1
|
Yan Z, He A, Wan L, Gao Q, Jiang Y, Wang Y, Wang E, Li C, Yang Y, Li Y, Guo P, Han D. Structural Insights into an Antiparallel Chair-Type G-Quadruplex From the Intron of NOP56 Oncogene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406230. [PMID: 40047221 PMCID: PMC12021085 DOI: 10.1002/advs.202406230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/08/2025] [Indexed: 04/26/2025]
Abstract
G-quadruplex (G4) structures play important roles in various biological processes, especially the gene regulation. Nucleolar protein 56 (NOP56) is an essential component in ribosome biogenesis while its overexpression associates with various types of cancers, rendering it a significant therapeutic target. Here for the first time, an antiparallel chair-type G4 structure formed by a 21-nt DNA sequence from the intron 1 of NOP56 is reported, and its high-resolution structure is determined using solution nuclear magnetic resonance spectroscopy. The NOP56-G4 has a special fold containing two G-tetrads and a C·G·C·G tetrad, which is further capped by a C∙C base pair. The G4 ligand pyridostatin (PDS) binds at the terminal G-tetrad through π-π stacking and electrostatic interactions, increasing the melting temperature of NOP56-G4 by ≈14 °C. This study further shows that PDS can significantly reduce NOP56 mRNA levels in three cancer cell lines. This work provides an unprecedented high-resolution structural basis for a special G4 structure from the intron of NOP56 and suggests a feasibility of targeting intronic G4 for gene regulation, propelling new avenues for G4 structure-based drug design and therapeutic strategy.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Axin He
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM) Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghai200127China
| | - Liqi Wan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM) Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghai200127China
| | - Qian Gao
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiang310013China
| | - Yan Jiang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yang Wang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | | | - Changling Li
- College of Chemistry and Materials ScienceShanghai Normal UniversityShanghai200234China
| | - Yingquan Yang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yingjie Li
- Department of PharmacologySchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Pei Guo
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Da Han
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM) Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
2
|
Feng Y, Yang Y, Guo P, Zhang L, Yang Y, Zhao Z, Cui C, Yang Q, Liu Y, Yang L, Peng R, Tan W. DNA Self-Assembly Generated by Aptamer-Triggered Rolling Circle Amplification Cascades for Profiling Colorectal Cancer-Derived Small Extracellular Vesicles. ACS NANO 2025; 19:2294-2305. [PMID: 39772529 DOI: 10.1021/acsnano.4c12286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The analysis of small extracellular vesicles (sEVs) has shown clinical significance in early cancer diagnostics and considerable potential in prognostic assessment and therapeutic monitoring, offering possibilities for precise clinical intervention. Despite recent diagnostic progress based on blood-derived sEVs, the inability to specifically profile multiple parameters of sEVs proteins has hampered advancement in clinical applications. Herein, we report an approach to profile colorectal cancer (CRC)-derived sEVs by using multiaptamer-triggered rolling circle amplification (RCA) cascades. In practice, in the presence of target sEVs, the complementary strands are released from the duplexes of the structure-switching aptamer. Then, the RCA cascade occurs but only when the specific DNA strand pair is presented. As a result, the noncanonical DNA assemblies are generated whose size reaches micrometers that can be directly analyzed by conventional flow cytometry, thereby facilitating facile clinical diagnostics. In this study, the developed diagnostic method is verified on cell-derived sEVs, followed by achieving modeling based on clinical samples. The final diagnostic results from the clinical cohort indicate promising diagnostic efficacy for CRC-derived sEVs with 92% sensitivity, 86.7% specificity, and 90% overall accuracy, highlighting the substantial potential of sEVs as biomarkers for CRC diagnosis and significantly advancing the development of clinical tools for early disease diagnosis.
