1
|
Nayak S, Jochimsen AS, Bandarian V. Not all 5'-deoxyadenosines are created equal: Tracing the provenance of 5'-deoxyadenosine formed by the radical S-adenosyl-L-methionine enzyme 7-carboxy-7-deazaguanine synthase. J Biol Chem 2025; 301:108347. [PMID: 40015645 PMCID: PMC11994313 DOI: 10.1016/j.jbc.2025.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Members of the radical S-adenosyl-L-methionine (rSAM) enzyme superfamily cleave SAM to generate the highly reactive 5'-deoxyadenosyl radical (dAdo·), where dAdo· initiates the reaction by an H-atom transfer from the substrate to form 5'-deoxyadenosine (dAdo) in nearly every member of the superfamily. However, in all rSAM enzymes, SAM also undergoes reductive cleavage to form dAdo in a reaction uncoupled from the product's formation. Herein, we examine the dAdo that is formed under catalytic conditions with the rSAM enzyme 7-carboxy-7-deazaguanine synthase (QueE), which catalyzes the radical-mediated transformation of 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) to 7-carboxy-7-deazaguanine (CDG). We propose that the dAdo that is observed under catalytic conditions can be traced to multiple shunt pathways, which are not all truly uncoupled from catalysis. Indeed, in one case, we demonstrate that the dAdo can form due to the reductive quenching of the initially generated substrate radical by the very same reducing system used to reductively cleave SAM to initiate catalysis. The insights from this work are generally applicable to all members of the rSAM family, as they influence the choice of reducing system to avoid the non-productive shunt pathways that interfere with catalysis.
Collapse
Affiliation(s)
- Saswata Nayak
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
2
|
The B 12-independent glycerol dehydratase activating enzyme from Clostridium butyricum cleaves SAM to produce 5'-deoxyadenosine and not 5'-deoxy-5'-(methylthio)adenosine. J Inorg Biochem 2022; 227:111662. [PMID: 34847521 PMCID: PMC8889718 DOI: 10.1016/j.jinorgbio.2021.111662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023]
Abstract
Glycerol dehydratase activating enzyme (GD-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential amino acid backbone radical onto glycerol dehydratase in bacteria under anaerobic conditions. Although GD-AE is closely homologous to other radical SAM activases that have been shown to cleave the S-C(5') bond of SAM to produce 5'-deoxyadenosine (5'-dAdoH) and methionine, GD-AE from Clostridium butyricum has been reported to instead cleave the S-C(γ) bond of SAM to yield 5'-deoxy-5'-(methylthio)adenosine (MTA). Here we re-investigate the SAM cleavage reaction catalyzed by GD-AE and show that it produces the widely observed 5'-dAdoH, and not the less conventional product MTA.
Collapse
|
3
|
Zhi N, Zhu H, Qiao J, Dong M. Recent progress in radical SAM enzymes: New reactions and mechanisms. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Feng J, Shaik S, Wang B. Spin‐Regulated Electron Transfer and Exchange‐Enhanced Reactivity in Fe
4
S
4
‐Mediated Redox Reaction of the Dph2 Enzyme During the Biosynthesis of Diphthamide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
5
|
Ma S, Chen H, Li H, Ji X, Deng Z, Ding W, Zhang Q. Post-Translational Formation of Aminomalonate by a Promiscuous Peptide-Modifying Radical SAM Enzyme. Angew Chem Int Ed Engl 2021; 60:19957-19964. [PMID: 34164914 DOI: 10.1002/anie.202107192] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/23/2021] [Indexed: 11/12/2022]
Abstract
Aminomalonate (Ama) is a widespread structural motif in Nature, whereas its biosynthetic route is only partially understood. In this study, we show that a radical S-adenosylmethionine (rSAM) enzyme involved in cyclophane biosynthesis exhibits remarkable catalytic promiscuity. This enzyme, named three-residue cyclophane forming enzyme (3-CyFE), mainly produces cyclophane in vivo, whereas it produces formylglycine (FGly) as a major product and barely produce cyclophane in vitro. Importantly, the enzyme can further oxidize FGly to produce Ama. Bioinformatic study revealed that 3-CyFEs have evolved from a common ancestor with anaerobic sulfatase maturases (anSMEs), and possess a similar set of catalytic residues with anSMEs. Remarkably, the enzyme does not need leader peptide for activity and is fully active on a truncated peptide containing only 5 amino acids of the core sequence. Our work discloses the first ribosomal path towards Ama formation, providing a possible hint for the rich occurrence of Ama in Nature.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Heng Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - He Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
