metastatic Melanoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900157. [PMID: 31018037 DOI: 10.1002/smll.201900157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/16/2019] [Indexed: 05/14/2023]
Abstract
Tumor metastasis is considered a major cause of cancer-related human mortalities. However, it still remains a formidable challenge in clinics. Herein, a bioinspired multivalent nanoplatform for the highly effective treatment of the metastatic melanoma is reported. The versatile nanoplatform is designed by integrating indocyanine green and a chemotherapeutic drug (7-ethyl-10-hydroxycamptothecin) into phenylboronic acid (PBA)-functionalized peptide nanotubes (termed as I/S-PPNTs). I/S-PPNTs precisely target tumor cells through multivalent interaction between PBA and overexpressed sialic acid on the tumor surface in order to achieve imaging-guided combination therapy. It is demonstrated that I/S-PPNTs are efficiently internalized by the B16-F10 melanoma cells in vitro in a PBA grafting density-dependent manner. It is further shown that I/S-PPNTs specifically accumulate and deeply penetrate into both the subcutaneous and lung metastatic B16-F10 melanoma tumors. More importantly, I/S-PPNT-mediated combination chemo- and photodynamic therapy efficiently eradicates tumor and suppresses the lung metastasis of B16-F10 melanoma in an immunocompetent C57BL/6 mouse model. The results highlight the promising potential of the multivalent peptide nanotubes for active tumor targeting and imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Li Lei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xianli Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yi Lai
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jie Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Bo Hou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ya Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
11
|
Intrinsically cell-penetrating multivalent and multitargeting ligands for myotonic dystrophy type 1. Proc Natl Acad Sci U S A 2019; 116:8709-8714. [PMID: 30975744 DOI: 10.1073/pnas.1820827116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developing highly active, multivalent ligands as therapeutic agents is challenging because of delivery issues, limited cell permeability, and toxicity. Here, we report intrinsically cell-penetrating multivalent ligands that target the trinucleotide repeat DNA and RNA in myotonic dystrophy type 1 (DM1), interrupting the disease progression in two ways. The oligomeric ligands are designed based on the repetitive structure of the target with recognition moieties alternating with bisamidinium groove binders to provide an amphiphilic and polycationic structure, mimicking cell-penetrating peptides. Multiple biological studies suggested the success of our multivalency strategy. The designed oligomers maintained cell permeability and exhibited no apparent toxicity both in cells and in mice at working concentrations. Furthermore, the oligomers showed important activities in DM1 cells and in a DM1 liver mouse model, reducing or eliminating prominent DM1 features. Phenotypic recovery of the climbing defect in adult DM1 Drosophila was also observed. This design strategy should be applicable to other repeat expansion diseases and more generally to DNA/RNA-targeted therapeutics.
Collapse
|
12
|
Affiliation(s)
- Jie Wang
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of PharmacyEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
13
|
Zhang Y, Cheng M, Cao J, Zhang Y, Yuan Z, Wu Q, Wang W. Multivalent nanoparticles for personalized theranostics based on tumor receptor distribution behavior. NANOSCALE 2019; 11:5005-5013. [PMID: 30839969 DOI: 10.1039/c8nr09347d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It is acknowledged that the targeting ability of multivalent ligand-modified nanoparticles (MLNs) strongly depends on the ligand spatial presentation determined by ligand valency. However, the receptor overexpression level varies between different types or stages of tumors. Thus, it is essential to explore the influence of ligand valency on the targeting ability of MLNs to tumors with different levels of receptor overexpression. In this study, a dual-acting agent raltitrexed was used as a ligand to target the folate receptor (FR). Different copies of the raltitrexed-modified multivalent dendritic polyethyleneimine ligand cluster PRn (n = 2, 4, and 8) were conjugated onto magnetic nanoparticles to form multivalent magnetic NPs (MMNs) with different valences. The in vitro studies demonstrated that Fe-PR4 was the most effective valency in the treatment of high FR overexpressing KB cells with a decentralized receptor distribution, owing to the fact that Fe-PR2 was negative in statistical rebinding and Fe-PR8 could induce steric hindrance in the limited binding area. Instead, in moderate FR overexpressing HeLa cells with clustered receptor display, the extra ligands on Fe-PR8 would facilitate statistical rebinding more beneficially. Furthermore, in in vivo tumor inhibition and targeted magnetic resonance imaging (MRI) of KB tumors and another moderate FR expressing H22 tumor, similar results were obtained with the cell experiments. Overall, the optimizable treatment effect of Fe-PRn by modulating the ligand valency based on the overexpressing tumor receptor distribution behavior supports the potential of Fe-PRn as a nanomedicine for personalized theranostics.
