1
|
Du X, Li H, Shen S, Tian C, Cao X, Xu X, Xu N, Wang S, Tian Q. Labeling tumor-associated extracellular vesicles with antibody-DNA conjugates for quantitative analysis. Front Mol Biosci 2025; 12:1531108. [PMID: 39911266 PMCID: PMC11794122 DOI: 10.3389/fmolb.2025.1531108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Introduction Extracellular vesicles (EVs) shed from tumor cells into peripheral circulation or other body fluids are promising biomarkers for cancer diagnosis with enormously long circulation. Consequently, precise methods for differentiating normal and tumor-associated EVs (TAEs) are required. Methods This study used quantifiable antibody-DNA conjugate-assisted quantitative methods combined with proximity ligation technology to detect TAEs. The antibody-DNA conjugate contained one antibody associated with three oligonucleotides for signal amplification. The antibody in the conjugate can recognize the surface tumor antigens of TAEs. Simultaneously, DNA in the conjugate is attached to the surfaces of TAEs and holds the signal amplification post, converting protein identities to DNA amplification for protein detection, even at the molecular level. Results These findings revealed that TAEs can be quantitatively detected using DNA-mediated quantitative polymerase chain reaction (qPCR). Antibody-DNA conjugates were used to recognize the epithelial cell adhesion molecule (EpCAM) antigen on the TAE surface and quantify the antigen using qPCR for cancer analysis. Discussion This method proposed a new quantitative detection approach for TAEs, which aim to identify specific EV-associated markers for diagnostic or therapeutic, this method could inspire a new idea for tumor diagnosis and detection of other diseases.
Collapse
Affiliation(s)
- Xiao Du
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hongxiu Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shiyi Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Chao Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaohuan Cao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xingang Xu
- Laboratory of Chinese Medicine Preparation, Shandong Research Academy of Traditional Chinese Medicine, Jinan, China
| | - Nan Xu
- Laboratory of Chinese Medicine Preparation, Shandong Research Academy of Traditional Chinese Medicine, Jinan, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Wu S, Wang Y, Yang Y, Yang C, Jiensi A, Geng C, Ju H, Chen Y. In Situ and In Vivo Evaluation of Multiplex Protein-Specific Glycosylation of Tumors with a Dual-SERS Encoding Strategy. Anal Chem 2025; 97:936-944. [PMID: 39705316 DOI: 10.1021/acs.analchem.4c05695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
A dual-SERS encoding strategy was designed for in situ and in vivo evaluation of multiplex protein-specific glycosylation of tumors. The dual-SERS encoding strategy consisted of two pairs of dual gold nanoprobes with different diameters of 10 and 30 nm, which were encoded with four different and distinguishable Raman signal molecules. The 10 and 30 nm gold nanoprobes (Au10 and Au30 probes, respectively) were further modified with lectins and aptamers to recognize the target glycans and proteins, respectively. After sequential binding to the target glycans and proteins, the adjacent Au10 and Au30 probes could emit strong surface-enhanced Raman scattering (SERS) signals to indicate the multiplex protein-specific glycosylation information on cells and in vivo, which can reveal in situ the distribution differences of different tumor markers in the central and marginal regions of tumors. This strategy has been successfully applied for in situ imaging and evaluation of the MUC1 and EpCAM-specific Sia and Gal/GalNAc information on cell surfaces and tumor xenografted mice, providing a convenient and powerful tool to study protein-specific glycosylation-related physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Shan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuru Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuhui Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chaoyi Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ayidana Jiensi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chengyao Geng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
4
|
Liu J, Zhou Z, Bo Y, Yan Q, Su X. Harnessing CRISPR/Cas12a Activity and DNA-Based Ultrabright FluoroCube for In Situ Imaging of Metabolically Labeled Cell Membrane Glycoproteins. NANO LETTERS 2024; 24:14236-14243. [PMID: 39470128 DOI: 10.1021/acs.nanolett.4c03605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Fluorescence imaging of cell membrane glycoproteins based on metabolic labeling faces challenges including the sensitivity and spatial specificity and the use of a high concentration of unnatural sugars. To overcome these limitations, we developed a method for in situ imaging of cell membrane glycoproteins by operating Cas12a activity, and employing the ultrabright DNA nanostructure, FluoroCube (FC), as a signal reporter. Following Cas12a activation, we observed stable and intense fluorescence signals within 15 min. The combination of bright FC and Cas12a's amplification capability allows for effective imaging with only 5 μM of unnatural sugars and a brief 24-h incubation. Computational modeling demonstrates that Cas12a specifically cleaves FC in the 11-17 nm range of the glycosylation site, enabling spatially precise imaging. This approach successfully enabled fluorescence imaging of glycoproteins across various cell lines and the detection of changes in glycoprotein levels induced by drugs.
Collapse
Affiliation(s)
- Jiajia Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyan Zhou
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifan Bo
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Ma Y, Guo W, Mou Q, Shao X, Lyu M, Garcia V, Kong L, Lewis W, Ward C, Yang Z, Pan X, Yi SS, Lu Y. Spatial imaging of glycoRNA in single cells with ARPLA. Nat Biotechnol 2024; 42:608-616. [PMID: 37217750 PMCID: PMC10663388 DOI: 10.1038/s41587-023-01801-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Little is known about the biological roles of glycosylated RNAs (glycoRNAs), a recently discovered class of glycosylated molecules, because of a lack of visualization methods. We report sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay (ARPLA) to visualize glycoRNAs in single cells with high sensitivity and selectivity. The signal output of ARPLA occurs only when dual recognition of a glycan and an RNA triggers in situ ligation, followed by rolling circle amplification of a complementary DNA, which generates a fluorescent signal by binding fluorophore-labeled oligonucleotides. Using ARPLA, we detect spatial distributions of glycoRNAs on the cell surface and their colocalization with lipid rafts as well as the intracellular trafficking of glycoRNAs through SNARE protein-mediated secretory exocytosis. Studies in breast cell lines suggest that surface glycoRNA is inversely associated with tumor malignancy and metastasis. Investigation of the relationship between glycoRNAs and monocyte-endothelial cell interactions suggests that glycoRNAs may mediate cell-cell interactions during the immune response.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Weijie Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Quanbing Mou
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Xiangli Shao
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Mingkuan Lyu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Valeria Garcia
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Linggen Kong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Whitney Lewis
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Carson Ward
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zhenglin Yang
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Xingxin Pan
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - S Stephen Yi
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
6
|
Li P, Chang Q, Liu M, Lei K, Ping S, Wang J, Gu Y, Ren H, Ma Y. DNA-Encoded and Spatial Proximity Replaced Glycoprotein Analysis Reveals Glycosylation Heterogeneity of Extracellular Vesicles. Anal Chem 2023; 95:17467-17476. [PMID: 38009238 DOI: 10.1021/acs.analchem.3c01501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Glycosylation of proteins is an essential feature of extracellular vesicles (EVs). However, while the glycosylation heterogeneity focusing on specific EV subtypes and proteins will better reveal the functions of EVs, the determination of their specific glycans remains highly challenging. Herein, we report a method of protein-specific glycan recognition using DNA-encoded affinity ligands to label proteins and glycans. Manipulating the sequences of DNA tags and employing a DNA logic gate to trigger a spatial proximity-induced DNA replacement reaction enabled the release of glycan-representative DNA strands for the quantitative detection of multiple glycoforms. After size-dependent isolation of EV subgroups and decoding of three typical glycoforms on the epithelial growth factor receptor (EGFR), we found that the different EV subgroups of the EGFR glycoprotein varied with respect to glycan types and abundance. The distinctive glycoforms of the EV subgroups could interfere with the EGFR-related EV functions. Furthermore, the sialylation of small EVs possessed the potential as a cancer biomarker. This method provides new insights into the role of protein-specific glycoforms in EV functions.