Collapse
Affiliation(s)
- Yawei Feng
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yunshan Yang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Pei Guo
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Lizhuan Zhang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yunben Yang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Zeyin Zhao
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Qiuxia Yang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yong Liu
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Liu Yang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Ruizi Peng
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
3
|
Kim H, Pak Y. Free Energy-Based Refinement of DNA Force Field via Modification of Multiple Nonbonding Energy Terms. J Chem Inf Model 2025; 65:288-297. [PMID: 39723478 DOI: 10.1021/acs.jcim.4c01918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The amber-OL21 force field (ff) was developed to better describe noncanonical DNA, including Z-DNA. Despite its improvements for DNA simulations, this study found that OL21's scope of application was limited by embedded ff artifacts. In a benchmark set of seven DNA molecules, including two double-stranded DNAs transitioning between B- and Z-DNA and five single-stranded DNAs folding into mini-dumbbell or G-quadruplex structures, the free energy landscapes obtained using OL21 revealed several issues: Z-DNA was overly stabilized; misfolded states in mini-dumbbell DNAs were most stable; DNA GQ folding was consistently biased toward an antiparallel topology. To address these issues, a simple van der Waals (vdW) correction scheme, referred to as vdW5, was proposed for OL21. This involved revising multiple nonbonding energy terms to improve the overall quality of the free energy landscapes. The vdW5 correction effectively eliminated the artifacts in OL21, providing significantly improved free energy representations for DNAs tested. The vdW5-level revision substantially enhanced the predictive power of DNA simulations, thereby extending the scope of application for amber-OL21.
Collapse
Affiliation(s)
- Hyeonjun Kim
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Youngshang Pak
- Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
4
|
Yang Y, Wang Y, Yan Z, Li Z, Guo P. Effects of interrupting residues on DNA dumbbell structures formed by CCTG tetranucleotide repeats associated with myotonic dystrophy type 2. FEBS Lett 2024; 598:2544-2556. [PMID: 38922834 DOI: 10.1002/1873-3468.14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
Myotonic dystrophy type 2 (DM2) is a neurogenerative disease caused by caprylic/capric triglyceride (CCTG) tetranucleotide repeat expansions in intron 1 of the cellular nucleic acid-binding protein (CNBP) gene. Non-B DNA structures formed by CCTG repeats can promote genetic instability, whereas interrupting motifs of NCTG (N = A/T/G) within CCTG repeats help to maintain genomic stability. However, whether the interrupting motifs can affect DNA structures of CCTG repeats remains unclear. Here, we report that four CCTG repeats with an interrupting 3'-A/T/G residue formed dumbbell structures, whereas a non-interrupting 3'-C residue resulted in a multi-loop structure exhibiting conformational dynamics that may contribute to a higher tendency of escaping from DNA mismatch repair and causing repeat expansions. The results provide new structural insights into the genetic instability of CCTG repeats in DM2.
Collapse
Affiliation(s)
- Yingquan Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
| | - Yang Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
- School of Materials Science and Engineering, Tianjin University, China
| | - Zhenzhen Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
| | - Zhigang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
| |
Collapse
|
5
|
Wang Y, Wang J, Yan Z, Hou J, Wan L, Yang Y, Liu Y, Yi J, Guo P, Han D. Structural investigation of pathogenic RFC1 AAGGG pentanucleotide repeats reveals a role of G-quadruplex in dysregulated gene expression in CANVAS. Nucleic Acids Res 2024; 52:2698-2710. [PMID: 38266156 PMCID: PMC10954463 DOI: 10.1093/nar/gkae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
An expansion of AAGGG pentanucleotide repeats in the replication factor C subunit 1 (RFC1) gene is the genetic cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS), and it also links to several other neurodegenerative diseases including the Parkinson's disease. However, the pathogenic mechanism of RFC1 AAGGG repeat expansion remains enigmatic. Here, we report that the pathogenic RFC1 AAGGG repeats form DNA and RNA parallel G-quadruplex (G4) structures that play a role in impairing biological processes. We determine the first high-resolution nuclear magnetic resonance (NMR) structure of a bimolecular parallel G4 formed by d(AAGGG)2AA and reveal how AAGGG repeats fold into a higher-order structure composed of three G-tetrad layers, and further demonstrate the formation of intramolecular G4s in longer DNA and RNA repeats. The pathogenic AAGGG repeats, but not the nonpathogenic AAAAG repeats, form G4 structures to stall DNA replication and reduce gene expression via impairing the translation process in a repeat-length-dependent manner. Our results provide an unprecedented structural basis for understanding the pathogenic mechanism of AAGGG repeat expansion associated with CANVAS. In addition, the high-resolution structures resolved in this study will facilitate rational design of small-molecule ligands and helicases targeting G4s formed by AAGGG repeats for therapeutic interventions.