6
|
Ma S, Chen H, Li H, Ji X, Deng Z, Ding W, Zhang Q. Post‐Translational Formation of Aminomalonate by a Promiscuous Peptide‐Modifying Radical SAM Enzyme. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Suze Ma
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Heng Chen
- Department of Chemistry Fudan University Shanghai 200433 China
| | - He Li
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
7
|
Feng J, Shaik S, Wang B. Spin-Regulated Electron Transfer and Exchange-Enhanced Reactivity in Fe 4 S 4 -Mediated Redox Reaction of the Dph2 Enzyme During the Biosynthesis of Diphthamide. Angew Chem Int Ed Engl 2021; 60:20430-20436. [PMID: 34302311 DOI: 10.1002/anie.202107008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/06/2022]
Abstract
The [4Fe-4S]-dependent radical S-adenosylmethionine (SAM) proteins is one of large families of redox enzymes that are able to carry a panoply of challenging transformations. Despite the extensive studies of structure-function relationships of radical SAM (RS) enzymes, the electronic state-dependent reactivity of the [4Fe-4S] cluster in these enzymes remains elusive. Using combined MD simulations and QM/MM calculations, we deciphered the electronic state-dependent reactivity of the [4Fe-4S] cluster in Dph2, a key enzyme involved in the biosynthesis of diphthamide. Our calculations show that the reductive cleavage of the S-C(γ) bond is highly dependent on the electronic structure of [4Fe-4S]. Interestingly, the six electronic states can be classified into a low-energy and a high-energy groups, which are correlated with the net spin of Fe4 atom ligated to SAM. Due to the driving force of Fe4-C(γ) bonding, the net spin on the Fe4 moiety dictate the shift of the opposite spin electron from the Fe1-Fe2-Fe3 block to SAM. Such spin-regulated electron transfer results in the exchange-enhanced reactivity in the lower-energy group compared with those in the higher-energy group. This reactivity principle provides fundamental mechanistic insights into reactivities of [4Fe-4S] cluster in RS enzymes.
Collapse
Affiliation(s)
- Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Hirscher NA, Arnett CH, Oyala PH, Agapie T. Characterization of Cr-Hydrocarbyl Species via Pulse EPR in the Study of Ethylene Tetramerization Catalysis. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathanael A. Hirscher
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Charles H. Arnett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Paul H. Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Zhao C, Li Y, Wang C, Chen H. Mechanistic Dichotomy in the Activation of SAM by Radical SAM Enzymes: QM/MM Modeling Deciphers the Determinant. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chengxin Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
The [4Fe-4S] cluster of sulfurtransferase TtuA desulfurizes TtuB during tRNA modification in Thermus thermophilus. Commun Biol 2020; 3:168. [PMID: 32265486 PMCID: PMC7138817 DOI: 10.1038/s42003-020-0895-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
TtuA and TtuB are the sulfurtransferase and sulfur donor proteins, respectively, for biosynthesis of 2-thioribothymidine (s2T) at position 54 of transfer RNA (tRNA), which is responsible for adaptation to high temperature environments in Thermus thermophilus. The enzymatic activity of TtuA requires an iron-sulfur (Fe-S) cluster, by which a sulfur atom supplied by TtuB is transferred to the tRNA substrate. Here, we demonstrate that the Fe-S cluster directly receives sulfur from TtuB through its inherent coordination ability. TtuB forms a [4Fe-4S]-TtuB intermediate, but that sulfur is not immediately released from TtuB. Further desulfurization assays and mutation studies demonstrated that the release of sulfur from the thiocarboxylated C-terminus of TtuB is dependent on adenylation of the substrate tRNA, and the essential residue for TtuB desulfurization was identified. Based on these findings, the molecular mechanism of sulfur transfer from TtuB to Fe-S cluster is proposed. Chen et al. demonstrate how the Fe-S cluster receives sulfur from TtuB, a ubiquitin-like sulfur donor during tRNA modification. They find that the release of sulfur from the thiocarboxylated C-terminus of TtuB depends on the adenylation of the substrate tRNA. This study provides molecular insights into the sulfur modification of tRNA.
