1
|
Kang F, Niu M, Zhou Z, Zhang M, Xiong H, Zeng F, Wang J, Chen X. Spatiotemporal Concurrent PARP Inhibitor Sensitization Based on Radiation-Responsive Nanovesicles for Lung Cancer Chemoradiotherapy. Adv Healthc Mater 2024; 13:e2400908. [PMID: 38598819 DOI: 10.1002/adhm.202400908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/07/2024] [Indexed: 04/12/2024]
Abstract
The implementation of chemoradiation combinations has gained great momentum in clinical practices. However, the full utility of this paradigm is often restricted by the discordant tempos of action of chemotherapy and radiotherapy. Here, a gold nanoparticle-based radiation-responsive nanovesicle system loaded with cisplatin and veliparib, denoted as CV-Au NVs, is developed to augment the concurrent chemoradiation effect in a spatiotemporally controllable manner of drug release. Upon irradiation, the in situ generation of •OH induces the oxidation of polyphenylene sulfide from being hydrophobic to hydrophilic, resulting in the disintegration of the nanovesicles and the rapid release of the entrapped cisplatin and veliparib (the poly ADP-ribose polymerase (PARP) inhibitor). Cisplatin-induced DNA damage and the impairment of the DNA repair mechanism mediated by veliparib synergistically elicit potent pro-apoptotic effects. In vivo studies suggest that one-dose injection of the CV-Au NVs and one-time X-ray irradiation paradigm effectively inhibit tumor growth in the A549 lung cancer model. This study provides new insight into designing nanomedicine platforms in chemoradiation therapy from a vantage point of synergizing both chemotherapy and radiation therapy in a spatiotemporally concurrent manner.
Collapse
Affiliation(s)
- Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Meng Niu
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine, Xiang'An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Hehe Xiong
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine, Xiang'An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Fantian Zeng
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine, Xiang'An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
2
|
Ali O, Okumura B, Shintani Y, Sugiura S, Shibata A, Higashi SL, Ikeda M. Oxidation-Responsive Supramolecular Hydrogels Based on Glucosamine Derivatives with an Aryl Sulfide Group. Chembiochem 2024; 25:e202400459. [PMID: 38924281 DOI: 10.1002/cbic.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Supramolecular hydrogels can be obtained via self-assembly of small molecules in aqueous environments. In this study, we describe the development of oxidation-responsive supramolecular hydrogels comprising glucosamine derivatives with an aryl sulfide group. We demonstrate that hydrogen peroxide can induce a gel-sol transition through the oxidation of the sulfide group to the corresponding sulfoxide. Furthermore, we show that this oxidation responsiveness can be extended to photo-responsiveness with the aid of a photosensitizer.
Collapse
Affiliation(s)
- Onaza Ali
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Bioru Okumura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuki Shintani
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shintaro Sugiura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Aya Shibata
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Sayuri L Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
3
|
Xia D, Lu Z, Li S, Fang P, Yang C, He X, You Q, Sun G. Development of an Intelligent Reactive Oxygen Species-Responsive Dual-Drug Delivery Nanoplatform for Enhanced Precise Therapy of Acute Lung Injury. Int J Nanomedicine 2024; 19:2179-2197. [PMID: 38476280 PMCID: PMC10929269 DOI: 10.2147/ijn.s442727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) are commonly occurring devastating conditions that seriously threaten the respiratory system in critically ill patients. The current treatments improve oxygenation in patients with ALI/ARDS in the short term, but do not relieve the clinical mortality of patients with ARDS. Purpose To develop the novel drug delivery systems that can enhance the therapeutic efficacy of ALI/ARDS and impede adverse effects of drugs. Methods Based on the key pathophysiological process of ARDS that is the disruption of the pulmonary endothelial barrier, bilirubin (Br) and atorvastatin (As) were encapsulated into an intelligent reactive oxygen species (ROS)-responsive nanocarrier DSPE-TK-PEG (DPTP) to form nanoparticles (BA@DPTP) in which the thioketal bonds could be triggered by high ROS levels in the ALI tissues. Results BA@DPTP could accumulate in inflammatory pulmonary sites through passive targeting strategy and intelligently release Br and As only in the inflammatory tissue via ROS-responsive bond, thereby enhancing the drugs effectiveness and markedly reducing side effects. BA@DPTP effectively inhibited NF-κB signaling and NLRP3/caspase-1/GSDMD-dependent pyroptosis in mouse pulmonary microvascular endothelial cells. BA@DPTP not only protected mice with lipopolysaccharide-induced ALI and retained the integrity of the pulmonary structure, but also reduced ALI-related mortality. Conclusion This study combined existing drugs with nano-targeting strategies to develop a novel drug-targeting platform for the efficient treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Dunling Xia
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zongqing Lu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Shuai Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Pu Fang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Chun Yang
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei, People’s Republic of China
| | - Qinghai You
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
4
|
Regato-Herbella M, Morhenn I, Mantione D, Pascuzzi G, Gallastegui A, Caribé dos Santos Valle AB, Moya SE, Criado-Gonzalez M, Mecerreyes D. ROS-Responsive 4D Printable Acrylic Thioether-Based Hydrogels for Smart Drug Release. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1262-1272. [PMID: 38370279 PMCID: PMC10870821 DOI: 10.1021/acs.chemmater.3c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 02/20/2024]
Abstract
Reactive oxygen species (ROS) play a key role in several biological functions like regulating cell survival and signaling; however, their effect can range from beneficial to nondesirable oxidative stress when they are overproduced causing inflammation or cancer diseases. Thus, the design of tailor-made ROS-responsive polymers offers the possibility of engineering hydrogels for target therapies. In this work, we developed thioether-based ROS-responsive difunctional monomers from ethylene glycol/thioether acrylate (EGnSA) with different lengths of the EGn chain (n = 1, 2, 3) by the thiol-Michael addition click reaction. The presence of acrylate groups allowed their photopolymerization by UV light, while the thioether groups conferred ROS-responsive properties. As a result, smart PEGnSA hydrogels were obtained, which could be processed by four-dimensional (4D) printing. The mechanical properties of the hydrogels were determined by rheology, pointing out a decrease of the elastic modulus (G') with the length of the EG segment. To enhance the stability of the hydrogels after swelling, the EGnSA monomers were copolymerized with a polar monomer, 2-hydroxyethyl acrylate (HEA), leading to P[(EGnSA)x-co-HEAy] with improved compatibility in aqueous media, making it a less brittle material. Swelling properties of the hydrogels increased in the presence of hydrogen peroxide, a kind of ROS, reaching values of ≈130% for P[(EG3SA)7-co-HEA93] which confirms the stimuli-responsive properties. Then, the P[(EG3SA)x-co-HEAy] hydrogels were employed as matrixes for the encapsulation of a chemotherapeutic drug, 5-fluorouracil (5FU), which showed sustained release over time modulated by the presence of H2O2. Finally, the effect of the 5-FU release from P[(EG3SA)x-co-HEAy] hydrogels was tested in vitro with melanoma cancer cells B16F10, pointing out B16F10 growth inhibition values in the range of 40-60% modulated by the EG3SA percentage and the presence or absence of ROS agents, thus confirming their excellent ROS-responsive properties for the treatment of localized pathologies.