Collapse
Affiliation(s)
- Yang Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Junyan Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhenzhen Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jianing Hou
- Institute of Molecular Medicine (IMM) Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liqi Wan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yingquan Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yu Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jie Yi
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Da Han
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM) Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
6
|
Sanchez-Flores M, Corral-Juan M, Gasch-Navalón E, Cirillo D, Sanchez I, Matilla-Dueñas A. Novel genotype-phenotype correlations, differential cerebellar allele-specific methylation, and a common origin of the (ATTTC) n insertion in spinocerebellar ataxia type 37. Hum Genet 2024; 143:211-232. [PMID: 38396267 PMCID: PMC11043136 DOI: 10.1007/s00439-024-02644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
Spinocerebellar ataxia subtype 37 (SCA37) is a rare disease originally identified in ataxia patients from the Iberian Peninsula with a pure cerebellar syndrome. SCA37 patients carry a pathogenic intronic (ATTTC)n repeat insertion flanked by two polymorphic (ATTTT)n repeats in the Disabled-1 (DAB1) gene leading to cerebellar dysregulation. Herein, we determine the precise configuration of the pathogenic 5'(ATTTT)n-(ATTTC)n-3'(ATTTT)n SCA37 alleles by CRISPR-Cas9 and long-read nanopore sequencing, reveal their epigenomic signatures in SCA37 lymphocytes, fibroblasts, and cerebellar samples, and establish new molecular and clinical correlations. The 5'(ATTTT)n-(ATTTC)n-3'(ATTTT)n pathogenic allele configurations revealed repeat instability and differential methylation signatures. Disease age of onset negatively correlated with the (ATTTC)n, and positively correlated with the 3'(ATTTT)n. Geographic origin and gender significantly correlated with age of onset. Furthermore, significant predictive regression models were obtained by machine learning for age of onset and disease evolution by considering gender, the (ATTTC)n, the 3'(ATTTT)n, and seven CpG positions differentially methylated in SCA37 cerebellum. A common 964-kb genomic region spanning the (ATTTC)n insertion was identified in all SCA37 patients analysed from Portugal and Spain, evidencing a common origin of the SCA37 mutation in the Iberian Peninsula originating 859 years ago (95% CI 647-1378). In conclusion, we demonstrate an accurate determination of the size and configuration of the regulatory 5'(ATTTT)n-(ATTTC)n-3'(ATTTT)n repeat tract, avoiding PCR bias amplification using CRISPR/Cas9-enrichment and nanopore long-read sequencing, resulting relevant for accurate genetic diagnosis of SCA37. Moreover, we determine novel significant genotype-phenotype correlations in SCA37 and identify differential cerebellar allele-specific methylation signatures that may underlie DAB1 pathogenic dysregulation.
Collapse
Affiliation(s)
- Marina Sanchez-Flores
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | - Marc Corral-Juan
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | - Esther Gasch-Navalón
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | | | - Ivelisse Sanchez
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | - Antoni Matilla-Dueñas
- Neurogenetics Unit, Department of Neuroscience, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Carretera de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain.
| |
Collapse
|
7
|
Papp D, Hernandez LA, Mai TA, Haanen TJ, O’Donnell MA, Duran AT, Hernandez SM, Narvanto JE, Arguello B, Onwukwe MO, Mirkin SM, Kim JC. Massive contractions of myotonic dystrophy type 2-associated CCTG tetranucleotide repeats occur via double-strand break repair with distinct requirements for DNA helicases. G3 (BETHESDA, MD.) 2024; 14:jkad257. [PMID: 37950892 PMCID: PMC10849350 DOI: 10.1093/g3journal/jkad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/06/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables the selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are involved in these massive contractions, indicating a mechanism that uses homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a short-track control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.