Collapse
Affiliation(s)
- Yahui Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Men D, Zhou J, Li W, Wei CH, Chen YY, Zhou K, Zheng Y, Xu K, Zhang ZP, Zhang XE. Self-Assembly of Antigen Proteins into Nanowires Greatly Enhances the Binding Affinity for High-Efficiency Target Capture. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41019-41025. [PMID: 30388367 DOI: 10.1021/acsami.8b12511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
High-efficiency target capture is an essential prerequisite for sensitive immunoassays. However, the current available immunoassay approaches are subject to deficient binding affinities between predator-prey molecules that greatly restrict the target capture efficiency and immunoassay sensitivity. Herein, we present a new strategy through the self-assembly of antigen proteins into nanowires to enhance the binding affinity between an antigen and antibody. Through the genetic fusion of antigen proteins (e.g., HIV p24) with the yeast amyloid protein Sup35 self-assembly domain, specific antigen nanowires (Ag nanowires) were constructed and demonstrated a remarkable enhancement in binding affinity compared with that of the monomeric antigen molecule. The Ag nanowires were further combined with magnetic beads to form a 3D magnetic probe based on a seed-induced self-assembly strategy. Taking advantage of both the strong binding affinity and the rapid magnetic separation and enrichment capacity, the specific 3D magnetic probe achieved a 100-fold improvement in detection sensitivity within a significantly shorter period of 20 min over that of the conventional enzyme-linked immunosorbent assay method.
Collapse
Affiliation(s)
- Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Wei Li
- College of Life Sciences , Hubei University , Wuhan 430062 , China
| | - Cui-Hua Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | | | - Kun Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Ying Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Ke Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai , Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 200031 , China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
15
|
Nguyen M, Stigliani JL, Bijani C, Verhaeghe P, Pratviel G, Bonduelle C. Ionic Polypeptide Polymers with Unusual β-Sheet Stability. Biomacromolecules 2018; 19:4068-4074. [DOI: 10.1021/acs.biomac.8b01084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Michel Nguyen
- Laboratoire de Chimie de Coordination, UPR CNRS 8241. 205 route de Narbonne, 31077 Toulouse cedex 04, France
- Université de Toulouse; Université Paul Sabatier, Toulouse, France
| | - Jean-Luc Stigliani
- Laboratoire de Chimie de Coordination, UPR CNRS 8241. 205 route de Narbonne, 31077 Toulouse cedex 04, France
- Université de Toulouse; Université Paul Sabatier, Toulouse, France
| | - Christian Bijani
- Laboratoire de Chimie de Coordination, UPR CNRS 8241. 205 route de Narbonne, 31077 Toulouse cedex 04, France
- Université de Toulouse; Université Paul Sabatier, Toulouse, France
| | - Pierre Verhaeghe
- Laboratoire de Chimie de Coordination, UPR CNRS 8241. 205 route de Narbonne, 31077 Toulouse cedex 04, France
- Université de Toulouse; Université Paul Sabatier, Toulouse, France
| | - Genevieve Pratviel
- Laboratoire de Chimie de Coordination, UPR CNRS 8241. 205 route de Narbonne, 31077 Toulouse cedex 04, France
- Université de Toulouse; Université Paul Sabatier, Toulouse, France
| | - Colin Bonduelle
- Laboratoire de Chimie de Coordination, UPR CNRS 8241. 205 route de Narbonne, 31077 Toulouse cedex 04, France
- Université de Toulouse; Université Paul Sabatier, Toulouse, France
| |
Collapse
|
16
|
Drosophila Exo70 Is Essential for Neurite Extension and Survival under Thermal Stress. J Neurosci 2018; 38:8071-8086. [PMID: 30209205 DOI: 10.1523/jneurosci.0620-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/21/2022] Open
Abstract
The octomeric exocyst complex governs the final step of exocytosis in both plants and animals. Its roles, however, extend beyond exocytosis and include organelle biogenesis, ciliogenesis, cell migration, and cell growth. Exo70 is a conserved component of the exocyst whose function in Drosophila is unclear. In this study, we characterized two mutant alleles of Drosophila exo70. exo70 mutants exhibit reduced synaptic growth, locomotor activity, glutamate receptor density, and mEPSP amplitude. We found that presynaptic Exo70 is necessary for normal synaptic growth at the neuromuscular junction (NMJ). At the neuromuscular junction, exo70 genetically interacts with the small GTPase ralA to regulate synaptic growth. Loss of Exo70 leads to the blockage of JNK signaling-, activity-, and temperature-induced synaptic outgrowths. We showed that this phenotype is associated with an impairment of