Collapse
Affiliation(s)
- Maria Regato-Herbella
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014Donostia-San Sebastián, Spain
| | - Isabel Morhenn
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Daniele Mantione
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - Giuseppe Pascuzzi
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano ,Italy
| | - Antonela Gallastegui
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Ana Beatriz Caribé dos Santos Valle
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014Donostia-San Sebastián, Spain
| | - Sergio E. Moya
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014Donostia-San Sebastián, Spain
| | - Miryam Criado-Gonzalez
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - David Mecerreyes
- POLYMAT
University of the Basque Country UPV/EHU, Joxe Mari Korta Center. Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
5
|
Xie S, Li Y, Chai Y, Chen Q, North M, Xie H. Introducing the Reversible Reaction of CO 2 with Diamines into Nonisocyanate Polyurethane Synthesis. ACS Macro Lett 2024; 13:14-20. [PMID: 38091470 DOI: 10.1021/acsmacrolett.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Nonisocyanate polyurethanes (NIPUs) are considered greener alternatives to traditional polyurethanes, and the preparation of NIPUs considerably depends on the design and synthesis of suitable monomers. Herein, we propose a toolbox for in situ capturing and conversion of CO2 into α,ω-diene-functionalized carbamate monomers by taking advantage of the facile reversible reaction of CO2 with diamines in the presence of organic superbases. The activation of CO2 into carbamate intermedia was demonstrated by NMR and in situ FTIR, and the optimal conditions to prepare α,ω-diene-functionalized carbamate monomers were established. Thiol-ene and acyclic diene metathesis (ADMET) polymerization of these monomers under mild conditions yielded a series of poly(thioether urethane)s and unsaturated aromatic-aliphatic polyurethanes with high yield and glass transition temperatures ranging from -26.8 to -1.1 °C. These obtained NIPUs could be further modified via postpolymerization oxidation or hydrogenation to yield poly(sulfone urethane) and saturated polyurethane with tunable properties.
Collapse
Affiliation(s)
- Sibo Xie
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| | - Yunqi Li
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| | - Yang Chai
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| | - Qin Chen
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| | - Michael North
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Haibo Xie
- Department of Polymeric Materials & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, P.R. China
| |
Collapse
|
6
|
Liu H, Lu HH, Alp Y, Wu R, Thayumanavan S. Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies. Prog Polym Sci 2024; 148:101765. [PMID: 38476148 PMCID: PMC10927256 DOI: 10.1016/j.progpolymsci.2023.101765] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nanoassemblies and incentivize more explorations in stimuli-responsive soft matters.
Collapse
Affiliation(s)
- Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yasin Alp
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ruiling Wu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Fornaciari C, Lemaur V, Pasini D, Coulembier O. Quasi-alternating copolymerization of oxiranes driven by a benign acetate-based catalyst. Commun Chem 2023; 6:235. [PMID: 37898680 PMCID: PMC10613202 DOI: 10.1038/s42004-023-01031-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Alternating copolymers are distinctly unique in comparison with other copolymers. Herein, an in-depth investigation of the oxyanionic ring-opening copolymerization of propylene oxide (PO) and allyl glycidyl ether (AGE) from benzyl alcohol (BnOH) activated with potassium acetate (KOAc) complexed by 18-crown-6 ether (18C6) is described. We demonstrate that the 18C6/KOAc complex is an efficient and benign catalytic system to promote copolymerization of both oxirane monomers, leading to well-defined polyethers with varied comonomer content and low dispersity values (ƉM < 1.20). Kinetic analysis confirmed the controlled nature of the (co)polymerization process, and the determination of reactivity ratios revealed a quasi-alternating copolymerization profile, according to the Fineman-Ross method. The comparison between the quasi-alternating-type PO/AGE copolymerization and block or gradient copolymerization revealed significant differences, to confirm the different sequence incorporation in the different topological copolymers. These results highlight the great potential of 18C6/KOAc-mediated copolymerization process for the controlled sythesis of a series of copolymer topologies.
Collapse
Affiliation(s)
- Charlotte Fornaciari
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc, 20, Mons, 7000, Belgium
- Department of Chemistry, University of Pavia, Viale Taramelli, 10, Pavia, 27100, Italy
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc, 20, 7000, Mons, Belgium
| | - Dario Pasini
- Department of Chemistry, University of Pavia, Viale Taramelli, 10, Pavia, 27100, Italy.
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc, 20, Mons, 7000, Belgium.
| |
Collapse
|
8
|
Dreier P, Matthes R, Barent RD, Schüttner S, Müller AHE, Frey H. In Situ Kinetics Reveal the Influence of Solvents and Monomer Structure on the Anionic Ring‐Opening Copolymerization of Epoxides. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Philip Dreier
- Department of Chemistry Johannes Gutenberg‐University Duesbergweg 10–14 D‐55128 Mainz Germany
| | - Rebecca Matthes
- Department of Chemistry Johannes Gutenberg‐University Duesbergweg 10–14 D‐55128 Mainz Germany
| | - Ramona D. Barent
- Department of Chemistry Johannes Gutenberg‐University Duesbergweg 10–14 D‐55128 Mainz Germany
| | - Sandra Schüttner
- Department of Chemistry Johannes Gutenberg‐University Duesbergweg 10–14 D‐55128 Mainz Germany
| | - Axel H. E. Müller
- Department of Chemistry Johannes Gutenberg‐University Duesbergweg 10–14 D‐55128 Mainz Germany
| | - Holger Frey
- Department of Chemistry Johannes Gutenberg‐University Duesbergweg 10–14 D‐55128 Mainz Germany
| |
Collapse
|
9
|
Criado-Gonzalez M, Mecerreyes D. Thioether-based ROS responsive polymers for biomedical applications. J Mater Chem B 2022; 10:7206-7221. [PMID: 35611805 DOI: 10.1039/d2tb00615d] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) play a key role in several biological functions of living organisms such as regulation of cell signalling, production of some hormones, modulation of protein function or mediation of inflammation. In this regard, ROS responsive polymers are ideal candidates for the development of stimuli-responsive biomaterials for target therapies. Among different ROS-responsive polymers, those containing thioether groups are widely investigated in the biomedical field due to their hydrophobic to hydrophilic phase transition under oxidative conditions. This feature makes them able to self-assemble in aqueous solutions forming micellar-type nanoparticles or hydrogels to be mainly used as drug carriers for local therapies in damaged body areas characterized by high ROS production. This review article collects the main findings about the synthesis of thioether-based ROS responsive polymers and polypeptides, their self-assembly properties and ROS responsive behaviour for use as injectable nanoparticles or hydrogels. Afterward, the foremost applications of the thioether-based ROS responsive nanoparticles and hydrogels in the biomedical field, where cancer therapies are a key objective, will be discussed.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain. .,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
10
|
Zhai Z, Ouyang W, Yao Y, Zhang Y, Zhang H, Xu F, Gao C. Dexamethasone-loaded ROS-responsive poly(thioketal) nanoparticles suppress inflammation and oxidative stress of acute lung injury. Bioact Mater 2022; 14:430-442. [PMID: 35415281 PMCID: PMC8965854 DOI: 10.1016/j.bioactmat.2022.01.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is associated with excessive inflammatory response, leading to acute respiratory distress syndrome (ARDS) without timely treatment. A fewer effective drugs are available currently to treat the ALI/ARDS. Herein, a therapeutic nanoplatform with reactive oxygen species (ROS)-responsiveness was developed for the regulation of inflammation. Dexamethasone acetate (Dex) was encapsulated into poly(thioketal) polymers to form polymeric nanoparticles (NPs) (PTKNPs@Dex). The NPs were composed of poly(1,4-phenyleneacetonedimethylene thioketal) (PPADT) and polythioketal urethane (PTKU), in which the thioketal bonds could be cleaved by the high level of ROS at the ALI site. The PTKNPs@Dex could accumulate in the pulmonary inflammatory sites and release the encapsulated payloads rapidly, leading to the decreased ROS level, less generation of pro-inflammatory cytokines, and reduced lung injury and mortality of mice. RNA sequencing (RNA-seq) analysis showed that the therapeutic efficacy of the NPs was associated with the modulation of many immune and inflammation-linked pathways. These findings provide a newly developed nanoplatform for the efficient treatment of ALI/ARDS. A therapeutic nanoplatform with ROS-responsiveness was developed for the regulation of inflammation. NPs composed of low Mw of PPADT and high Mw of PTKU were loaded with dexamethasone to obtain a self-adaptive system. The Dex-loaded NPs significantly decreased lung inflammation, and reduced lung injury and mortality in vivo.