Collapse
Affiliation(s)
- David Papp
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Luis A Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Theresa A Mai
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Terrance J Haanen
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Meghan A O’Donnell
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Ariel T Duran
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Sophia M Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Jenni E Narvanto
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Berenice Arguello
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Marvin O Onwukwe
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Jane C Kim
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| |
Collapse
|
8
|
Binet T, Padiolleau-Lefèvre S, Octave S, Avalle B, Maffucci I. Comparative Study of Single-stranded Oligonucleotides Secondary Structure Prediction Tools. BMC Bioinformatics 2023; 24:422. [PMID: 37940855 PMCID: PMC10634105 DOI: 10.1186/s12859-023-05532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Single-stranded nucleic acids (ssNAs) have important biological roles and a high biotechnological potential linked to their ability to bind to numerous molecular targets. This depends on the different spatial conformations they can assume. The first level of ssNAs spatial organisation corresponds to their base pairs pattern, i.e. their secondary structure. Many computational tools have been developed to predict the ssNAs secondary structures, making the choice of the appropriate tool difficult, and an up-to-date guide on the limits and applicability of current secondary structure prediction tools is missing. Therefore, we performed a comparative study of the performances of 9 freely available tools (mfold, RNAfold, CentroidFold, CONTRAfold, MC-Fold, LinearFold, UFold, SPOT-RNA, and MXfold2) on a dataset of 538 ssNAs with known experimental secondary structure. RESULTS The minimum free energy-based tools, namely mfold and RNAfold, and some tools based on artificial intelligence, namely CONTRAfold and MXfold2, provided the best results, with [Formula: see text] of exact predictions, whilst MC-fold seemed to be the worst performing tool, with only [Formula: see text] of exact predictions. In addition, UFold and SPOT-RNA are the only options for pseudoknots prediction. Including in the analysis of mfold and RNAfold results 5-10 suboptimal solutions further improved the performances of these tools. Nevertheless, we could observe issues in predicting particular motifs, such as multiple-ways junctions and mini-dumbbells, or the ssNAs whose structure has been determined in complex with a protein. In addition, our benchmark shows that some effort has to be paid for ssDNA secondary structure predictions. CONCLUSIONS In general, Mfold, RNAfold, and MXfold2 seem to currently be the best choice for the ssNAs secondary structure prediction, although they still show some limits linked to specific structural motifs. Nevertheless, actual trends suggest that artificial intelligence has a high potential to overcome these remaining issues, for example the recently developed UFold and SPOT-RNA have a high success rate in predicting pseudoknots.
Collapse
Affiliation(s)
- Thomas Binet
- Université de technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de recherche Royallieu - CS 60 319, 60203, Compiègne Cedex, France
| | - Séverine Padiolleau-Lefèvre
- Université de technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de recherche Royallieu - CS 60 319, 60203, Compiègne Cedex, France
| | - Stéphane Octave
- Université de technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de recherche Royallieu - CS 60 319, 60203, Compiègne Cedex, France
| | - Bérangère Avalle
- Université de technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de recherche Royallieu - CS 60 319, 60203, Compiègne Cedex, France.
| | - Irene Maffucci
- Université de technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de recherche Royallieu - CS 60 319, 60203, Compiègne Cedex, France.
| |
Collapse
|
9
|
Papp D, Hernandez LA, Mai TA, Haanen TJ, O'Donnell MA, Duran AT, Hernandez SM, Narvanto JE, Arguello B, Onwukwe MO, Kolar K, Mirkin SM, Kim JC. Massive contractions of Myotonic Dystrophy Type 2-associated CCTG tetranucleotide repeats occur via double strand break repair with distinct requirements for helicases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548036. [PMID: 37461657 PMCID: PMC10350092 DOI: 10.1101/2023.07.06.548036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Myotonic Dystrophy Type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75-11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are required for these massive contractions, indicating a mechanism that involves homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a low-repeat control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.