Collapse
Affiliation(s)
- Ping Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Qi Chang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Mengmeng Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ke Lei
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Shuai Ping
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Jia Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yueqing Gu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - He Ren
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yi Ma
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
7
|
Yang Y, Song Z, Tian T, Zhao Z, Chen J, Hu J, Jiang X, Yang G, Xue Q, Zhao X, Sha W, Yang Y, Li JP. Trimming Crystallizable Fragment (Fc) Glycans Enables the Direct Enzymatic Transfer of Biomacromolecules to Antibodies as Therapeutics. Angew Chem Int Ed Engl 2023; 62:e202308174. [PMID: 37438983 DOI: 10.1002/anie.202308174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
Glycoengineering has provided powerful tools to construct site-specific antibody conjugates. However, only small-molecule payloads can be directly transferred to native or engineered antibodies using existing glycoengineering strategies. Herein, we demonstrate that reducing the complexity of crystallizable fragment (Fc) glycans could dramatically boost the chemoenzymatic modification of immunoglobulin G (IgG) via an engineered fucosyltransferase. In this platform, antibodies with Fc glycans engineered to a simple N-acetyllactosamine (LacNAc) disaccharide are successfully conjugated to biomacromolecules, such as oligonucleotides and nanobodies, in a single step within hours. Accordingly, we synthesized an antibody-conjugate-based anti-human epidermal growth factor receptor 2 (HER2)/ cluster of differentiation 3 (CD3) bispecific antibody and used it to selectively destroy patient-derived cancer organoids by reactivating endogenous T lymphocyte cells (T cells) inside the organoid. Our results highlight that this platform is a general approach to construct antibody-biomacromolecule conjugates with translational values.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Zhentao Song
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Tian Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Zihan Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ji Chen
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Jiangping Hu
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Xin Jiang
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Guoli Yang
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Qi Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Xinlu Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Wanxing Sha
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Yi Yang
- Glyco therapy Biotechnology Co., Ltd., 601/606 Building 12, Hangzhou Pharmaceutical Town, 291 Fucheng Road, Xiasha street, Qiantang Distirct, Hangzhou, Zhejiang, 310058, China
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
8
|
Park YS, Choi S, Jang HJ, Yoo TH. Assay methods based on proximity-enhanced reactions for detecting non-nucleic acid molecules. Front Bioeng Biotechnol 2023; 11:1188313. [PMID: 37456730 PMCID: PMC10343955 DOI: 10.3389/fbioe.2023.1188313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Accurate and reliable detection of biological molecules such as nucleic acids, proteins, and small molecules is essential for the diagnosis and treatment of diseases. While simple homogeneous assays have been developed and are widely used for detecting nucleic acids, non-nucleic acid molecules such as proteins and small molecules are usually analyzed using methods that require time-consuming procedures and highly trained personnel. Recently, methods using proximity-enhanced reactions (PERs) have been developed for detecting non-nucleic acids. These reactions can be conducted in a homogeneous liquid phase via a single-step procedure. Herein, we review three assays based on PERs for the detection of non-nucleic acid molecules: proximity ligation assay, proximity extension assay, and proximity proteolysis assay.
Collapse
Affiliation(s)
- Ye Seop Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sunjoo Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Hee Ju Jang
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
9
|
Hu W, Zhang G, Zhou Y, Xia J, Zhang P, Xiao W, Xue M, Lu Z, Yang S. Recent development of analytical methods for disease-specific protein O-GlcNAcylation. RSC Adv 2022; 13:264-280. [PMID: 36605671 PMCID: PMC9768672 DOI: 10.1039/d2ra07184c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The enzymatic modification of protein serine or threonine residues by N-acetylglucosamine, namely O-GlcNAcylation, is a ubiquitous post-translational modification that frequently occurs in the nucleus and cytoplasm. O-GlcNAcylation is dynamically regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase, and regulates nearly all cellular processes in epigenetics, transcription, translation, cell division, metabolism, signal transduction and stress. Aberrant O-GlcNAcylation has been shown in a variety of diseases, including diabetes, neurodegenerative diseases and cancers. Deciphering O-GlcNAcylation remains a challenge due to its low abundance, low stoichiometry and extreme lability in most tandem mass spectrometry. Separation or enrichment of O-GlcNAc proteins or peptides from complex mixtures has been of great interest because quantitative analysis of protein O-GlcNAcylation can elucidate their functions and regulatory mechanisms in disease. However, valid and specific analytical methods are still lacking, and efforts are needed to further advance this direction. Here, we provide an overview of recent advances in various analytical methods, focusing on chemical oxidation, affinity of antibodies and lectins, hydrophilic interaction, and enzymatic addition of monosaccharides in conjugation with these methods. O-GlcNAcylation quantification has been described in detail using mass-spectrometric or non-mass-spectrometric techniques. We briefly summarized dysregulated changes in O-GlcNAcylation in disease.
Collapse
Affiliation(s)
- Wenhua Hu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| | - Guolin Zhang
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Yu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Man Xue
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Zhaohui Lu
- Health Examination Center, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
10
|
Liang Y, Wu S, Han W, Wang J, Xu C, Shi J, Zhang Z, Gao H, Zhang K, Li J. Visualizing Single-Nucleotide Variations in a Nuclear Genome Using Colocalization of Dual-Engineered CRISPR Probes. Anal Chem 2022; 94:11745-11752. [PMID: 35975698 DOI: 10.1021/acs.analchem.2c01208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Direct visualization of single-nucleotide variation (SNV) in single cells is of great importance for understanding the spatial organization of genomes and their relationship with cell phenotypes. Herein, we developed a new strategy for visualizing SNVs in a nuclear genome using colocalization of dual-engineered CRISPR probes (CoDEC). By engineering the structure of sgRNA, we incorporated a hairpin in the spacer domain for improving SNV recognition specificity and a loop in the nonfunctional domain for localized signal amplification. Using guide probe-based colocalization strategy, we can successfully distinguish on-target true positive signals from the off-target false positives with high accuracy. Comparing with a proximity ligation-based assay (CasPLA), the probe colocalization strategy extended applicable target gene sites (the distance between two designed probes can be extended to around 200nt) and improved detection efficiency. This newly developed method provides a facile way for studying in situ information on SNVs in individual cells for basic research and clinical applications with single-molecule and single-nucleotide resolutions.
Collapse
Affiliation(s)
- Yan Liang
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Sixuan Wu
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Wenshuai Han
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjin Wang
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Chenlu Xu
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Gao
- Department of Pathogen Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Griffin ME, Hsieh-Wilson LC. Tools for mammalian glycoscience research. Cell 2022; 185:2657-2677. [PMID: 35809571 PMCID: PMC9339253 DOI: 10.1016/j.cell.2022.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Cellular carbohydrates or glycans are critical mediators of biological function. Their remarkably diverse structures and varied activities present exciting opportunities for understanding many areas of biology. In this primer, we discuss key methods and recent breakthrough technologies for identifying, monitoring, and manipulating glycans in mammalian systems.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Microbiology and Immunology, Scripps Research, La Jolla, CA 92037, USA
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
12
|
Cao R, Li JX, Chen H, Cao C, Zheng F, Huang K, Chen YR, Flitsch SL, Liu L, Voglmeir J. Complete shift in glycosyl donor specificity in mammalian, but not C. elegans β1,4‐GalT1 Y286L mutants, enables the synthesis of N,N‐diacetyllactosamine. ChemCatChem 2022. [DOI: 10.1002/cctc.202101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ran Cao
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Jing-Xuan Li
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Huan Chen
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Cui Cao
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Feng Zheng
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Kun Huang
- Nanjing Agricultural University College of Food Science And Technology UNITED KINGDOM
| | - Ya-Ran Chen
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | | | - Li Liu
- Nanjing Agricultural University College of Food Science And Technology CHINA
| | - Josef Voglmeir
- Nanjing Agricultural University College of Food Science And Technology 1 Weigang 210095 Nanjing CHINA
| |
Collapse
|
13
|
Ishizawa S, Tumurkhuu M, Gross EJ, Ohata J. Site-specific DNA functionalization through the tetrazene-forming reaction in ionic liquids. Chem Sci 2022; 13:1780-1788. [PMID: 35282632 PMCID: PMC8826848 DOI: 10.1039/d1sc05204g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/15/2022] [Indexed: 11/21/2022] Open
Abstract
Site-specific chemical modification of unprotected DNAs through a phosphine-mediated amine–azide coupling reaction in ionic liquid.