Collapse
Affiliation(s)
- Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuqi Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Corresponding author. Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Corresponding author. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
11
|
Li JW, Chen M, Zhang Z, Pan CY, Zhang WJ, Hong CY. Hybrid copolymerization of acrylate and thiirane monomers mediated by trithiocarbonate. Polym Chem 2022. [DOI: 10.1039/d1py01031j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The composition and structure of polymers have great influence on their performances.
Collapse
Affiliation(s)
- Jia-Wei Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Miao Chen
- Xi'an Modern Chemistry Research Institute, Xi'an, Shanxi 710065, China
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, P. R. China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Matthes R, Bapp C, Wagner M, Zarbakhsh S, Frey H. Unexpected Random Copolymerization of Propylene Oxide with Glycidyl Methyl Ether via Double Metal Cyanide Catalysis: Introducing Polarity in Polypropylene Oxide. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rebecca Matthes
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Carolin Bapp
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sirus Zarbakhsh
- BASF SE, RAP/LO, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
13
|
He P, Tang B, Li Y, Zhang Y, Liu X, Guo X, Wang D, She P, Xiao C. Effective Oxidation-Responsive Polyester Nanocarriers for Anti-Inflammatory Drug Delivery. Int J Nanomedicine 2021; 16:5053-5064. [PMID: 34349508 PMCID: PMC8326227 DOI: 10.2147/ijn.s311718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
Background High levels of oxidants, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), are typical characteristics of an inflammatory microenvironment and are closely associated with a various inflammatory pathologies, eg, cancer, diabetes, atherosclerosis, and neurodegenerative diseases. Therefore, the delivery of anti-inflammatory drugs by oxidation-responsive smart systems would be an efficient anti-inflammatory strategy that benefits from the selective drug release in an inflammatory site, a lower treatment dose, and minimizes side effects. Purpose In this study, we present the feasibility of an oxidation-sensitive PEGylated alternating polyester, methoxyl poly(ethylene glycol)-block-poly(phthalic anhydride-alter-glycidyl propargyl ether) (mPEG-b-P(PA-alt-GPBAe)), as novel nanocarrier for curcumin (CUR), and explore the application in anti-inflammatory therapy. Methods The copolymers used were obtained by combining a click reaction and a ring-opening-polymerization method. CUR was loaded by self-assembly. The in vitro drug release, cytotoxicity toward RAW 264.7 cells and cellular uptake were investigated. Furthermore, the anti-inflammatory effects of CUR-loaded polymeric nanoparticles (NPs-CUR) were investigated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and tested in a murine model of ankle inflammation. Results Fast drug release from NPs-CUR was observed in trigger of 1 mM H2O2 in PBS. Compared with NPs and free drugs, the significant anti-inflammatory potential of NPs-CUR was proven in activated RAW 264.7 cells by inhibiting the production of TNF-α, IL-1β, and IL-6 and increasing the level of an anti-inflammatory cytokine IL-10. Finally, a local injection of NPs-CUR at a dose of 0.25 mg/kg suppressed the acute ankle inflammatory response in mice by histological observation and further reduced the expression of pro-inflammatory cytokines in the affected ankle joints compared to that of free CUR. Conclusion Both the significant in vitro and in vivo anti-inflammatory results indicated that our oxidation responsive polymeric nanoparticles are promising drug delivery systems for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Pan He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Bingtong Tang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Yusheng Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Xinming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Xin Guo
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China
| | - Dong Wang
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| | - Peng She
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, People's Republic of China.,Joint Surgery Department, The First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| |
Collapse
|
14
|
Oh J, Khan A. Main-Chain Polysulfonium Salts: Development of Non-Ammonium Antibacterial Polymers Similar in Their Activity to Antibiotic Drugs Vancomycin and Kanamycin. Biomacromolecules 2021; 22:3534-3542. [PMID: 34251178 DOI: 10.1021/acs.biomac.1c00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Typically, quaternary ammonium polymers are employed for antibacterial purposes. However, a century of use has led bacteria to develop resistance to such materials. Therefore, attention is now turning toward other cationic moieties. In this context, the present work explores sulfur-based main-chain cationic polymers. The results indicate that sulfonium polymers with a β-hydroxy motif do not suffer from structural instability issues as is commonly observed in cationic polythioethers. Furthermore, they can be highly effective toward important Gram-positive bacterial strains such as Mycobacterium smegmatis, a model organism to develop drugs against rapidly spreading tuberculosis infections. More importantly, however, more challenging Gram-negative strains such as Escherichia coli can also be targeted by the polysulfoniums with equal effectiveness. Interestingly, side-chain sulfonium polyelectrolytes are observed to be devoid of any significant antibacterial activity. Finally, a comparison with kanamycin and vancomycin suggests the present polymers to be similarly effective as the bactericidal antibiotic drugs. Overall, these results indicate the effectiveness of the main-chain trivalent β-hydroxy sulfonium motif for the development of novel antibacterial polymers with a non-ammonium structure.