Collapse
|
11
|
Dong M, Dando EE, Kotliar I, Su X, Dzikovski B, Freed JH, Lin H. The asymmetric function of Dph1-Dph2 heterodimer in diphthamide biosynthesis. J Biol Inorg Chem 2019; 24:777-782. [PMID: 31463593 DOI: 10.1007/s00775-019-01702-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023]
Abstract
Diphthamide, the target of diphtheria toxin, is a post-translationally modified histidine residue found in archaeal and eukaryotic translation elongation factor 2 (EF2). In the first step of diphthamide biosynthesis, a [4Fe-4S] cluster-containing radical SAM enzyme, Dph1-Dph2 heterodimer in eukaryotes or Dph2 homodimer in archaea, cleaves S-adenosylmethionine and transfers the 3-amino-3-carboxypropyl group to EF2. It was demonstrated previously that for the archaeal Dph2 homodimer, only one [4Fe-4S] cluster is necessary for the in vitro activity. Here, we demonstrate that for the eukaryotic Dph1-Dph2 heterodimer, the [4Fe-4S] cluster-binding cysteine residues in each subunit are required for diphthamide biosynthesis to occur in vivo. Furthermore, our in vitro reconstitution experiments with Dph1-Dph2 mutants suggested that the Dph1 cluster serves a catalytic role, while the Dph2 cluster facilitates the reduction of the Dph1 cluster by the physiological reducing system Dph3/Cbr1/NADH. Our results reveal the asymmetric functional roles of the Dph1-Dph2 heterodimer and may help to understand how the Fe-S clusters in radical SAM enzymes are reduced in biology.
Collapse
Affiliation(s)
- Min Dong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Emily E Dando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ilana Kotliar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaoyang Su
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Miller SA, Bandarian V. Analysis of Electrochemical Properties of S-Adenosyl-l-methionine and Implications for Its Role in Radical SAM Enzymes. J Am Chem Soc 2019; 141:11019-11026. [PMID: 31283208 PMCID: PMC7059804 DOI: 10.1021/jacs.9b00933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
S-Adenosyl-l-methionine (SAM) is the
central cofactor in the radical SAM enzyme superfamily, responsible
for a vast number of transformations in primary and secondary metabolism.
In nearly all of these reactions, the reductive cleavage of SAM is
proposed to produce a reactive species, 5′-deoxyadenosyl radical,
which initiates catalysis. While the mechanistic details in many cases
are well-understood, the reductive cleavage of SAM remains elusive.
In this manuscript, we have measured the solution peak potential of
SAM to be ∼−1.4 V (v SHE) and show that under controlled
potential conditions, it undergoes irreversible fragmentation to the
5′-deoxyadenosyl radical. While the radical intermediate is
not directly observed, its presence as an initial intermediate is
inferred by the formation of 8,5′-cycloadenosine and by H atom
incorporation into 5′-deoxyadenosine from solvent exchangeable
site. Similarly, 2-aminobutyrate is also observed under electrolysis
conditions. The implications of these results in the context of the
reductive cleavage of SAM by radical SAM enzymes are discussed.