Collapse
Affiliation(s)
- David Papp
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Luis A Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Theresa A Mai
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Terrance J Haanen
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Meghan A O'Donnell
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Ariel T Duran
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Sophia M Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Jenni E Narvanto
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Berenice Arguello
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Marvin O Onwukwe
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Kara Kolar
- Department of Biology, Tufts University, Medford, MA 02155
| | | | - Jane C Kim
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
| |
Collapse
|
10
|
Zhang J, Liu Y, Yan Z, Wang Y, Guo P. A Novel Minidumbbell DNA-Based Sensor for Silver Ion Detection. BIOSENSORS 2023; 13:358. [PMID: 36979570 PMCID: PMC10046540 DOI: 10.3390/bios13030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Silver ion (Ag+) is one of the most common heavy metal ions that cause environmental pollution and affect human health, and therefore, its detection is of great importance in the field of analytical chemistry. Here, we report an 8-nucleotide (nt) minidumbbell DNA-based sensor (M-DNA) for Ag+ detection. The minidumbbell contained a unique reverse wobble C·C mispair in the minor groove, which served as the binding site for Ag+. The M-DNA sensor could achieve a detection limit of 2.1 nM and sense Ag+ in real environmental samples with high accuracy. More importantly, the M-DNA sensor exhibited advantages of fast kinetics and easy operation owing to the usage of an ultrashort oligonucleotide. The minidumbbell represents a new and minimal non-B DNA structural motif for Ag+ sensing, allowing for the further development of on-site environmental Ag+ detection devices.
Collapse
Affiliation(s)
- Jiacheng Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yuan Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhenzhen Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yue Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
11
|
Li J, Wan L, Wang Y, Chen Y, Lee HK, Lam SL, Guo P. Solution Nuclear Magnetic Resonance Structures of ATTTT and ATTTC Pentanucleotide Repeats Associated with SCA37 and FAMEs. ACS Chem Neurosci 2023; 14:289-299. [PMID: 36580663 DOI: 10.1021/acschemneuro.2c00593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Expansions of ATTTT and ATTTC pentanucleotide repeats in the human genome are recently found to be associated with at least seven neurodegenerative diseases, including spinocerebellar ataxia type 37 (SCA37) and familial adult myoclonic epilepsy (FAME) types 1, 2, 3, 4, 6, and 7. The formation of non-B DNA structures during some biological processes is thought as a causative factor for repeat expansions. Yet, the structural basis for these pyrimidine-rich ATTTT and ATTTC repeat expansions remains elusive. In this study, we investigated the solution structures of ATTTT and ATTTC repeats using nuclear magnetic resonance spectroscopy. Here, we reveal that ATTTT and ATTTC repeats can form a highly compact minidumbbell structure at the 5'-end using their first two repeats. The high-resolution structure of two ATTTT repeats was determined, showing a regular TTTTA pentaloop and a quasi TTTT/A pentaloop. Furthermore, the minidumbbell structure could escape from proofreading by the Klenow fragment of DNA polymerase I when it was located at five or more base pairs away from the priming site, leading to a small-scale repeat expansion. Results of this work improve our understanding of ATTTT and ATTTC repeat expansions in SCA37 and FAMEs, and provide high-resolution structural information for rational drug design.
Collapse
Affiliation(s)
- Jinxia Li
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Liqi Wan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Yang Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yawen Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Pei Guo
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
12
|
Liu Y, Wan L, Ngai CK, Wang Y, Lam SL, Guo P. Structures and conformational dynamics of DNA minidumbbells in pyrimidine-rich repeats associated with neurodegenerative diseases. Comput Struct Biotechnol J 2023; 21:1584-1592. [PMID: 36874156 PMCID: PMC9975016 DOI: 10.1016/j.csbj.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/05/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Expansions of short tandem repeats (STRs) are associated with approximately 50 human neurodegenerative diseases. These pathogenic STRs are prone to form non-B DNA structure, which has been considered as one of the causative factors for repeat expansions. Minidumbbell (MDB) is a relatively new type of non-B DNA structure formed by pyrimidine-rich STRs. An MDB is composed of two tetraloops or pentaloops, exhibiting a highly compact conformation with extensive loop-loop interactions. The MDB structures have been found to form in CCTG tetranucleotide repeats associated with myotonic dystrophy type 2, ATTCT pentanucleotide repeats associated with spinocerebellar ataxia type 10, and the recently discovered ATTTT/ATTTC repeats associated with spinocerebellar ataxia type 37 and familial adult myoclonic epilepsy. In this review, we first introduce the structures and conformational dynamics of MDBs with a focus on the high-resolution structural information determined by nuclear magnetic resonance spectroscopy. Then we discuss the effects of sequence context, chemical environment, and nucleobase modification on the structure and thermostability of MDBs. Finally, we provide perspectives on further explorations of sequence criteria and biological functions of MDBs.