Collapse
Affiliation(s)
- Junki Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
15
|
Rajes K, Walker KA, Hadam S, Zabihi F, Ibrahim-Bacha J, Germer G, Patoka P, Wassermann B, Rancan F, Rühl E, Vogt A, Haag R. Oxidation-Sensitive Core-Multishell Nanocarriers for the Controlled Delivery of Hydrophobic Drugs. ACS Biomater Sci Eng 2021; 7:2485-2495. [PMID: 33905661 DOI: 10.1021/acsbiomaterials.0c01771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A synthetic route for oxidation-sensitive core-multishell (osCMS) nanocarriers was established, and their drug loading and release properties were analyzed based on their structural variations. The nanocarriers showed a drug loading of 0.3-3 wt % for the anti-inflammatory drugs rapamycin and dexamethasone and the photosensitizer meso-tetra-hydroxyphenyl-porphyrin (mTHPP). Oxidative processes of the nanocarriers were probed in vitro by hydrogen peroxide, and the degradation products were identified by infrared spectroscopy supported by ab initio calculations, yielding mechanistic details on the chemical changes occurring in redox-sensitive nanocarriers. Oxidation-triggered drug release of the model drug Nile Red measured and assessed by time-dependent fluorescence spectroscopy showed a release of up to 80% within 24 h. The drug delivery capacity of the new osCMS nanocarriers was tested in ex vivo human skin with and without pretreatments to induce local oxidative stress. It was found that the delivery of mTHPP was selectively enhanced in skin under oxidative stress. The number and position of the thioether groups influenced the physicochemical as well as drug delivery properties of the carriers.
Collapse
Affiliation(s)
- Keerthana Rajes
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Karolina A Walker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Fatemeh Zabihi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany.,Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Jumana Ibrahim-Bacha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Gregor Germer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Piotr Patoka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Bernhard Wassermann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Eckart Rühl
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| |
Collapse
|
16
|
Infante Teixeira L, Landfester K, Thérien-Aubin H. Selective Oxidation of Polysulfide Latexes to Produce Polysulfoxide and Polysulfone in a Waterborne Environment. Macromolecules 2021; 54:3659-3667. [PMID: 34083842 PMCID: PMC8161668 DOI: 10.1021/acs.macromol.1c00382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Indexed: 11/27/2022]
Abstract
Polymers containing sulfur centers with high oxidation states in the main chain, polysulfoxide and polysulfone, display desirable properties such as thermomechanical and chemical stability. To circumvent their challenging direct synthesis, methods based on the oxidation of a parent polysulfide have been developed but are plagued by uncontrolled reactions, leading either to ill-defined mixtures of polysulfoxides and polysulfones or to polysulfones with reduced degrees of polymerization due to overoxidation of the polymer. We developed an alternative method to produce well-defined polysulfoxide and polysulfone in a waterborne colloidal emulsion using different oxidants to control the oxidation state of sulfur in the final materials. The direct oxidation of water-based polysulfide latexes avoided the use of volatile organic solvents and allowed for the control of the oxidation state of the sulfur atoms. Oxidation of parent polysulfides by tert-butyl hydroperoxide led to the production of pure polysulfoxides, even after 70 days of reaction time. Additionally, hydrogen peroxide produced both species through the course of the reaction but yielded fully converted polysulfones after 24 h. By employing mild oxidants, our approach controlled the oxidation state of the sulfur atoms in the final sulfur-containing polymer and prevented any overoxidation, thus ensuring the integrity of the polymer chains and colloidal stability of the system. We also verified the selectivity, versatility, and robustness of the method by applying it to polysulfides of different chemical compositions and structures. The universality demonstrated by this method makes it a powerful yet simple platform for the design of sulfur-containing polymers and nanoparticles.
Collapse
Affiliation(s)
| | - Katharina Landfester
- Max Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | |
Collapse
|
17
|
Geven M, d'Arcy R, Turhan ZY, El-Mohtadi F, Alshamsan A, Tirelli N. Sulfur-based oxidation-responsive polymers. Chemistry, (chemically selective) responsiveness and biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Preparation and solution properties of helical sulfonium-based polypeptides and their polyelectrolyte complexes. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Wang S, Liu Q, Li L, Urban MW. Recent Advances in Stimuli-Responsive Commodity Polymers. Macromol Rapid Commun 2021; 42:e2100054. [PMID: 33749047 DOI: 10.1002/marc.202100054] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Known for their adaptability to surroundings, capability of transport control of molecules, or the ability of converting one type of energy to another as a result of external or internal stimuli, responsive polymers play a significant role in advancing scientific discoveries that may lead to an array of diverge applications. This review outlines recent advances in the developments of selected commodity polymers equipped with stimuli-responsiveness to temperature, pH, ionic strength, enzyme or glucose levels, carbon dioxide, water, redox agents, electromagnetic radiation, or electric and magnetic fields. Utilized diverse applications ranging from drug delivery to biosensing, dynamic structural components to color-changing coatings, this review focuses on commodity acrylics, epoxies, esters, carbonates, urethanes, and siloxane-based polymers containing responsive elements built into their architecture. In the context of stimuli-responsive chemistries, current technological advances as well as a critical outline of future opportunities and applications are also tackled.
Collapse
Affiliation(s)
- Siyang Wang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Qianhui Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Lei Li
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
20
|
Cook A, Decuzzi P. Harnessing Endogenous Stimuli for Responsive Materials in Theranostics. ACS NANO 2021; 15:2068-2098. [PMID: 33555171 PMCID: PMC7905878 DOI: 10.1021/acsnano.0c09115] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/02/2021] [Indexed: 05/04/2023]
Abstract
Materials that respond to endogenous stimuli are being leveraged to enhance spatiotemporal control in a range of biomedical applications from drug delivery to diagnostic tools. The design of materials that undergo morphological or chemical changes in response to specific biological cues or pathologies will be an important area of research for improving efficacies of existing therapies and imaging agents, while also being promising for developing personalized theranostic systems. Internal stimuli-responsive systems can be engineered across length scales from nanometers to macroscopic and can respond to endogenous signals such as enzymes, pH, glucose, ATP, hypoxia, redox signals, and nucleic acids by incorporating synthetic bio-inspired moieties or natural building blocks. This Review will summarize response mechanisms and fabrication strategies used in internal stimuli-responsive materials with a focus on drug delivery and imaging for a broad range of pathologies, including cancer, diabetes, vascular disorders, inflammation, and microbial infections. We will also discuss observed challenges, future research directions, and clinical translation aspects of these responsive materials.
Collapse
Affiliation(s)
- Alexander
B. Cook
- Laboratory of Nanotechnology
for Precision Medicine, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology
for Precision Medicine, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| |
Collapse
|
21
|
Zhu S, Xue R, Yu Z, Zhang X, Luan S, Tang H. Transition of Conformation and Solubility in β-Sheet-Structured Poly(l-cysteine)s with Methylthio or Sulfonium Pendants. Biomacromolecules 2021; 22:1211-1219. [PMID: 33533606 DOI: 10.1021/acs.biomac.0c01715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Poly(l-cysteine)s with methylthio pendants (PMTLCs) were synthesized by ring-opening polymerization of a new l-cysteine-based N-carboxyanhydride. The thioether bonds of PMTLC can be readily oxidized by H2O2 yielding water-soluble PMTLCOX. The methylthio groups can undergo an alkylation reaction using methyl iodide and a subsequent ion-exchange reaction yielding sulfonium-based polypeptides (PPLC-DMS-X, where X = I, BF4). PPLC-DMS-X showed upper critical solution temperature-type thermo- and oxidation-responsive properties in aqueous solutions. Both PMTLC and PPLC-DMS-X showed oxidation-induced β-sheet to α-helix transitions. The absorbance of PPLC-DMS-I and methyl orange aqueous solution displayed a significant linear correlation with temperature, which makes the sulfonium-based polypeptides good candidates in the field of temperature sensors.