Collapse
Affiliation(s)
- Seiya Ishizawa
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Munkhtuya Tumurkhuu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Elizabeth J. Gross
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
14
|
Chen L, Liang J. A proximity ligation assay (PLA) based sensing platform for the ultrasensitive detection of P53 protein-specific SUMOylation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Tian Y, Zhu Q, Sun Z, Geng D, Lin B, Su X, He J, Guo M, Xu H, Zhao Y, Qin W, Wang PG, Wen L, Yi W. One‐Step Enzymatic Labeling Reveals a Critical Role of O‐GlcNAcylation in Cell‐Cycle Progression and DNA Damage Response. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yinping Tian
- Department of Hepatobiliary and Pancreatic Surgery The First Affiliated Hospital Zhejiang Provincial Key Laboratory of Pancreatic Disease School of Medicine Zhejiang University Hangzhou China
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Qiang Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
| | - Didi Geng
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Bingyi Lin
- Department of Hepatobiliary and Pancreatic Surgery The First Affiliated Hospital Zhejiang Provincial Key Laboratory of Pancreatic Disease School of Medicine Zhejiang University Hangzhou China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou China
| | - Jiahui He
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Miao Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| | - Weijie Qin
- National Center for Protein Sciences Beijing State Key Laboratory of Proteomics, Beijing Proteome Research Center Beijing Institute of Lifeomics Beijing China
| | - Peng George Wang
- School of Medicine Southern University of Science and Technology Shenzhen China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Wen Yi
- Department of Hepatobiliary and Pancreatic Surgery The First Affiliated Hospital Zhejiang Provincial Key Laboratory of Pancreatic Disease School of Medicine Zhejiang University Hangzhou China
- MOE Key Laboratory of Biosystems Homeostasis & Protection College of Life Sciences Zhejiang University Hangzhou China
| |
Collapse
|
16
|
Tian Y, Zhu Q, Sun Z, Geng D, Lin B, Su X, He J, Guo M, Xu H, Zhao Y, Qin W, Wang PG, Wen L, Yi W. One-Step Enzymatic Labeling Reveals a Critical Role of O-GlcNAcylation in Cell-Cycle Progression and DNA Damage Response. Angew Chem Int Ed Engl 2021; 60:26128-26135. [PMID: 34590401 DOI: 10.1002/anie.202110053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 12/26/2022]
Abstract
O-linked N-acetylglucosamine (O-GlcNAcylation) is a ubiquitous post-translational modification of proteins that is essential for cell function. Perturbation of O-GlcNAcylation leads to altered cell-cycle progression and DNA damage response. However, the underlying mechanisms are poorly understood. Here, we develop a highly sensitive one-step enzymatic strategy for capture and profiling O-GlcNAcylated proteins in cells. Using this strategy, we discover that flap endonuclease 1 (FEN1), an essential enzyme in DNA synthesis, is a novel substrate for O-GlcNAcylation. FEN1 O-GlcNAcylation is dynamically regulated during the cell cycle. O-GlcNAcylation at the serine 352 of FEN1 disrupts its interaction with Proliferating Cell Nuclear Antigen (PCNA) at the replication foci, and leads to altered cell cycle, defects in DNA replication, accumulation of DNA damage, and enhanced sensitivity to DNA damage agents. Thus, our study provides a sensitive method for profiling O-GlcNAcylated proteins, and reveals an unknown mechanism of O-GlcNAcylation in regulating cell cycle progression and DNA damage response.
Collapse
Affiliation(s)
- Yinping Tian
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qiang Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Didi Geng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bingyi Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiahui He
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Miao Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Yi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China.,MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Song J, Liu C, Wang X, Xu B, Liu X, Li Y, Xia J, Li Y, Zhang C, Li D, Sun H. O-GlcNAcylation Quantification of Certain Protein by the Proximity Ligation Assay and Clostridium perfringen OGA D298N(CpOGA D298N). ACS Chem Biol 2021; 16:1040-1049. [PMID: 34105348 DOI: 10.1021/acschembio.1c00185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
O-GlcNAcylation is an O-linked β-N-acetyl-glucosamine (O-GlcNAc)-monosaccharide modification of serine or threonine in proteins that plays a vital role in many critical cellular processes. Owing to its low molecular weight, uncharged property, and difficulty in distinguishing from β-N-acetyl-galactosamine (GalNAc), the lack of high specificity and avidity tools and sophisticated quantification methods have always been the bottleneck in analyzing O-GlcNAc functions. Here, we compared glycan array data of the mutant of Clostridium perfringen OGA (CpOGAD298N), O-GlcNAc antibody CTD110.6, and several lectins. We found that CpOGAD298N can effectively distinguish GlcNAc from GalNAc. Glycan array analysis and isothermal titration calorimetry (ITC) show that CpOGAD298N has a GlcNAc specific binding characteristic. CpOGAD298N could be used in far-western, flow cytometry analysis, and confocal imaging to demonstrate the existence of O-GlcNAc proteins. Using the CpOGAD298N affinity column, we identified 84 highly confident O-GlcNAc modified peptides from 82 proteins in the MCF-7 cell line and 33 highly confident peptides in 33 proteins from mouse liver tissue; most of them are novel O-GlcNAc proteins and could not bind with wheat germ agglutinin (WGA). Besides being used as a facile enrichment tool, a combination of CpOGAD298N with the proximity ligation assay (PLA) is successfully used to quantify O-GlcNAc modified histone H2B, which is as low as femtomoles in MCF-7 cell lysate. These results suggest that CpOGAD298N is a specific tool for detection (far-western, flow cytometry analysis, and confocal imaging) and enrichment of O-GlcNAcylated proteins and peptides, and the CpOGAD298N-PLA method is useful for quantifying certain O-GlcNAc protein.
Collapse
Affiliation(s)
- Jiaqi Song
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Chenglong Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Xueqing Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Bo Xu
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Xiaomei Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Yang Li
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Jing Xia
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Yan Li
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Can Zhang
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Danni Li
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| | - Hui Sun
- College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei Province, People’s Republic of China
| |
Collapse
|
18
|
Kim EJ. Advances in Strategies and Tools Available for Interrogation of Protein O-GlcNAcylation. Chembiochem 2021; 22:3010-3026. [PMID: 34101962 DOI: 10.1002/cbic.202100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Indexed: 11/08/2022]
Abstract
The attachment of a single O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and threonine residues of numerous proteins in the nucleus, cytoplasm, and mitochondria is a reversible post-translational modification (PTM) and plays an important role as a regulator of various cellular processes in both healthy and disease states. Advances in strategies and tools that allow for the detection of dynamic O-GlcNAcylation on cellular proteins have helped to enhance our initial and ongoing understanding of its dynamic effects on cellular stimuli and given insights into its link to the pathogenesis of several chronic diseases. Furthermore, chemical genetic strategies and related tools have been successfully applied to a myriad of biological systems with a new level of spatiotemporal and molecular precision. These strategies have started to be used in studying and controlling O-GlcNAcylation both in vivo and in vitro. In this minireview, overviews of recent advances in molecular tools being applied to the detection and identification of O-GlcNAcylation on cellular proteins as well as on individual proteins are provided. In addition, chemical genetic strategies that have already been applied or are potentially usable in O-GlcNAc functional are also discussed.