integral membrane protein transport to the cell surface at synaptic terminals. In octopaminergic motor neurons, Exo70 is detected in synaptic varicosities, as well as the regions of membrane extensions in response to activity stimulation. Strikingly, mild thermal stress causes severe neurite outgrowth defects and pharate adult lethality in exo70 mutants. exo70 mutants also display defective locomotor activity in response to starvation stress. These results demonstrated that Exo70 is an important regulator of induced synaptic growth and is crucial for an organism's adaptation to environmental changes.SIGNIFICANCE STATEMENT The exocyst complex is a conserved protein complex directing secretory vesicles to the site of membrane fusion during exocytosis, which is essential for transporting proteins and membranes to the cell surface. Exo70 is a subunit of the exocyst complex whose roles in neurons remain elusive, and its function in Drosophila is unclear. In Drosophila, Exo70 is expressed in both glutamatergic and octopaminergic neurons, and presynaptic Exo70 regulates synaptic outgrowth. Moreover, exo70 mutants have impaired integral membrane transport to the cell surface at synaptic terminals and block several kinds of induced synaptic growth. Remarkably, elevated temperature causes severe arborization defects and lethality in exo70 mutants, thus underpinning the importance of Exo70 functions in development and adaptation to the environment.
Collapse
|
17
|
Priegue JM, Lostalé-Seijo I, Crisan D, Granja JR, Fernández-Trillo F, Montenegro J. Different-Length Hydrazone Activated Polymers for Plasmid DNA Condensation and Cellular Transfection. Biomacromolecules 2018; 19:2638-2649. [PMID: 29653048 PMCID: PMC6041776 DOI: 10.1021/acs.biomac.8b00252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/10/2018] [Indexed: 11/29/2022]
Abstract
The recent advances in genetic engineering demand the development of conceptually new methods to prepare and identify efficient vectors for the intracellular delivery of different nucleotide payloads ranging from short single-stranded oligonucleotides to larger plasmid double-stranded circular DNAs. Although many challenges still have to be overcome, polymers hold great potential for intracellular nucleotide delivery and gene therapy. We here develop and apply the postpolymerization modification of polyhydrazide scaffolds, with different degree of polymerization, for the preparation of amphiphilic polymeric vehicles for the intracellular delivery of a circular plasmid DNA. The hydrazone formation reactions with a mixture of cationic and hydrophobic aldehydes proceed in physiologically compatible aqueous conditions, and the resulting amphiphilic polyhydrazones are directly combined with the biological cargo without any purification step. This methodology allowed the preparation of stable polyplexes with a suitable size and zeta potential to achieve an efficient encapsulation and intracellular delivery of the DNA cargo. Simple formulations that performed with efficiencies and cell viabilities comparable to the current gold standard were identified. Furthermore, the internalization mechanism was studied via internalization experiments in the presence of endocytic inhibitors and fluorescence microscopy. The results reported here confirmed that the polyhydrazone functionalization is a suitable strategy for the screening and identification of customized polymeric vehicles for the delivery of different nucleotide cargos.
Collapse
Affiliation(s)
- Juan M. Priegue
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Irene Lostalé-Seijo
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Daniel Crisan
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Juan R. Granja
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | | | - Javier Montenegro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| |
Collapse
|
18
|
Pazo M, Juanes M, Lostalé-Seijo I, Montenegro J. Oligoalanine helical callipers for cell penetration. Chem Commun (Camb) 2018; 54:6919-6922. [PMID: 29863199 DOI: 10.1039/c8cc02304b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even for short peptides that are enriched in basic amino acids, the large chemical space that can be spanned by combinations of natural amino acids hinders the rational design of cell penetrating peptides. We here report on short oligoalanine scaffolds for the fine-tuning of peptide helicity in different media and the study of cell penetrating properties. This strategy allowed the extraction of the structure/activity features required for maximal membrane interaction and cellular penetration at minimal toxicity. These results confirmed oligoalanine helical callipers as optimal scaffolds for the rational design and the identification of cell penetrating peptides.