Collapse
Affiliation(s)
- Shuai Zhu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Ruizhong Xue
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Zikun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Haoyu Tang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China.,Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
22
|
Hu J, Sun C, Li S, Yuan Y, Zhang Y. Heterotellurium-containing macrocycles towards degradable tellurium-functionalized polymers. Polym Chem 2021. [DOI: 10.1039/d1py00703c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We first disclose a facile strategy to synthesize a heterotellurium-containing macrocycle series, and then well-defined degradable poly(telluride-carbonate)s were obtained by ring-opening polymerization.
Collapse
Affiliation(s)
- Jieni Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Chuanhao Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Siqi Li
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yuan Yuan
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
23
|
Jiang Y, Dong S, Qin G, Liu L, Zhao H. Oxidation and ATP dual-responsive block copolymer containing tertiary sulfoniums: self-assembly, protein complexation and triggered release. Polym Chem 2021. [DOI: 10.1039/d0py01622e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alkylation of thioether-containing block copolymer simultaneously incorporated sulfoniums and phenylboronic acid moieties. The co-assembly of this cationic polymer and protein generated micelles with an H2O2-and ATP-responsive release profile.
Collapse
Affiliation(s)
- Yanfen Jiang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Shuqi Dong
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Guoyang Qin
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Li Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| |
Collapse
|
24
|
Rajes K, Walker KA, Hadam S, Zabihi F, Rancan F, Vogt A, Haag R. Redox-Responsive Nanocarrier for Controlled Release of Drugs in Inflammatory Skin Diseases. Pharmaceutics 2020; 13:pharmaceutics13010037. [PMID: 33383706 PMCID: PMC7823658 DOI: 10.3390/pharmaceutics13010037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
A synthetic route for redox-sensitive and non-sensitive core multi-shell (CMS) carriers with sizes below 20 nm and narrow molecular weight distributions was established. Cyclic voltammetric measurements were conducted characterizing the redox potentials of reduction-sensitive CMS while showcasing its reducibility through glutathione and tris(2-carboxyethyl)-phosphine as a proof of concept. Measurements of reduction-initiated release of the model dye Nile red by time-dependent fluorescence spectroscopy showed a pronounced release for the redox-sensitive CMS nanocarrier (up to 90% within 24 h) while the non-sensitive nanocarriers showed no release in PBS. Penetration experiments using ex vivo human skin showed that the redox-sensitive CMS nanocarrier could deliver higher percentages of the loaded macrocyclic dye meso-tetra (m-hydroxyphenyl) porphyrin (mTHPP) to the skin as compared to the non-sensitive CMS nanocarrier. Encapsulation experiments showed that these CMS nanocarriers can encapsulate dyes or drugs with different molecular weights and hydrophobicity. A drug content of 1 to 6 wt% was achieved for the anti-inflammatory drugs dexamethasone and rapamycin as well as fluorescent dyes such as Nile red and porphyrins. These results show that redox-initiated drug release is a promising strategy to improve the topical drug delivery of macrolide drugs.
Collapse
Affiliation(s)
- Keerthana Rajes
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany;
| | - Karolina A. Walker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany;
- Correspondence: (K.A.W.); (R.H.); Tel.: +49-030-8385-2633 (R.H.)
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.H.); (F.Z.); (F.R.); (A.V.)
| | - Fatemeh Zabihi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.H.); (F.Z.); (F.R.); (A.V.)
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.H.); (F.Z.); (F.R.); (A.V.)
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (S.H.); (F.Z.); (F.R.); (A.V.)
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany;
- Correspondence: (K.A.W.); (R.H.); Tel.: +49-030-8385-2633 (R.H.)
| |
Collapse
|
25
|
Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Materialien mit Selektivität für oxidative Molekülspezies für die Diagnostik und Therapie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 PR China
| | - Ruibo Zhong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Dean Shuailin Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
26
|
Zhao C, Chen J, Zhong R, Chen DS, Shi J, Song J. Oxidative‐Species‐Selective Materials for Diagnostic and Therapeutic Applications. Angew Chem Int Ed Engl 2020; 60:9804-9827. [DOI: 10.1002/anie.201915833] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 PR China
| | - Ruibo Zhong
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Dean Shuailin Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
27
|
Hong Y, Kim JM, Jung H, Park K, Hong J, Choi SH, Kim BS. Facile Synthesis of Poly(ethylene oxide)-Based Self-Healable Dynamic Triblock Copolymer Hydrogels. Biomacromolecules 2020; 21:4913-4922. [DOI: 10.1021/acs.biomac.0c01140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Youngjoo Hong
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jung-Min Kim
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Hyunjoon Jung
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Kyungtae Park
- Department of Chemical and Biochemical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biochemical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
28
|
Dong S, Jiang Y, Qin G, Liu L, Zhao H. Methionine-Based pH and Oxidation Dual-Responsive Block Copolymer: Synthesis and Fabrication of Protein Nanogels. Biomacromolecules 2020; 21:4063-4075. [PMID: 32914964 DOI: 10.1021/acs.biomac.0c00879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this paper, we synthesized a block copolymer containing pendent thioether functionalities by reversible addition-fragmentation chain transfer polymerization of a tert-butyloxycarbonyl (Boc)-l-methionine-(2-methacryloylethyl)ester (Boc-METMA) monomer using a poly(ethylene glycol) (PEG)-based chain transfer agent. The deprotection of Boc groups resulted in an oxidation and pH dual-responsive cationic block copolymer PEG-b-P(METMA). The block copolymer PEG-b-P(METMA) possessing protonable amine groups was water-soluble at pH < 6.0 and self-assembled to form spherical micelles at pH > 6.0. In the presence of H2O2, the micelles first became highly swollen with time and completely disassembled at last, demonstrating the H2O2-responsive feature because of the oxidation of hydrophobic thioether to hydrophilic sulfoxide. The anticancer drug curcumin (Cur) was entrapped in the polymeric micelles and the Cur-loaded micelles displayed a H2O2-triggered release profile as well as a pH-dependent release behavior, making PEG-b-P(METMA) micelles promising nanocarriers for reactive oxygen species-responsive drug delivery. Taking advantage of the protonated amine groups, the cationic polyelectrolyte PEG-b-P(METMA) formed polyion complex micelles with glucose oxidase (GOx) through electrostatic interactions at pH 5.8. By cross-linking the cores of PIC micelles with glutaraldehyde, the PIC micelles were fixed to generate stable GOx nanogels under physiological conditions. The GOx nanogels were glucose-responsive and exhibited glucose-dependent H2O2-generation activity in vitro and improved storage and thermal stability of GOx. Cur can be encapsulated in the GOx nanogels, and the Cur-loaded GOx nanogels demonstrate the glucose-responsive release profile. The GOx nanogels displayed high cytotoxicity to 4T1 cells and were effectively internalized by the cells. Therefore, these GOx nanogels have potential applications in the areas of cancer starvation and oxidation therapy.