Collapse
Affiliation(s)
- Yuan Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Liqi Wan
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheuk Kit Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| | - Yang Wang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
13
|
Guo P, Han D. Targeting Pathogenic DNA and RNA Repeats: A Conceptual Therapeutic Way for Repeat Expansion Diseases. Chemistry 2022; 28:e202201749. [PMID: 35727679 DOI: 10.1002/chem.202201749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/06/2022]
Abstract
Expansions of short tandem repeats (STRs) in the human genome cause nearly 50 neurodegenerative diseases, which are mostly inheritable, nonpreventable and incurable, posing as a huge threat to human health. Non-B DNAs formed by STRs are thought to be structural intermediates that can cause repeat expansions. The subsequent transcripts harboring expanded RNA repeats can further induce cellular toxicity through forming specific structures. Direct targeting of these pathogenic DNA and RNA repeats has emerged as a new potential therapeutic strategy to cure repeat expansion diseases. In this conceptual review, we first introduce the roles of DNA and RNA structures in the genetic instabilities and pathomechanisms of repeat expansion diseases, then describe structural features of DNA and RNA repeats with a focus on the tertiary structures determined by X-ray crystallography and solution nuclear magnetic resonance spectroscopy, and finally discuss recent progress and perspectives of developing chemical tools that target pathogenic DNA and RNA repeats for curing repeat expansion diseases.
Collapse
Affiliation(s)
- Pei Guo
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Da Han
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
14
|
Yi J, Wan L, Liu Y, Lam SL, Chan HYE, Han D, Guo P. NMR solution structures of d(GGCCTG)n repeats associated with spinocerebellar ataxia type 36. Int J Biol Macromol 2022; 201:607-615. [DOI: 10.1016/j.ijbiomac.2022.01.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/03/2023]
|
15
|
Ngai CK, Lam SL, Lee HK, Guo P. A purine and a backbone discontinuous site alter the structure and thermal stability of DNA minidumbbells containing two pentaloops. FEBS Lett 2022; 596:826-840. [DOI: 10.1002/1873-3468.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Cheuk Kit Ngai
- Department of Chemistry The Chinese University of Hong Kong Shatin New Territories Hong Kong SAR China
| | - Sik Lok Lam
- Department of Chemistry The Chinese University of Hong Kong Shatin New Territories Hong Kong SAR China
| | - Hung Kay Lee
- Department of Chemistry The Chinese University of Hong Kong Shatin New Territories Hong Kong SAR China
| | - Pei Guo
- School of Biology and Biological Engineering South China University of Technology Guangzhou Guangdong 51006 China
| |
Collapse
|
16
|
Zhang J, Wang Y, Wan L, Liu Y, Yi J, Lam SL, Guo P. A pH and Mg 2+-Responsive Molecular Switch Based on a Stable DNA Minidumbbell Bearing 5' and 3'-Overhangs. ACS OMEGA 2021; 6:28263-28269. [PMID: 34723023 PMCID: PMC8552455 DOI: 10.1021/acsomega.1c04346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Minidumbbell (MDB) is a non-B DNA structure of which the thermodynamic stability is sensitive to a chemical environment such as pH, serving as a potential structural motif in constructing DNA-based molecular switches. This work aims to design thermodynamically stable MDB structures bearing 5' and 3'-overhanging deoxyribonucleotides in order to examine the possibility of MDB to be functionalized. Via making use of 5-methylcytosine and adjusting the pH of solution to be acidic, MDBs bearing 1-nucleotide (nt) or 2-nt overhanging residues at the 5' and 3'-ends have been obtained. Based on one of the new MDB sequences, we have designed a molecular switch that could respond to dual inputs of pH and Mg2+. The MDB strand and its partner strand formed a duplex (the "ON" state) upon inputting pH 7 and Mg2+, whereas the duplex dissociated to restore the MDB structure (the "OFF" state) upon inputting pH 5 and EDTA. The demonstration on the ability of MDB to sustain 5' and 3'-overhanging residues and the construction of a pH and Mg2+-responsive molecular switch will extend the application of MDB structures in dynamic DNA nanotechnology.