Collapse
Affiliation(s)
- Eun Ju Kim
- Daegu University, Gyeongsan-Si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
19
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Gorelik A, van Aalten DMF. Tools for functional dissection of site-specific O-GlcNAcylation. RSC Chem Biol 2020; 1:98-109. [PMID: 34458751 PMCID: PMC8386111 DOI: 10.1039/d0cb00052c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Protein O-GlcNAcylation is an abundant post-translational modification of intracellular proteins with the monosaccharide N-acetylglucosamine covalently tethered to serines and threonines. Modification of proteins with O-GlcNAc is required for metazoan embryo development and maintains cellular homeostasis through effects on transcription, signalling and stress response. While disruption of O-GlcNAc homeostasis can have detrimental impact on cell physiology and cause various diseases, little is known about the functions of individual O-GlcNAc sites. Most of the sites are modified sub-stoichiometrically which is a major challenge to the dissection of O-GlcNAc function. Here, we discuss the application, advantages and limitations of the currently available tools and technologies utilised to dissect the function of O-GlcNAc on individual proteins and sites in vitro and in vivo. Additionally, we provide a perspective on future developments required to decipher the protein- and site-specific roles of this essential sugar modification.
Collapse
Affiliation(s)
- Andrii Gorelik
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee Dundee UK
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee Dundee UK
- Institute for Molecular Precision Medicine, Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
21
|
Sun B, Xu F, Zhang Y, Hu Y, Chen Y. Dual-Probe Approach for Mass Spectrometric Quantification of MUC1-Specific Terminal Gal/GalNAc In Situ. Anal Chem 2020; 92:8340-8349. [PMID: 32502344 DOI: 10.1021/acs.analchem.0c00807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein glycosylation is a prevalent post-translational modification that mediates a variety of cellular processes. For membrane proteins, glycosylation at their terminal motif is usually more functional. Among the various glycosylation types found in membrane proteins, O-glycosylation is the most common and is closely correlated with a variety of cancer types, including breast cancer. Slightly aberrant expression of certain O-glycans can significantly affect cancer progression, especially at the cancer-related membrane protein level. To collect biological information on protein-specific glycosylation and further explore clinical applications, quantitative detection of glycosylation is essential. However, few assays have been reported for the in situ detection of protein-specific glycosylation to date. Herein, we developed a dual-probe approach for mass spectrometric quantification of protein-specific glycosylation using the terminal galactose/N-acetylgalactosamine (Gal/GalNAc) of MUC1 as a model. The dual-probe (i.e., protein probe and glycan probe) system was first designed and built. The protein probe contained an aptamer for MUC1 protein recognition and a capture DNA sequence. Correspondingly, the glycan probe had a DNA sequence complementary to that of the capture DNA, a substrate peptide containing a reporter peptide, and a tryptic cleavage site, and could be covalently linked with the terminal Gal/GalNAc. Exonuclease III enabled recycling of the hybridization-dehybridization process in a restricted space. Finally, the reporter peptide was tryptically released and quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The mass response of the reporter peptide represented the amount of MUC1-specific terminal Gal/GalNAc. This dual-probe approach was applied for in situ detection of MUC1-specific terminal Gal/GalNAc in three human breast cancer cell lines and 32 pairs of matched breast cancer tissue samples. The relationship between MUC1-specific terminal Gal/GalNAc expression and breast cancer diagnosis/prognosis was also assessed.
Collapse
Affiliation(s)
- Bo Sun
- Nanjing Medical University, School of Pharmacy, Nanjing, 211166, China
| | - Feifei Xu
- Nanjing Medical University, School of Pharmacy, Nanjing, 211166, China
| | - Yuanyuan Zhang
- Nanjing Medical University, School of Pharmacy, Nanjing, 211166, China
| | - Yechen Hu
- Nanjing Medical University, School of Pharmacy, Nanjing, 211166, China
| | - Yun Chen
- Nanjing Medical University, School of Pharmacy, Nanjing, 211166, China.,State Key Laboratory of Reproductive Medicine, Nanjing, 210029, China.,Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing, 211166, China
| |
Collapse
|
22
|
Li Z, Yuan B, Lin X, Meng X, Wen X, Guo Q, Li L, Jiang H, Wang K. Intramolecular trigger remodeling-induced HCR for amplified detection of protein-specific glycosylation. Talanta 2020; 215:120889. [PMID: 32312435 DOI: 10.1016/j.talanta.2020.120889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
Abstract
Dynamic changes of protein-glycosylation on cell surface act as an important indicator that reflects cellular physiological states and disease developments. The enhanced visualization of protein-specific glycosylation is of great value to interpret its functions and mechanisms. Hence, we present an intramolecular trigger remodeling-induced hybridization chain reaction (HCR) for imaging protein-specific glycosylation. This strategy relies on designing two DNA probes, protein and glycan probes, labeled respectively on protein by aptamer recognition and glycan through metabolic oligosaccharide engineering (MOE). Upon the same glycoprotein was labeled, the complementary domain of two probes induces hybridization and thus to remodel an intact trigger, followed by initiating HCR assembly. Applying this strategy, we successfully achieved imaging of specific protein-glycosylation on CEM cell surface and monitored dynamic changes of the glycosylation after treating with drugs. It provides a powerful tool with high flexibility, specificity and sensitivity in the research field of protein-specific glycosylation on living cells.
Collapse
Affiliation(s)
- Zenghui Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Baoyin Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoxia Lin
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Xiangxian Meng
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Xiaohong Wen
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Qiuping Guo
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| | - Lie Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Huishan Jiang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Kemin Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| |
Collapse
|
23
|
Ohata J, Krishnamoorthy L, Gonzalez MA, Xiao T, Iovan DA, Toste FD, Miller EW, Chang CJ. An Activity-Based Methionine Bioconjugation Approach To Developing Proximity-Activated Imaging Reporters. ACS CENTRAL SCIENCE 2020; 6:32-40. [PMID: 31989024 PMCID: PMC6978837 DOI: 10.1021/acscentsci.9b01038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 05/04/2023]
Abstract
Chemical probes that report on protein activity, rather than protein abundance, with spatial and temporal resolution can enable studies of their native function in biological contexts as well as provide opportunities for developing new types of biochemical reporters. Here we present a sensing platform, termed proximity-activated imaging reporter (PAIR), which combines activity-based methionine bioconjugation and antibody labeling with proximity-dependent oligonucleotide-based amplification to monitor dynamic changes of a given analyte in cells and animals through context-dependent methionine labeling of specific protein targets. We establish this PAIR method to develop sensors for imaging reactive oxygen species (ROS) and calcium ions through oxaziridine-directed labeling of reactive methionine residues on β-actin and calmodulin (CaM), respectively, where the extent of methionine bioconjugation on these protein targets can serve as an indicator of oxidative stress or calcium status. In particular, application of PAIR to activity-based CaM detection provides a method for imaging integrated calcium activity in both in vitro cell and in vivo zebrafish models. By relying on native protein biochemistry, PAIR enables redox and metal imaging without introduction of external small molecules or genetically encoded indicators that can potentially buffer the natural/existing pools. This approach can be potentially generalized to target a broader range of analytes by pairing appropriate activity-based protein probes with protein detection reagents in a proximity-driven manner, providing a starting point not only for designing new sensors but also for monitoring endogenous activity of specific protein targets in biological specimens with spatial and temporal fidelity.