Collapse
Affiliation(s)
- Shuqi Dong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yanfen Jiang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Guoyang Qin
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| |
Collapse
|
29
|
Moreno A, Jiménez-Alesanco A, Ronda JC, Cádiz V, Galià M, Percec V, Abian O, Lligadas G. Dual Biochemically Breakable Drug Carriers from Programmed Telechelic Homopolymers. Biomacromolecules 2020; 21:4313-4325. [PMID: 32897693 DOI: 10.1021/acs.biomac.0c01113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Well-defined hydrophilic telechelic dibromo poly(triethylene glycol monomethyl ether acrylate)s were prepared by single-electron transfer living radical polymerization employing a hydrophobic difunctional initiator containing acetal and disulfide linkages. Although the resulting homopolymers have low hydrophobic contents (<8.5 wt % of the entire structure), they are able to self-assemble in water into nanoscale micellelike particles via chain folding. Acetal and disulfide linkages were demonstrated to be "keystone" units for their dual stimuli-responsive behavior under biochemically relevant conditions. Their site-selective middle-chain cleavage under both acidic pH and reductive conditions splits the homopolymer into two equal-sized fragments and results in the breakdown of the nanoassemblies. The drug loading/delivery potential of these nanoparticles was investigated using curcumine combining in vitro drug release, cytotoxicity, and cellular uptake studies with human cancer cell lines (HT-29 and HeLa). Importantly, this strategy may be extended to prepare innovative nanoplatforms based on hydrophilic homopolymers or random copolymers for intelligent drug delivery.
Collapse
Affiliation(s)
- Adrian Moreno
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Ana Jiménez-Alesanco
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Juan C Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain.,Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza 50018, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragon), Zaragoza 50009 Spain.,Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), Madrid 28029, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza 50013, Spain
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain.,Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
30
|
Abstract
The mechanical strength of individual polymer chains is believed to underlie a number of performance metrics in bulk materials, including adhesion and fracture toughness. Methods by which the intrinsic molecular strength of the constituents of a given polymeric material might be switched are therefore potentially useful both for applications in which triggered property changes are desirable, and as tests of molecular theories for bulk behaviors. Here we report that the sequential oxidation of sulfide containing polyesters (PE-S) to the corresponding sulfoxide (PE-SO) and then sulfone (PE-SO2) first weakens (sulfoxide), and then enhances (sulfone), the effective mechanical integrity of the polymer backbone; PE-S ∼ PE-SO2 > PE-SO. The relative mechanical strength as a function of oxidation state is revealed through the use of gem-dichlorocyclopropane nonscissile mechanophores as an internal standard, and the observed order agrees well with the reported bond dissociation energies of C–S bonds in each species and with the results of CoGEF modeling. The mechanical strength of individual polymer chains is believed to underlie a number of performance metrics in bulk materials, including adhesion and fracture toughness.![]()
Collapse
Affiliation(s)
- Yangju Lin
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Stephen L Craig
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| |
Collapse
|
31
|
Verkoyen P, Dreier P, Bros M, Hils C, Schmalz H, Seiffert S, Frey H. “Dumb” pH-Independent and Biocompatible Hydrogels Formed by Copolymers of Long-Chain Alkyl Glycidyl Ethers and Ethylene Oxide. Biomacromolecules 2020; 21:3152-3162. [DOI: 10.1021/acs.biomac.0c00576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Patrick Verkoyen
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Philip Dreier
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Christian Hils
- Makromolekulare Chemie II, University of Bayreuth, 95440 Bayreuth, Germany
| | - Holger Schmalz
- Makromolekulare Chemie II, University of Bayreuth, 95440 Bayreuth, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
32
|
Verkoyen P, Frey H. Long‐Chain Alkyl Epoxides and Glycidyl Ethers: An Underrated Class of Monomers. Macromol Rapid Commun 2020; 41:e2000225. [DOI: 10.1002/marc.202000225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/27/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Patrick Verkoyen
- Department of ChemistryJohannes Gutenberg University Mainz Duesbergweg 10‐14 Mainz 55128 Germany
| | - Holger Frey
- Department of ChemistryJohannes Gutenberg University Mainz Duesbergweg 10‐14 Mainz 55128 Germany
| |
Collapse
|
33
|
Linker O, Blankenburg J, Maciol K, Bros M, Frey H. Ester Functional Epoxide Monomers for Random and Gradient Poly(ethylene glycol) Polyelectrolytes with Multiple Carboxylic Acid Moieties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Olga Linker
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Jan Blankenburg
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Kamil Maciol
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
34
|
Ewald J, Blankenburg J, Worm M, Besch L, Unger RE, Tremel W, Frey H, Pohlit H. Acid-Cleavable Poly(ethylene glycol) Hydrogels Displaying Protein Release at pH 5. Chemistry 2020; 26:2947-2953. [PMID: 31850549 PMCID: PMC7079179 DOI: 10.1002/chem.201905310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Indexed: 12/18/2022]
Abstract
PEG is the gold standard polymer for pharmaceutical applications, however it lacks degradability. Degradation under physiologically relevant pH as present in endolysosomes, cancerous and inflammatory tissues is crucial for many areas. The authors present anionic ring-opening copolymerization of ethylene oxide with 3,4-epoxy-1-butene (EPB) and subsequent modification to introduce acid-degradable vinyl ether groups as well as methacrylate (MA) units, enabling radical cross-linking. Copolymers with different molar ratios of EPB, molecular weights (Mn ) up to 10 000 g mol-1 and narrow dispersities (Đ<1.05) were prepared. Both the P(EG-co-isoEPB)MA copolymer and the hydrogels showed pH-dependent, rapid hydrolysis at pH 5-6 and long-term storage stability at neutral pH (pH 7.4). By designing the degree of polymerization and content of degradable vinyl ether groups, the release time of an entrapped protein OVA-Alexa488 can be tailored from a few hours to several days (hydrolysis half-life time t1/2 at pH 5: 13 h to 51 h).