Collapse
Affiliation(s)
- Jiacheng Zhang
- School
of Biology and Biological Engineering, South
China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yang Wang
- School
of Biology and Biological Engineering, South
China University of Technology, Guangzhou, Guangdong 510006, China
| | - Liqi Wan
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin N.T., Hong Kong, China
| | - Yuan Liu
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Molecular Science and Engineering, South
China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jie Yi
- School
of Biology and Biological Engineering, South
China University of Technology, Guangzhou, Guangdong 510006, China
| | - Sik Lok Lam
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin N.T., Hong Kong, China
| | - Pei Guo
- School
of Biology and Biological Engineering, South
China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
17
|
Wan L, Lam SL, Lee HK, Guo P. Rational design of a reversible Mg 2+/EDTA-controlled molecular switch based on a DNA minidumbbell. Chem Commun (Camb) 2021; 56:10127-10130. [PMID: 32870195 DOI: 10.1039/d0cc03774e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we report that incorporation of an abasic site to DNA minidumbbells formed by natural sequences can lead to significant enhancements in their thermodynamic stability. Based on these stable minidumbbells, the first metal ion-controlled molecular switch which can regulate instant and reversible DNA duplex formation and dissociation has been constructed.
Collapse
Affiliation(s)
- Liqi Wan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Pei Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
18
|
Wan L, Yi J, Lam SL, Lee HK, Guo P. 5-Methylcytosine Substantially Enhances the Thermal Stability of DNA Minidumbbells. Chemistry 2021; 27:6740-6747. [PMID: 33501691 DOI: 10.1002/chem.202005410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Indexed: 11/07/2022]
Abstract
Minidumbbell (MDB) is a recently identified non-B DNA structure that has been proposed to associate with genetic instabilities. It also serves as a functional structural motif in DNA nanotechnology. DNA molecular switches constructed using MDBs show instant and complete structural conversions with easy manipulations. The availability of stable MDBs can broaden their applications. In this work, we found that substitutions of cytosine with 5-methylcytosine could lead to a significant enhancement in the thermal stabilities of MDBs. Consecutive methylations of cytosine in MDBs brought about cumulative stabilization with a drastic increase in the melting temperature by 23 °C. NMR solution structures of two MDBs containing 5-methylcytosine residues have been successfully determined and revealed that the enhanced stabilities resulted primarily from favorable hydrophobic contacts, more stable base pairs and enhanced base-base stackings involving the methyl group of 5-methylcytosine.
Collapse
Affiliation(s)
- Liqi Wan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jie Yi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Pei Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
19
|
Wan L, Lam SL, Lee HK, Guo P. Effects of Adenine Methylation on the Structure and Thermodynamic Stability of a DNA Minidumbbell. Int J Mol Sci 2021; 22:3633. [PMID: 33807305 PMCID: PMC8037738 DOI: 10.3390/ijms22073633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
DNA methylation is a prevalent regulatory modification in prokaryotes and eukaryotes. N1-methyladenine (m1A) and N6-methyladenine (m6A) have been found to be capable of altering DNA structures via disturbing Watson-Crick base pairing. However, little has been known about their influences on non-B DNA structures, which are associated with genetic instabilities. In this work, we investigated the effects of m1A and m6A on both the structure and thermodynamic stability of a newly reported DNA minidumbbell formed by two TTTA tetranucleotide repeats. As revealed by the results of nuclear magnetic resonance spectroscopic studies, both m1A and m6A favored the formation of a T·m1A and T·m6A Hoogsteen base pair, respectively. More intriguingly, the m1A and m6A modifications brought about stabilization and destabilization effects on the DNA minidumbbell, respectively. This work provides new biophysical insights into the effects of adenine methylation on the structure and thermodynamic stability of DNA.