Collapse
Affiliation(s)
- Jun Ohata
- Department
of Chemistry, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| | - Lakshmi Krishnamoorthy
- Department
of Chemistry, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| | - Monica A. Gonzalez
- Department
of Chemistry, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| | - Tong Xiao
- Department
of Chemistry, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| | - Diana A. Iovan
- Department
of Chemistry, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| | - F. Dean Toste
- Department
of Chemistry, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| | - Evan W. Miller
- Department
of Chemistry, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department
of Chemistry, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Zhang Y, Gambardella A, Üçüncü M, Geng J, Clavadetscher J, Bradley M, Lilienkampf A. Multifunctional, histidine-tagged polymers: antibody conjugation and signal amplification. Chem Commun (Camb) 2020; 56:13856-13859. [DOI: 10.1039/d0cc04591h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polymer scaffold, with multiple reactive centres, was synthesised by RAFT polymerisation and conjugated to the antibody herceptin. A hexahistidine RAFT agent enabled simple purification of polymer–protein conjugates.
Collapse
Affiliation(s)
- Yichuan Zhang
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
- Shenzhen Institutes of Advanced Technology
| | | | - Muhammed Üçüncü
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
- Department of Analytical Chemistry, Faculty of Pharmacy
| | - Jin Geng
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
- Shenzhen Institutes of Advanced Technology
| | | | - Mark Bradley
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh
- UK
| | | |
Collapse
|
25
|
Wang B, Shi S, Yang X, Wang Y, Qi H, Gao Q, Zhang C. Separation-Free Electrogenerated Chemiluminescence Immunoassay Incorporating Target Assistant Proximity Hybridization and Dynamically Competitive Hybridization of a DNA Signal Probe. Anal Chem 2019; 92:884-891. [DOI: 10.1021/acs.analchem.9b03662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bing Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Suwen Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Yue Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| |
Collapse
|
26
|
Ultrasensitive, multiplexed chemoproteomic profiling with soluble activity-dependent proximity ligation. Proc Natl Acad Sci U S A 2019; 116:21493-21500. [PMID: 31591248 DOI: 10.1073/pnas.1912934116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chemoproteomic methods can report directly on endogenous, active enzyme populations, which can differ greatly from measures of transcripts or protein abundance alone. Detection and quantification of family-wide probe engagement generally requires LC-MS/MS or gel-based detection methods, which suffer from low resolution, significant input proteome requirements, laborious sample preparation, and expensive equipment. Therefore, methods that can capitalize on the broad target profiling capacity of family-wide chemical probes but that enable specific, rapid, and ultrasensitive quantitation of protein activity in native samples would be useful for basic, translational, and clinical proteomic applications. Here we develop and apply a method that we call soluble activity-dependent proximity ligation (sADPL), which harnesses family-wide chemical probes to convert active enzyme levels into amplifiable barcoded oligonucleotide signals. We demonstrate that sADPL coupled to quantitative PCR signal detection enables multiplexed "writing" and "reading" of active enzyme levels across multiple protein families directly at picogram levels of whole, unfractionated proteome. sADPL profiling in a competitive format allows for highly sensitive detection of drug-protein interaction profiling, which allows for direct quantitative measurements of in vitro and in vivo on- and off-target drug engagement. Finally, we demonstrate that comparative sADPL profiling can be applied for high-throughput molecular phenotyping of primary human tumor samples, leading to the discovery of new connections between metabolic and proteolytic enzyme activity in specific tumor compartments and patient outcomes. We expect that this modular and multiplexed chemoproteomic platform will be a general approach for drug target engagement, as well as comparative enzyme activity profiling for basic and clinical applications.
Collapse
|
27
|
Dovgan I, Koniev O, Kolodych S, Wagner A. Antibody-Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents. Bioconjug Chem 2019; 30:2483-2501. [PMID: 31339691 DOI: 10.1021/acs.bioconjchem.9b00306] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-oligonucleotide conjugates (AOCs) are a novel class of synthetic chimeric biomolecules that has been continually gaining traction in different fields of modern biotechnology. This is mainly due to the unique combination of the properties of their two constituents, exceptional targeting abilities and antibody biodistribution profiles, in addition to an extensive scope of oligonucleotide functional and structural roles. Combining these two classes of biomolecules in one chimeric construct has therefore become an important milestone in the development of numerous biotechnological applications, including imaging (DNA-PAINT), detection (PLA, PEA), and therapeutics (targeted siRNA/antisense delivery). Numerous synthetic approaches have been developed to access AOCs ranging from stochastic chemical bioconjugation to site-specific conjugation with reactive handles, introduced into antibody sequences through protein engineering. This Review gives a general overview of the current status of AOC applications with a specific emphasis on the synthetic methods used for their preparation. The reported synthetic techniques are discussed in terms of their practical aspects and limitations. The importance of the development of novel methods for the facile generation of AOCs possessing a defined constitution is highlighted as a priority in AOC research to ensure the advance of their new applications.
Collapse
Affiliation(s)
- Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| | - Oleksandr Koniev
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Sergii Kolodych
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| |
Collapse
|
28
|
Li G, Moellering RE. A Concise, Modular Antibody-Oligonucleotide Conjugation Strategy Based on Disuccinimidyl Ester Activation Chemistry. Chembiochem 2019; 20:1599-1605. [PMID: 30767357 DOI: 10.1002/cbic.201900027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 12/17/2022]
Abstract
The synthesis of antibody-oligonucleotide conjugates has enabled the development of highly sensitive bioassays for specific epitopes in the laboratory and clinic. Most synthetic schemes to generate these hybrid molecules require expensive reagents, significant quantities of input antibody, and multistep purification routes; thus limiting widespread application. Herein a facile and robust conjugation strategy is reported that involves "plug-and-play" antibody conjugation with succinimidyl-functionalized oligonucleotides, which are high yielding and compatible for use directly after buffer exchange. The succinimidyl-linked oligonucleotides are synthesized with 5'-amine-modified oligonucleotides and disuccinimidyl suberate (DSS), both of which are inexpensive and commercially available. Direct incubation of the resulting stable succinimidyl- oligonucleotide conjugates with commercial antibodies yields conjugates ready for use after benchtop buffer exchange. It is demonstrated that the resulting oligonucleotide-antibody and oligonucleotide-streptavidin conjugates retain potent and specific binding in activity-dependent proximity ligation imaging, and proximity ligation-mediated qPCR detection of endogenous proteins in native cellular contexts down to picogram levels of whole proteome. This DSS conjugation strategy should be widely applicable in the synthesis of protein-oligonucleotide conjugates.
Collapse
Affiliation(s)
- Gang Li
- Department of Chemistry, University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Raymond E Moellering
- Department of Chemistry, University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| |
Collapse
|
29
|
Chen Z, Wang C, Hao L, Gao R, Li F, Liu S. Proximity recognition and polymerase-powered DNA walker for one-step and amplified electrochemical protein analysis. Biosens Bioelectron 2019; 128:104-112. [DOI: 10.1016/j.bios.2018.12.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022]
|
30
|
Liu Z, Lei S, Zou L, Li G, Xu L, Ye B. A label-free and double recognition-amplification novel strategy for sensitive and accurate carcinoembryonic antigen assay. Biosens Bioelectron 2019; 131:113-118. [PMID: 30826645 DOI: 10.1016/j.bios.2019.02.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/15/2019] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
Herein, a label-free and double recognition-amplification (LDRA) strategy for carcinoembryonic antigen (CEA) detection was developed, based on a new designed dual-function messenger probe (DMP) coalescing with DNA tetrahedron probes (DTPs) and hybridization chain reaction (HCR). The DMP possess dual-function to replace CEA for specific interface hybridization and initiate hybridization chain reaction. The interfacial hybridization event was quantitatively converted to an electrochemical signal by using hemin/G-quadruplex (h-Gx) formed after the hybridization chain reaction. Self-assembled DNA tetrahedron probes, which were readily decorated on an electrode surface as a scaffold with rigid support and ordered orientation, enabled the highly efficient strands hybridization and greatly increased target accessibility as well as significantly decreased noise. The proposed assay integrated dual recognition processes and HCR signal amplification processes, achieving the identification of low concentration of CEA as detection limit of 18.2 fg mL-1 (S/N = 3) and wider linearity range of 0.0001 ng mL-1-50 ng mL-1. A new electrochemical sensing method was proposed for CEA detection and used in real clinical samples. The obtained results were good consistency with those of clinical diagnosis.