Collapse
Affiliation(s)
- Sven A Miller
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Vahe Bandarian
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
13
|
Mandalapu D, Ji X, Zhang Q. Reductive Cleavage of Sulfoxide and Sulfone by Two Radical S-Adenosyl-l-methionine Enzymes. Biochemistry 2018; 58:36-39. [DOI: 10.1021/acs.biochem.8b00844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Yokoyama K, Lilla EA. C-C bond forming radical SAM enzymes involved in the construction of carbon skeletons of cofactors and natural products. Nat Prod Rep 2018; 35:660-694. [PMID: 29633774 PMCID: PMC6051890 DOI: 10.1039/c8np00006a] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to the end of 2017 C-C bond formations are frequently the key steps in cofactor and natural product biosynthesis. Historically, C-C bond formations were thought to proceed by two electron mechanisms, represented by Claisen condensation in fatty acids and polyketide biosynthesis. These types of mechanisms require activated substrates to create a nucleophile and an electrophile. More recently, increasing number of C-C bond formations catalyzed by radical SAM enzymes are being identified. These free radical mediated reactions can proceed between almost any sp3 and sp2 carbon centers, allowing introduction of C-C bonds at unconventional positions in metabolites. Therefore, free radical mediated C-C bond formations are frequently found in the construction of structurally unique and complex metabolites. This review discusses our current understanding of the functions and mechanisms of C-C bond forming radical SAM enzymes and highlights their important roles in the biosynthesis of structurally complex, naturally occurring organic molecules. Mechanistic consideration of C-C bond formation by radical SAM enzymes identifies the significance of three key mechanistic factors: radical initiation, acceptor substrate activation and radical quenching. Understanding the functions and mechanisms of these characteristic enzymes will be important not only in promoting our understanding of radical SAM enzymes, but also for understanding natural product and cofactor biosynthesis.
Collapse
Affiliation(s)
- Kenichi Yokoyama
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
15
|
Dong M, Zhang Y, Lin H. Noncanonical Radical SAM Enzyme Chemistry Learned from Diphthamide Biosynthesis. Biochemistry 2018; 57:3454-3459. [PMID: 29708734 DOI: 10.1021/acs.biochem.8b00287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Radical S-adenosylmethionine (SAM) enzymes are a superfamily of enzymes that use SAM and reduced [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical to catalyze numerous challenging reactions. We have reported a type of noncanonical radical SAM enzymes in the diphthamide biosynthesis pathway. These enzymes also use SAM and reduced [4Fe-4S] clusters, but generate a 3-amino-3-carboxypropyl (ACP) radical to modify the substrate protein, translation elongation factor 2. The regioselective cleavage of a different C-S bond of the sulfonium center of SAM in these enzymes comparing to canonical radical SAM enzymes is intriguing. Here, we highlight some recent findings in the mechanism of these types of enzymes, showing that the diphthamide biosynthetic radial SAM enzymes bound SAM with a distinct geometry. In this way, the unique iron of the [4Fe-4S] cluster in the enzyme can only attack the carbon on the ACP group to form an organometallic intermediate. The homolysis of the organometallic intermediate releases the ACP radical and generates the EF2 radial.
Collapse
Affiliation(s)
- Min Dong
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Yugang Zhang
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.,Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
16
|
Dong M, Kathiresan V, Fenwick MK, Torelli AT, Zhang Y, Caranto JD, Dzikovski B, Sharma A, Lancaster KM, Freed JH, Ealick SE, Hoffman BM, Lin H. Organometallic and radical intermediates reveal mechanism of diphthamide biosynthesis. Science 2018; 359:1247-1250. [PMID: 29590073 DOI: 10.1126/science.aao6595] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022]
Abstract
Diphthamide biosynthesis involves a carbon-carbon bond-forming reaction catalyzed by a radical S-adenosylmethionine (SAM) enzyme that cleaves a carbon-sulfur (C-S) bond in SAM to generate a 3-amino-3-carboxypropyl (ACP) radical. Using rapid freezing, we have captured an organometallic intermediate with an iron-carbon (Fe-C) bond between ACP and the enzyme's [4Fe-4S] cluster. In the presence of the substrate protein, elongation factor 2, this intermediate converts to an organic radical, formed by addition of the ACP radical to a histidine side chain. Crystal structures of archaeal diphthamide biosynthetic radical SAM enzymes reveal that the carbon of the SAM C-S bond being cleaved is positioned near the unique cluster Fe, able to react with the cluster. Our results explain how selective C-S bond cleavage is achieved in this radical SAM enzyme.