Collapse
Affiliation(s)
- Johannes Ewald
- Institute of Organic ChemistryJohannes Gutenberg-UniversityDuesbergweg 10–1455128MainzGermany
| | - Jan Blankenburg
- Institute of Organic ChemistryJohannes Gutenberg-UniversityDuesbergweg 10–1455128MainzGermany
- Graduate School Materials Science in MainzStaudinger Weg 955128MainzGermany
| | - Matthias Worm
- Institute of Organic ChemistryJohannes Gutenberg-UniversityDuesbergweg 10–1455128MainzGermany
| | - Laura Besch
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg-UniversityDuesbergweg 10–1455128MainzGermany
| | - Ronald E. Unger
- Institute for PathologyJohannes Gutenberg University MainzObere Zahlbacher Straße 6355101MainzGermany
| | - Wolfgang Tremel
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg-UniversityDuesbergweg 10–1455128MainzGermany
| | - Holger Frey
- Institute of Organic ChemistryJohannes Gutenberg-UniversityDuesbergweg 10–1455128MainzGermany
| | - Hannah Pohlit
- Institute of Organic ChemistryJohannes Gutenberg-UniversityDuesbergweg 10–1455128MainzGermany
- Engineering Sciences DepartmentScience for Life LaboratoryUppsala UniversityLägerhyddsvägen 175121UppsalaSweden
| |
Collapse
|
35
|
Yeo H, Khan A. Photoinduced Proton-Transfer Polymerization: A Practical Synthetic Tool for Soft Lithography Applications. J Am Chem Soc 2020; 142:3479-3488. [PMID: 32040308 DOI: 10.1021/jacs.9b11958] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton-transfer photopolymerization through the thiol-epoxy "click" reaction is shown to be a versatile new method for the fabrication of micro- and nanosized polymeric patterns. In this approach, complexation of a guanidine base, diazabicycloundecene (DBU), with benzoylphenylpropionic acid (ketoprofen) generates a photolabile salt. Under illumination at a wavelength of 365 nm, the salt undergoes a photodecarboxylation reaction to release DBU as a base. The base-catalyzed ring opening reaction then creates cross-linked poly(β-hydroxyl thio-ether) patterns. The surface chemistry of these patterns can be altered through alkylation of the thio-ether linkages. For example, a reaction with bromoacetic acid produces a hitherto unknown sulfonium/carboxylate-based zwitterionic motif that endows antibiofouling capacity to the micropatterns.
Collapse
Affiliation(s)
- Hyunki Yeo
- Department of Chemical and Biological Engineering , Korea University , 02841 Seoul , South Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering , Korea University , 02841 Seoul , South Korea
| |
Collapse
|
36
|
Abstract
Amino-functional polyethers have emerged as a new class of “smart”, i.e. pH- and thermoresponsive materials. This review article summarizes the synthesis and applications of these materials, obtained from ring-opening of suitable epoxide monomers.
Collapse
Affiliation(s)
- Patrick Verkoyen
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Holger Frey
- Department of Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
37
|
Wei C, Lian C, Yan B, Xiao Y, Lang M, Liu H. Tailor-made chalcogen-rich polycarbonates: experimental and computational insights into chalcogen group-dependent ring opening polymerization. Polym Chem 2020. [DOI: 10.1039/c9py01569h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A versatile strategy to poly(chalcogen-carbonate) library is presented by organic base catalytic macrocarbonate polymerization. Polymerization depends sensitively on chalcogen groups.
Collapse
Affiliation(s)
- Chao Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials and Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Bingkun Yan
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials and Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Yan Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials and Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials and Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
38
|
Berac CM, Zengerling L, Straβburger D, Otter R, Urschbach M, Besenius P. Evaluation of Charge-Regulated Supramolecular Copolymerization to Tune the Time Scale for Oxidative Disassembly of β-Sheet Comonomers. Macromol Rapid Commun 2019; 41:e1900476. [PMID: 31682046 DOI: 10.1002/marc.201900476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/25/2019] [Indexed: 02/06/2023]
Abstract
A multistimuli-responsive supramolecular copolymerization is reported. The copolymerization is driven by hydrogen bond encoded β-sheet-based charge co-assembly into 1D nanorods in water, using glutamic acid or lysine residues in either of the peptide comonomers. The incorporation of methionine as hydrophobic amino acid supports β-sheet formation, but oxidation of the thioether side-chain to a sulfoxide functional group destabilizes the β-sheet ordered domains and induces disassembly of the supramolecular polymers. Using H2 O2 as reactive oxygen species, the time scale and kinetics of the oxidative disassembly are probed. Compared to the charge neutral homopolymers, it is found that the oxidative disassembly of the charged ampholytic copolymers is up to two times faster and is operative at neutral pH. The strategy is therefore an important addition to the growing field of amphiphilic polythioether containing (macro)molecular building blocks, particularly in view of tuning their oxidation induced disassembly which tends to be notoriously slow and requires high concentrations of reactive oxygen species or acidic reaction media.
Collapse
Affiliation(s)
- Christian M Berac
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany
| | - Lydia Zengerling
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - David Straβburger
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Ronja Otter
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Moritz Urschbach
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Pol Besenius
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128, Mainz, Germany
| |
Collapse
|
39
|
Wang G, Huang P, Qi M, Li C, Fan W, Zhou Y, Zhang R, Huang W, Yan D. Facile Synthesis of a H 2O 2-Responsive Alternating Copolymer Bearing Thioether Side Groups for Drug Delivery and Controlled Release. ACS OMEGA 2019; 4:17600-17606. [PMID: 31656936 PMCID: PMC6812126 DOI: 10.1021/acsomega.9b02923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 09/25/2019] [Indexed: 05/10/2023]
Abstract
A novel amphiphilic alternating copolymer with thioether side groups (P(MSPA-a-EG)) was synthesized through an amine-epoxy click reaction of 3-(methylthio)propylamine (MSPA) and ethylene glycol diglycidyl ether. P(MSPA-a-EG) was characterized in detail by nuclear magnetic resonance (NMR), gel permeation chromatography, Fourier transformed infrared, differential scanning calorimeter, and thermogravimetric analysis to confirm the successful synthesis. Due to its amphiphilic structure, P(MSPA-a-EG) could self-assemble into spherical micelles with an average diameter of about 151 nm. As triggered by H2O2, theses micelles could disassemble because hydrophobic thioether groups are transformed to hydrophilic sulfoxide groups in MSPA units. The oxidant disassemble process of micelles was systemically studied by dynamic light scattering, transmission electron microscopy, and 1H NMR measurements. The MTT assay against NIH/3T3 cells indicated that P(MSPA-a-EG) micelles exhibited good biocompatibility. Furthermore, they could be used as smart drug carriers to encapsulate hydrophobic anticancer drug doxorubicin (DOX) with 4.90% drug loading content and 9.81% drug loading efficiency. In vitro evaluation results indicated that the loaded DOX could be released rapidly, triggered by H2O2. Therefore, such a novel alternating copolymer was expected to be promising candidates for controlled drug delivery and release.