Collapse
Affiliation(s)
- Zi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Sheng Lei
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lina Zou
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Gaiping Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lingling Xu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
31
|
Zhang X, Wang Y, Zhou X. Ligation-Based qPCR-Amplification Assay for Radiolabel-Free Detection of ATP and NAD + with High Selectivity and Sensitivity. Anal Chem 2019; 91:1665-1670. [PMID: 30572701 DOI: 10.1021/acs.analchem.8b05663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have developed a new sensing system based on quantitative real-time polymerase chain reaction assay (qPCR) to detect adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD+) with high sensitivity and selectivity. T4 DNA ligase can catalyze the ligation of two short oligonucleotides (DNA1 and DNA2), which complement a template (cDNA), in the presence of its cofactor, ATP, resulting in increased template concentration and decreased Ct values in qPCR assays. Similarly, the Escherichia coli DNA ligase is also able to catalyze the ligation of DNA1 and DNA2 upon the addition of NAD+. Moreover, this approach has potential for detecting other important cofactors in related systems. Therefore, as a convenient and sensitive strategy, the method may light new beacons and find broad application in biological fields.
Collapse
Affiliation(s)
- Xiong Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of the Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , PR China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of the Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , PR China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of the Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , PR China
| |
Collapse
|
32
|
Wen X, Yuan B, Zhang J, Meng X, Guo Q, Li L, Li Z, Jiang H, Wang K. Enhanced visualization of cell surface glycans via a hybridization chain reaction. Chem Commun (Camb) 2019; 55:6114-6117. [DOI: 10.1039/c9cc02069a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We apply a DNA hybridization chain reaction (HCR) to achieve sensitively amplified imaging of cell surface glycosylation.
Collapse
Affiliation(s)
- Xiaohong Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Baoyin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Junxun Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Xiangxian Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Lie Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Zenghui Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Huishan Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
33
|
Li J, Liu S, Sun L, Li W, Zhang SY, Yang S, Li J, Yang HH. Amplified Visualization of Protein-Specific Glycosylation in Zebrafish via Proximity-Induced Hybridization Chain Reaction. J Am Chem Soc 2018; 140:16589-16595. [DOI: 10.1021/jacs.8b08442] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shuya Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Liqin Sun
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Wei Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Su-Yun Zhang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Sheng Yang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Huang-Hao Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
34
|
Abstract
Nucleic acid analysis plays an important role in diagnosing diseases as well as understanding biology. Despite advances in technology, there is still a need to develop a rapid and simple method to detect specific nucleic acids, especially in remote locations and low-resource cases. Here, we proposed a proximity proteolysis reaction in which the reaction between protease and zymogen is enhanced in the presence of a target molecule. The pair of proteins was site-specifically modified with oligonucleotides, and the conjugates were used to develop a method of detecting nucleic acids. Target DNA and RNA could be detected in less than 1 h at sub-nanomolar concentrations based on an absorbance signal. The assay method was resistant to interference by biological matrixes, and its sensitivity could be improved when combined with an isothermal nucleic acid amplification method. The results demonstrated the feasibility of this proximity proteolysis reaction as a new platform technology for detecting specific nucleic acid sequences.
Collapse
Affiliation(s)
- Hyeon Ji Park
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon 16499, Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon 16499, Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, 206 World cup-ro, Yengtong-gu, Suwon 16499, Korea
| |
Collapse
|
35
|
Gilormini PA, Batt AR, Pratt MR, Biot C. Asking more from metabolic oligosaccharide engineering. Chem Sci 2018; 9:7585-7595. [PMID: 30393518 PMCID: PMC6187459 DOI: 10.1039/c8sc02241k] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/17/2018] [Indexed: 01/20/2023] Open
Abstract
Glycans form one of the four classes of biomolecules, are found in every living system and present a huge structural and functional diversity. As an illustration of this diversity, it has been reported that more than 50% of the human proteome is glycosylated and that 2% of the human genome is dedicated to glycosylation processes. Glycans are involved in many biological processes such as signalization, cell-cell or host pathogen interactions, immunity, etc. However, fundamental processes associated with glycans are not yet fully understood and the development of glycobiology is relatively recent compared to the study of genes or proteins. Approximately 25 years ago, the studies of Bertozzi's and Reutter's groups paved the way for metabolic oligosaccharide engineering (MOE), a strategy which consists in the use of modified sugar analogs which are taken up into the cells, metabolized, incorporated into glycoconjugates, and finally detected in a specific manner. This groundbreaking strategy has been widely used during the last few decades and the concomitant development of new bioorthogonal ligation reactions has allowed many advances in the field. Typically, MOE has been used to either visualize glycans or identify different classes of glycoproteins. The present review aims to highlight recent studies that lie somewhat outside of these more traditional approaches and that are pushing the boundaries of MOE applications.
Collapse
Affiliation(s)
- Pierre-André Gilormini
- University of Lille , CNRS UMR 8576 , UGSF - Unité de Glycobiologie Structurale et Fonctionnelle , F-59000 Lille , France .
| | - Anna R Batt
- Department of Chemistry , University of Southern California , 840 Downey Way , LJS 250 Los Angeles , CA 90089 , USA
| | - Matthew R Pratt
- Department of Chemistry , University of Southern California , 840 Downey Way , LJS 250 Los Angeles , CA 90089 , USA
- Department of Biological Sciences , University of Southern California , 840 Downey Way , LJS 250 Los Angeles , CA 90089 , USA
| | - Christophe Biot
- University of Lille , CNRS UMR 8576 , UGSF - Unité de Glycobiologie Structurale et Fonctionnelle , F-59000 Lille , France .
| |
Collapse
|
36
|
Kim EJ. Chemical Reporters and Their Bioorthogonal Reactions for Labeling Protein O-GlcNAcylation. Molecules 2018; 23:molecules23102411. [PMID: 30241321 PMCID: PMC6222402 DOI: 10.3390/molecules23102411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022] Open
Abstract
Protein O-GlcNAcylation is a non-canonical glycosylation of nuclear, mitochondrial, and cytoplasmic proteins with the attachment of a single O-linked β-N-acetyl-glucosamine (O-GlcNAc) moiety. Advances in labeling and identifying O-GlcNAcylated proteins have helped improve the understanding of O-GlcNAcylation at levels that range from basic molecular biology to cell signaling and gene regulation to physiology and disease. This review describes these advances in chemistry involving chemical reporters and their bioorthogonal reactions utilized for detection and construction of O-GlcNAc proteomes in a molecular mechanistic view. This detailed view will help better understand the principles of the chemistries utilized for biology discovery and promote continued efforts in developing new molecular tools and new strategies to further explore protein O-GlcNAcylation.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Science Education-Chemistry Major, Daegu University, Gyeongsan-si 712-714, Gyeongsangbuk-do, Korea.
| |
Collapse
|
37
|
Zhang K, Deng R, Teng X, Li Y, Sun Y, Ren X, Li J. Direct Visualization of Single-Nucleotide Variation in mtDNA Using a CRISPR/Cas9-Mediated Proximity Ligation Assay. J Am Chem Soc 2018; 140:11293-11301. [PMID: 30125486 DOI: 10.1021/jacs.8b05309] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The accumulation of mitochondrial DNA (mtDNA) mutations in cells is strongly related to aging-associated diseases. Imaging of single-nucleotide variation (SNV) in mtDNA is crucial for understanding the heteroplasmy of mtDNAs that harbor pathogenic changes. Herein, we designed a CRISPR/Cas9-mediated proximity ligation assay (CasPLA) for direct visualization of the ND4 and ND5 genes in the mtDNAs of single cells. Taking advantage of the high specificity of CRISPR/Cas9, CasPLA can be used to image SNV in the ND4 gene at single-molecule resolution. Using CasPLA, we observed a mtDNA-transferring process between different cells through a tunneling nanotube, which may account for the spreading of mtDNA heteroplasmy. Moreover, we demonstrated that CasPLA strategy can be applied for imaging of single copy genomic loci ( KRAS gene) in the nuclear genome. Our results establish CasPLA as a tool to study SNV in situ in single cells for basic research and genetic diagnosis.