Collapse
Affiliation(s)
- Marta Pazo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
19
|
Juanes M, Lostalé-Seijo I, Granja JR, Montenegro J. Supramolecular Recognition and Selective Protein Uptake by Peptide Hybrids. Chemistry 2018; 24:10689-10698. [DOI: 10.1002/chem.201800706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/19/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Marisa Juanes
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Juan R. Granja
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS); Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| |
Collapse
|
20
|
Abstract
Synthetic peptide-based polymers can fold into different secondary structures in the same way as do proteins. This review article presents how tuning the polypeptide secondary structure could be a key step to modulate various properties in advanced polymeric materials (size, rigidity, self-assembly,etc.).
Collapse
Affiliation(s)
- Colin Bonduelle
- CNRS
- LCC (Laboratoire de Chimie de Coordination (UPR8241))
- F-31077 Toulouse
- France
- Université de Toulouse
| |
Collapse
|
21
|
Misawa T, Kanda Y, Demizu Y. Rational Design and Synthesis of Post-Functionalizable Peptide Foldamers as Helical Templates. Bioconjug Chem 2017; 28:3029-3035. [DOI: 10.1021/acs.bioconjchem.7b00621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Takashi Misawa
- Division of Organic Chemistry and ‡Division of Pharmacology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Yasunari Kanda
- Division of Organic Chemistry and ‡Division of Pharmacology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry and ‡Division of Pharmacology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|
22
|
Smart Poly(imidazoyl-l-lysine): Synthesis and Reversible Helix-to-Coil Transition at Neutral pH. Polymers (Basel) 2017; 9:polym9070276. [PMID: 30970954 PMCID: PMC6432093 DOI: 10.3390/polym9070276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 01/17/2023] Open
Abstract
Polypeptide polymers can adopt natural protein secondary structures such as α-helices or β-sheets, and this unique feature is at the origin of some intriguing physico–chemical properties. In this work, we present how side chain imidazoylation of a poly(l-lysine) scaffold affords the preparation of poly(histidine) counterparts exhibiting α-helix conformation. This structuring behavior is reversible and can be controlled by means of pH and or temperature changes.
Collapse
|
23
|
Gourdon G, Meola G. Myotonic Dystrophies: State of the Art of New Therapeutic Developments for the CNS. Front Cell Neurosci 2017; 11:101. [PMID: 28473756 PMCID: PMC5397409 DOI: 10.3389/fncel.2017.00101] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Myotonic dystrophies are multisystemic diseases characterized not only by muscle and heart dysfunction but also by CNS alteration. They are now recognized as brain diseases affecting newborns and children for myotonic dystrophy type 1 and adults for both myotonic dystrophy type 1 and type 2. In the past two decades, much progress has been made in understanding the mechanisms underlying the DM symptoms allowing development of new molecular therapeutic tools with the ultimate aim of curing the disease. This review describes the state of the art for the characterization of CNS related symptoms, the development of molecular strategies to target the CNS as well as the available tools for screening and testing new possible treatments.
Collapse
Affiliation(s)
- Genevieve Gourdon
- Institut National de la Santé et de la Recherche Médicale UMR1163Paris, France.,Laboratory CTGDM, Institut Imagine, Université Paris Descartes-Sorbonne Paris CitéParis, France
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, Policlinico San Donato (IRCCS), University of MilanMilan, Italy
| |
Collapse
|
24
|
Moitra P, Kumar K, Sarkar S, Kondaiah P, Duan W, Bhattacharya S. New pH-responsive gemini lipid derived co-liposomes for efficacious doxorubicin delivery to drug resistant cancer cells. Chem Commun (Camb) 2017; 53:8184-8187. [DOI: 10.1039/c7cc03320f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new pH-sensitive co-liposomal formulation was developed which could efficiently transport doxorubicin across the DOX-resistant cancer cells.
Collapse
Affiliation(s)
- Parikshit Moitra
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Krishan Kumar
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Sourav Sarkar
- Director's Research Unit
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Paturu Kondaiah
- Department of Molecular Reproduction
- Development and Genetics
- Indian Institute of Science
- Bangalore 560012
- India
| | - Wei Duan
- School of Medicine
- Deakin University
- Waurn Ponds
- Australia
| | - Santanu Bhattacharya
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
- Director's Research Unit
| |
Collapse
|