Collapse
Affiliation(s)
- Guanchun Wang
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ping Huang
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Department
of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China
| | - Meiwei Qi
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chuanlong Li
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weirong Fan
- Department
of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China
| | - Yongfeng Zhou
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rong Zhang
- Department
of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China
| | - Wei Huang
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Deyue Yan
- School
of Chemistry and Chemical Engineering, State Key Laboratory of Metal
Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
40
|
Deng Y, Chen H, Tao X, Cao F, Trépout S, Ling J, Li MH. Oxidation-Sensitive Polymersomes Based on Amphiphilic Diblock Copolypeptoids. Biomacromolecules 2019; 20:3435-3444. [DOI: 10.1021/acs.biomac.9b00713] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yangwei Deng
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
| | - Hui Chen
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Xinfeng Tao
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fangyi Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
| | - Sylvain Trépout
- Institut Curie, INSERM U1196 and CNRS UMR9187, 91405 Orsay Cedex, France
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
| | - Min-Hui Li
- Chimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, 100029 Beijing, China
| |
Collapse
|
41
|
Johann T, Leibig D, Grune E, Müller AH, Frey H. Effect of the Substituent Position on the Anionic Copolymerization of Styrene Derivatives: Experimental Results and Density Functional Theory Calculations. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tobias Johann
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Max Planck Graduate Center, Forum Universitatis 2, D-55122 Mainz, Germany
| | - Daniel Leibig
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, D-55128 Mainz, Germany
| | - Eduard Grune
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, D-55128 Mainz, Germany
| | - Axel H.E. Müller
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, D-55128 Mainz, Germany
| |
Collapse
|
42
|
Ye H, Zhou Y, Liu X, Chen Y, Duan S, Zhu R, Liu Y, Yin L. Recent Advances on Reactive Oxygen Species-Responsive Delivery and Diagnosis System. Biomacromolecules 2019; 20:2441-2463. [PMID: 31117357 DOI: 10.1021/acs.biomac.9b00628] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) play crucial roles in biological metabolism and intercellular signaling. However, ROS level is dramatically elevated due to abnormal metabolism during multiple pathologies, including neurodegenerative diseases, diabetes, cancer, and premature aging. By taking advantage of the discrepancy of ROS levels between normal and diseased tissues, a variety of ROS-sensitive moieties or linkers have been developed to design ROS-responsive systems for the site-specific delivery of drugs and genes. In this review, we summarized the ROS-responsive chemical structures, mechanisms, and delivery systems, focusing on their current advances for precise drug/gene delivery. In particular, ROS-responsive nanocarriers, prodrugs, and supramolecular hydrogels are summarized in terms of their application for drug/gene delivery, and common strategies to elevate or diminish cellular ROS concentrations, as well as the recent development of ROS-related imaging probes were also discussed.
Collapse
Affiliation(s)
- Huan Ye
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Xun Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Yongbing Chen
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Shanzhou Duan
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Rongying Zhu
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Yong Liu
- Department of Biomedical Engineering , University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| |
Collapse
|
43
|
Blankenburg J, Frey H. Aminal Protection of Epoxide Monomer Permits the Introduction of Multiple Secondary Amine Moieties at Poly(ethylene glycol). Macromol Rapid Commun 2019; 40:e1900057. [DOI: 10.1002/marc.201900057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jan Blankenburg
- Institute of Organic ChemistryJohannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
- Graduate School Materials Science in Mainz (MAINZ) Staudingerweg 9 55128 Mainz Germany
| | - Holger Frey
- Institute of Organic ChemistryJohannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
44
|
Lynd NA, Ferrier RC, Beckingham BS. Recommendation for Accurate Experimental Determination of Reactivity Ratios in Chain Copolymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b01752] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Robert C. Ferrier
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Bryan S. Beckingham
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
45
|
Blankenburg J, Maciol K, Hahn C, Frey H. Poly(ethylene glycol) with Multiple Aldehyde Functionalities Opens up a Rich and Versatile Post-Polymerization Chemistry. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jan Blankenburg
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Kamil Maciol
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Hahn
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
46
|
Brega V, Scaletti F, Zhang X, Wang LS, Li P, Xu Q, Rotello VM, Thomas SW. Polymer Amphiphiles for Photoregulated Anticancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2814-2820. [PMID: 30582802 PMCID: PMC6623983 DOI: 10.1021/acsami.8b18099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We report the synthesis of amphiphilic polymers featuring lipophilic stearyl chains and hydrophilic poly(ethylene glycol) polymers that are connected through singlet oxygen-cleavable alkoxyanthracene linkers. These amphiphilic polymers assembled in water to form micelles with diameters of ∼20 nm. Reaction of the alkoxyanthracene linkers with light and O2 cleaved the ether C-O bonds, resulting in formation of the corresponding 9,10-anthraquinone derivatives and concomitant disruption of the micelles. These micelles were loaded with the chemotherapeutic agent doxorubicin, which was efficiently released upon photo-oxidation. The drug-loaded reactive micelles were effective at killing cancer cells in vitro upon irradiation at 365 nm, functioning through both doxorubicin release and photodynamic mechanisms.
Collapse
Affiliation(s)
- Valentina Brega
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford MA 02155, United States
| | - Federica Scaletti
- Department of Chemistry, University of Massachusetts Amherst, 710 Nt. Pleasant Street, Amherst MA 01003, United States
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 Nt. Pleasant Street, Amherst MA 01003, United States
| | - Li-Sheng Wang
- Department of Chemistry, University of Massachusetts Amherst, 710 Nt. Pleasant Street, Amherst MA 01003, United States
| | - Prudence Li
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford MA 02155, United States
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford MA 02155, United States
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 Nt. Pleasant Street, Amherst MA 01003, United States
| | - Samuel W. Thomas
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford MA 02155, United States
- Corresponding Author: (S.W.T.)
| |
Collapse
|
47
|
Bai H, Zhang Z, Ma H, Han L, Mu X, Huang W, Liu P, Wu Y. Investigation of the features in living anionic polymerization with styrene derivatives containing annular substituents. Polym Chem 2019. [DOI: 10.1039/c8py01825a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Five styrene derivatives with annular substituents (SAs), called CPBE, CHBE, THNE, THBE and META, were successfully synthesized and living anionic polymerization was conducted.
Collapse
Affiliation(s)
- Hongyuan Bai
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Zhi Zhang
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Hongwei Ma
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Li Han
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Xiaochun Mu
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Wei Huang
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Pibo Liu
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Yibo Wu
- Beijing Inst. Petrochem Technol
- Beijing Key Lab of Special Elastomer Composite Mat
- Beijing 102617
- China
| |
Collapse
|
48
|
Cheng F, Su T, Luo K, Pu Y, He B. The polymerization kinetics, oxidation-responsiveness, and in vitro anticancer efficacy of poly(ester-thioether)s. J Mater Chem B 2019; 7:1005-1016. [PMID: 32255105 DOI: 10.1039/c8tb02980f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The oxidation-responsiveness and biomedical properties of poly(ester-thioether)s could be tuned by varying the polymer backbones.
Collapse
Affiliation(s)
- Furong Cheng
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Ting Su
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
- Center for Translational Medicine
| | - Kui Luo
- Huaxi MR Research Center (HMRRC)
- Department of Radiology, West China Hospital, Sichuan University
- Chengdu 610041
- China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Bin He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
49
|
Yan B, Hou J, Wei C, Xiao Y, Lang M, Huang F. Synthesis of main chain sulfur-containing aliphatic polycarbonates by organocatalytic ring-opening polymerization of macrocyclic carbonates. Polym Chem 2019. [DOI: 10.1039/c9py01205b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first application of organocatalysts is reported to achieve highly active and living ring-opening polymerization (ROP) of thioether-based macrocyclic carbonates for preparing well-defined main chain thioether functional APCs.
Collapse
Affiliation(s)
- Bingkun Yan
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Jiaqian Hou
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Chao Wei
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Yan Xiao
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Meidong Lang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Farong Huang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
50
|
Tuning the life-time of supramolecular hydrogels using ROS-responsive telechelic peptide-polymer conjugates. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|