Collapse
Affiliation(s)
- Kaixiang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| | - Ruijie Deng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| | - Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| | - Yue Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| | - Yupeng Sun
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| | - Xiaojun Ren
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
38
|
Kightlinger W, Lin L, Rosztoczy M, Li W, DeLisa MP, Mrksich M, Jewett MC. Design of glycosylation sites by rapid synthesis and analysis of glycosyltransferases. Nat Chem Biol 2018; 14:627-635. [PMID: 29736039 DOI: 10.1038/s41589-018-0051-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/07/2018] [Indexed: 01/17/2023]
Abstract
Glycosylation is an abundant post-translational modification that is important in disease and biotechnology. Current methods to understand and engineer glycosylation cannot sufficiently explore the vast experimental landscapes required to accurately predict and design glycosylation sites modified by glycosyltransferases. Here we describe a systematic platform for glycosylation sequence characterization and optimization by rapid expression and screening (GlycoSCORES), which combines cell-free protein synthesis and mass spectrometry of self-assembled monolayers. We produced six N- and O-linked polypeptide-modifying glycosyltransferases from bacteria and humans in vitro and rigorously determined their substrate specificities using 3,480 unique peptides and 13,903 unique reaction conditions. We then used GlycoSCORES to optimize and design small glycosylation sequence motifs that directed efficient N-linked glycosylation in vitro and in the Escherichia coli cytoplasm for three heterologous proteins, including the human immunoglobulin Fc domain. We find that GlycoSCORES is a broadly applicable method to facilitate fundamental understanding of glycosyltransferases and engineer synthetic glycoproteins.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Liang Lin
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Madisen Rosztoczy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Wenhao Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.,Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Milan Mrksich
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA. .,Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA. .,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
39
|
Abstract
Glycan decorates all mammalian cell surfaces through glycosylation, which is one of the most important post-modifications of proteins. Glycans mediate a wide variety of biological processes, including cell growth and differentiation, cell-cell communication, immune response, pathogen interaction, and intracellular signaling events. Besides, tumor cells aberrantly express distinct sets of glycans, which can indicate different tumor onsets and progression processes. Thus, analysis of cellular glycans may contribute to understanding of glycan-related biological processes and correlation of glycan patterns with disease states for clinical diagnosis and treatment. Although proteomics and glycomics have included great efforts for in vitro study of glycan structures and functions using lysis samples of cells or tissues, they cannot offer real-time qualitative or quantitative information, especially spatial distribution, of glycans on/in intact cells, which is important to the revelation of glycan-related biological events. Moreover, the complex lysis and separation procedures may bring unpredictable loss of glycan information. Focusing on the great urgency for in situ analysis of cellular glycans, our group developed a series of methods for in situ analysis of cellular glycans in the past 10 years. By construction of electrochemical glycan-recognizable probes, glycans on the cell surface can be quantified by direct or competitive electrochemical detection. Using multichannel electrodes or encoded lectin probes, multiple glycans on the cell surface can be dynamically monitored simultaneously. Through design of functional nanoprobes, the cell surface protein-specific glycans and intracellular glycan-related enzymes can be visualized by fluorescence or Raman imaging. Besides, some biological enzymes-based methods have been developed for remodeling or imaging of protein-specific glycans and other types of glycoconjugates, such as gangliosides. Through tracing the changes of glycan expression induced by drugs or gene interference, some glycan-related biological processes have been deduced or proved, demonstrating the reliability and practicability of the developed methods. This Account surveys the key technologies developed in this area, along with the discussion on the shortages of current methodology as well as the possible strategies to overcome those shortages. The future trend in this topic is also discussed. It is expected that this Account can provide a versatile arsenal for chemical and biological researchers to unravel the complex mechanisms involved in glycan-related biological processes and light new beacons in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
40
|
Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels-Alder reactions in chemical biology. Chem Soc Rev 2018; 46:4895-4950. [PMID: 28660957 DOI: 10.1039/c7cs00184c] [Citation(s) in RCA: 725] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emerging inverse electron demand Diels-Alder (IEDDA) reaction stands out from other bioorthogonal reactions by virtue of its unmatchable kinetics, excellent orthogonality and biocompatibility. With the recent discovery of novel dienophiles and optimal tetrazine coupling partners, attention has now been turned to the use of IEDDA approaches in basic biology, imaging and therapeutics. Here we review this bioorthogonal reaction and its promising applications for live cell and animal studies. We first discuss the key factors that contribute to the fast IEDDA kinetics and describe the most recent advances in the synthesis of tetrazine and dienophile coupling partners. Both coupling partners have been incorporated into proteins for tracking and imaging by use of fluorogenic tetrazines that become strongly fluorescent upon reaction. Selected notable examples of such applications are presented. The exceptional fast kinetics of this catalyst-free reaction, even using low concentrations of coupling partners, make it amenable for in vivo radiolabelling using pretargeting methodologies, which are also discussed. Finally, IEDDA reactions have recently found use in bioorthogonal decaging to activate proteins or drugs in gain-of-function strategies. We conclude by showing applications of the IEDDA reaction in the construction of biomaterials that are used for drug delivery and multimodal imaging, among others. The use and utility of the IEDDA reaction is interdisciplinary and promises to revolutionize chemical biology, radiochemistry and materials science.
Collapse
Affiliation(s)
- B L Oliveira
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Z Guo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - G J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, 1649-028, Portugal.
| |
Collapse
|
41
|
Wang X, Gao H, Qi H, Gao Q, Zhang C. Proximity Hybridization-Regulated Immunoassay for Cell Surface Protein and Protein-Overexpressing Cancer Cells via Electrochemiluminescence. Anal Chem 2018; 90:3013-3018. [DOI: 10.1021/acs.analchem.7b04359] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaofei Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
| | - Hongfang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
| |
Collapse
|
42
|
Zou M, Li D, Yuan R, Xiang Y. A target-responsive autonomous aptamer machine biosensor for enzyme-free and sensitive detection of protein biomarkers. J Mater Chem B 2018; 6:4146-4150. [DOI: 10.1039/c8tb00610e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Target-triggered operation of an aptamer machine leads to amplified and highly sensitive detection of protein biomarkers.
Collapse
Affiliation(s)
- Mengqi Zou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- P. R. China
| | - Daxiu Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- P. R. China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering, Southwest University
- Chongqing 400715
- P. R. China
| |
Collapse
|
43
|
Gao H, Wang X, Li M, Qi H, Gao Q, Zhang C. Proximity hybridization-regulated electrogenerated chemiluminescence bioassay of α-fetoprotein via target-induced quenching mechanism. Biosens Bioelectron 2017. [DOI: 10.1016/j.bios.2017.06.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
An activity-dependent proximity ligation platform for spatially resolved quantification of active enzymes in single cells. Nat Commun 2017; 8:1775. [PMID: 29176560 PMCID: PMC5701173 DOI: 10.1038/s41467-017-01854-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
Integration of chemical probes into proteomic workflows enables the interrogation of protein activity, rather than abundance. Current methods limit the biological contexts that can be addressed due to sample homogenization, signal-averaging, and bias toward abundant proteins. Here we report a platform that integrates family-wide chemical probes with proximity-dependent oligonucleotide amplification and imaging to quantify enzyme activity in native contexts with high spatial resolution. Application of this method, activity-dependent proximity ligation (ADPL), to serine hydrolase and cysteine protease enzymes enables quantification of differential enzyme activity resulting from endogenous changes in localization and expression. In a competitive format, small-molecule target engagement with endogenous proteins in live cells can be quantified. Finally, retention of sample architecture enables interrogation of complex environments such as cellular co-culture and patient samples. ADPL should be amenable to diverse probe and protein families to detect active enzymes at scale and resolution out of reach with current methods. The interrogation of enzyme activity involves the ensemble averaging of many cells, loss of spatial relationships and is often biased to abundant proteins. Here the authors develop activity-dependent proximity ligation to quantify enzyme activity at the cellular and sub-cellular level in relevant biological contexts.