Collapse
Affiliation(s)
- Min Dong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Michael K Fenwick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Andrew T Torelli
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yang Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jonathan D Caranto
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA. .,Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
17
|
Dong M, Zhang Y, Lin H. Methods for Studying the Radical SAM Enzymes in Diphthamide Biosynthesis. Methods Enzymol 2018; 606:421-438. [PMID: 30097101 DOI: 10.1016/bs.mie.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diphthamide is a unique posttranslational modification on translation elongation factor 2 (EF2) in archaea and eukaryotes. Biosynthesis of diphthamide was proposed to involve four steps. The first step is a CC bond forming reaction catalyzed by unique radical S-adenosylmethionine (SAM) enzymes. Classical radical SAM enzymes use SAM and [4Fe-4S] clusters to generate a 5'-deoxyadenynal radical and catalyze numerous reactions. Radical SAM enzymes in diphthamide biosynthesis cleave a different CS bond in SAM to generate a 3-amino-3-carboxypropyl radical and modify a histidine residue of substrate protein EF2. Here, we describe our investigations on these unique radical SAM enzymes, including the preparation, characterization, and activity assays we have developed.
Collapse
Affiliation(s)
- Min Dong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Yugang Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
18
|
Byer AS, McDaniel EC, Impano S, Broderick WE, Broderick JB. Mechanistic Studies of Radical SAM Enzymes: Pyruvate Formate-Lyase Activating Enzyme and Lysine 2,3-Aminomutase Case Studies. Methods Enzymol 2018; 606:269-318. [DOI: 10.1016/bs.mie.2018.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Dong M, Horitani M, Dzikovski B, Freed JH, Ealick SE, Hoffman BM, Lin H. Substrate-Dependent Cleavage Site Selection by Unconventional Radical S-Adenosylmethionine Enzymes in Diphthamide Biosynthesis. J Am Chem Soc 2017; 139:5680-5683. [PMID: 28383907 DOI: 10.1021/jacs.7b01712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
S-Adenosylmethionine (SAM) has a sulfonium ion with three distinct C-S bonds. Conventional radical SAM enzymes use a [4Fe-4S] cluster to cleave homolytically the C5',adenosine-S bond of SAM to generate a 5'-deoxyadenosyl radical, which catalyzes various downstream chemical reactions. Radical SAM enzymes involved in diphthamide biosynthesis, such as Pyrococcus horikoshii Dph2 (PhDph2) and yeast Dph1-Dph2 instead cleave the Cγ,Met-S bond of methionine to generate a 3-amino-3-carboxylpropyl radical. We here show radical SAM enzymes can be tuned to cleave the third C-S bond to the sulfonium sulfur by changing the structure of SAM. With a decarboxyl SAM analogue (dc-SAM), PhDph2 cleaves the Cmethyl-S bond, forming 5'-deoxy-5'-(3-aminopropylthio) adenosine (dAPTA, 1). The methyl cleavage activity, like the cleavage of the other two C-S bonds, is dependent on the presence of a [4Fe-4S]+ cluster. Electron-nuclear double resonance and mass spectroscopy data suggests that mechanistically one of the S atoms in the [4Fe-4S] cluster captures the methyl group from dc-SAM, forming a distinct EPR-active intermediate, which can transfer the methyl group to nucleophiles such as dithiothreitol. This reveals the [4Fe-4S] cluster in a radical SAM enzyme can be tuned to cleave any one of the three bonds to the sulfonium sulfur of SAM or analogues, and is the first demonstration a radical SAM enzyme could switch from an Fe-based one electron transfer reaction to a S-based two electron transfer reaction in a substrate-dependent manner. This study provides an illustration of the versatile reactivity of Fe-S clusters.
Collapse
Affiliation(s)
- Min Dong
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Masaki Horitani
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.,Department of Applied Biochemistry and Food Science, Saga University , Saga 840-8502, Japan
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|