Collapse
|
45
|
Oliveira FMSD, Mereiter S, Lönn P, Siart B, Shen Q, Heldin J, Raykova D, Karlsson NG, Polom K, Roviello F, Reis CA, Kamali-Moghaddam M. Detection of post-translational modifications using solid-phase proximity ligation assay. N Biotechnol 2017; 45:51-59. [PMID: 29101055 DOI: 10.1016/j.nbt.2017.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/21/2023]
Abstract
Post-translational modifications (PTMs) regulate protein activities to help orchestrate and fine-tune cellular processes. Dysregulation of PTMs is often related with disorders and malignancies, and may serve as a precise biomarker of disease. Developing sensitive tools to measure and monitor low-abundant PTMs in tissue lysates or serum will be instrumental for opening up new PTM-based diagnostic avenues. Here, we investigate the use of solid-phase proximity ligation assay (SP-PLA) for detection of different PTMs. The assay depends on the recognition of the target protein molecule and its modification by three affinity binders. Using antibodies and lectins, we applied the method for detection of glycosylated CD44 and E-Cadherin, and phosphorylated p53 and EGFR. The assay was found to have superior dynamic range and limit of detection compared to standard ELISAs. In summary, we have established the use of SP-PLA as an appropriate method for sensitive detection of PTMs in lysates and sera, which may provide a basis for future PTM-based diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
| | - Stefan Mereiter
- i3S - Instituto de Investigação e Inovação em Saúde and IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal
| | - Peter Lönn
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Benjamin Siart
- Department of Anthropology, University of Vienna, Austria; Department of Behavioral Biology, University of Vienna, Austria
| | - Qiujin Shen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Heldin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | - Doroteya Raykova
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology at Institute of Biomedicine, Gothenburg University, Sweden
| | - Karol Polom
- Department of Surgical Oncology, Medical University of Gdansk, Poland; General Surgery and Surgical Oncology Department, Università deli Studi di Siena, Italy
| | - Franco Roviello
- General Surgery and Surgical Oncology Department, Università deli Studi di Siena, Italy
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde and IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Portugal; Faculty of Medicine of the University of Porto, Portugal
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
46
|
Imaging of protein-specific glycosylation by glycan metabolic tagging and in situ proximity ligation. Carbohydr Res 2017; 448:148-154. [PMID: 28669498 DOI: 10.1016/j.carres.2017.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/15/2017] [Accepted: 06/24/2017] [Indexed: 11/21/2022]
Abstract
Glycosylation is an important posttranslational modification, which regulates a number of critical biological processes including cell-cell recognition, signal transduction and disease progression. Probing the glycosylation status on a specific protein of interest enables an in-depth understanding of the role of glycosylation on protein structure and function. However, methods for monitoring protein-specific glycosylation are largely lacking. Here we describe a highly sensitive fluorescence imaging strategy to visualize the protein-specific glycosylation by combining glycan metabolic tagging and in situ proximity ligation (termed GPLA). We demonstrate the visualization of sialylation, fucosylation and GalNAcylation on several important membrane proteins. Notably, the high spatial resolution of this method allows subcellular localization of the glycosylated fraction of the proteins. We further show that our strategy can be applied to image the dimerization of endogenous epidermal growth factor receptor. Thus, our study provides a unique tool to monitor the protein-specific glycosylation in a dynamic cellular context.
Collapse
|
47
|
Zhang W, Liu T, Dong H, Bai H, Tian F, Shi Z, Chen M, Wang J, Qin W, Qian X. Synthesis of a Highly Azide-Reactive and Thermosensitive Biofunctional Reagent for Efficient Enrichment and Large-Scale Identification of O-GlcNAc Proteins by Mass Spectrometry. Anal Chem 2017; 89:5810-5817. [DOI: 10.1021/acs.analchem.6b04960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wanjun Zhang
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| | - Tong Liu
- Research
Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Hangyan Dong
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| | - Haihong Bai
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| | - Fang Tian
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| | - Zhaomei Shi
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| | - Mingli Chen
- Research
Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jianhua Wang
- Research
Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Weijie Qin
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| | - Xiaohong Qian
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| |
Collapse
|
48
|
dela Rosa MAC, Chen WC, Chen YJ, Obena RP, Chang CH, Capangpangan RY, Su TH, Chen CL, Chen PJ, Chen YJ. One-Pot Two-Nanoprobe Assay Uncovers Targeted Glycoprotein Biosignature. Anal Chem 2017; 89:3973-3980. [PMID: 28323416 DOI: 10.1021/acs.analchem.6b04396] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Wei-Chun Chen
- Department
of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Aguilar AL, Briard JG, Yang L, Macauley MS, Wu P. Tools for Studying Glycans: Recent Advances in Chemoenzymatic Glycan Labeling. ACS Chem Biol 2017; 12:611-621. [PMID: 28301937 PMCID: PMC5469623 DOI: 10.1021/acschembio.6b01089] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study of cellular glycosylation presents many challenges due, in large part, to the nontemplated nature of glycan biosynthesis and glycans' structural complexity. Chemoenzymatic glycan labeling (CeGL) has emerged as a new technique to address the limitations of existing methods for glycan detection. CeGL combines glycosyltransferases and unnatural nucleotide sugar donors equipped with a bioorthogonal chemical tag to directly label specific glycan acceptor substrates in situ within biological samples. This article reviews the current CeGL strategies that are available to characterize cell-surface and intracellular glycans. Applications include imaging glycan expression status in live cells and tissue samples, proteomic analysis of glycoproteins, and target validation. Combined with genetic and biochemical tools, CeGL provides new opportunities to elucidate the functional roles of glycans in human health and disease.
Collapse
Affiliation(s)
- Aime Lopez Aguilar
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Jennie Grace Briard
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Linette Yang
- Vassar College, 124 Raymond Ave, Poughkeepsie, NY 12604
| | - Matthew Scott Macauley
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Peng Wu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
50
|
Abstract
O-GlcNAcylation is the modification of serine and threonine residues with β-N-acetylglucosamine (O-GlcNAc) on intracellular proteins. This dynamic modification is attached by O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA) and is a critical regulator of various cellular processes. Furthermore, O-GlcNAcylation is dysregulated in many diseases, such as diabetes, cancer, and Alzheimer's disease. However, the precise role of this modification and its cycling enzymes (OGT and OGA) in normal and disease states remains elusive. This is partially due to the difficulty in studying O-GlcNAcylation with traditional genetic and biochemical techniques. In this review, we will summarize recent progress in chemical approaches to overcome these obstacles. We will cover new inhibitors of OGT and OGA, advances in metabolic labeling and cellular imaging, synthetic approaches to access homogeneous O-GlcNAcylated proteins, and cross-linking methods to identify O-GlcNAc-protein interactions. We will also discuss remaining gaps in our toolbox for studying O-GlcNAcylation and questions of high interest that are yet to be answered.
Collapse
Affiliation(s)
- Matthew Worth
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|