Collapse
Affiliation(s)
- Liqi Wan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, China;
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, China;
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, China;
| | - Pei Guo
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
| |
Collapse
|
20
|
Guo P, Lam SL. Minidumbbell structures formed by ATTCT pentanucleotide repeats in spinocerebellar ataxia type 10. Nucleic Acids Res 2020; 48:7557-7568. [PMID: 32520333 PMCID: PMC7367182 DOI: 10.1093/nar/gkaa495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 01/02/2023] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is a progressive genetic disorder caused by ATTCT pentanucleotide repeat expansions in intron 9 of the ATXN10 gene. ATTCT repeats have been reported to form unwound secondary structures which are likely linked to large-scale repeat expansions. In this study, we performed high-resolution nuclear magnetic resonance spectroscopic investigations on DNA sequences containing two to five ATTCT repeats. Strikingly, we found the first two repeats of all these sequences well folded into highly compact minidumbbell (MDB) structures. The 3D solution structure of the sequence containing two ATTCT repeats was successfully determined, revealing the MDB comprises a regular TTCTA and a quasi TTCT/A pentaloops with extensive stabilizing loop-loop interactions. We further carried out in vitro primer extension assays to examine if the MDB formed in the primer could escape from the proofreading function of DNA polymerase. Results showed that when the MDB was formed at 5-bp or farther away from the priming site, it was able to escape from the proofreading by Klenow fragment of DNA polymerase I and thus retained in the primer. The intriguing structural findings bring about new insights into the origin of genetic instability in SCA10.
Collapse
Affiliation(s)
- Pei Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
21
|
Ngai CK, Lam SL, Lee HK, Guo P. High-Resolution Structures of DNA Minidumbbells Comprising Type II Tetraloops with a Purine Minor Groove Residue. J Phys Chem B 2020; 124:5131-5138. [PMID: 32484672 DOI: 10.1021/acs.jpcb.0c03163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Minidumbbell (MDB) is a newly discovered DNA structure formed by native sequences, which serves as a possible structural intermediate causing repeat expansion mutations in the genome and also a functional structural motif in constructing DNA-based molecular switches. Until now, all the reported MDBs containing two adjacent type II tetraloops were formed by pyrimidine-rich sequences 5'-YYYR YYYR-3' (Y and R represent pyrimidine and purine, respectively), wherein the second and sixth residues folded into the minor groove and interacted with each other. In this study, we have conducted a high-resolution nuclear magnetic resonance (NMR) spectroscopic investigation on alternative MDB-forming sequences and discovered that an MDB could also be formed stably with a purine in the minor groove, which has never been observed in any previously reported DNA type II tetraloops. Our refined NMR solution structures of the two MDBs formed by 5'-CTTG CATG-3' and 5'-CTTG CGTG-3' reveal that the sixth purine residue was driven into the minor groove via base-base stacking with the second thymine residue and adenine stacked better than guanine. The results of our present research work expand the sequence criteria for the formation of MDBs and shed light to explore the significance of MDBs.
Collapse
Affiliation(s)
- Cheuk Kit Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Pei Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
22
|
Satange R, Chang CK, Hou MH. A survey of recent unusual high-resolution DNA structures provoked by mismatches, repeats and ligand binding. Nucleic Acids Res 2019; 46:6416-6434. [PMID: 29945186 PMCID: PMC6061790 DOI: 10.1093/nar/gky561] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
The structure of the DNA duplex is arguably one of the most important biological structures elucidated in modern history. DNA duplex structure is closely associated with essential biological functions such as DNA replication and RNA transcription. In addition to the classical A-, B- and Z-DNA conformations, DNA duplexes are capable of assuming a variety of alternative conformations depending on the sequence and environmental context. A considerable number of these unusual DNA duplex structures have been identified in the past decade, and some of them have been found to be closely associated with different biological functions and pathological conditions. In this manuscript, we review a selection of unusual DNA duplex structures, particularly those originating from base pair mismatch, repetitive sequence motifs and ligand-induced structures. Although the biological significance of these novel structures has not yet been established in most cases, the illustrated conformational versatility of DNA could have relevance for pharmaceutical or nanotechnology development. A perspective on the future directions of this field is also presented.
Collapse
Affiliation(s)
- Roshan Satange
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Ke Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
23
|
Guo P, Lam SL. Unprecedented hydrophobic stabilizations from a reverse wobble T·T mispair in DNA minidumbbell. J Biomol Struct Dyn 2019; 38:1946-1953. [DOI: 10.1080/07391102.2019.1621211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Pei Guo
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
24
|
Ali M, Afshan N, Jiang C, Xiao SJ. DNA dumbbell tiles with uneven widths for 2D arrays. Org Biomol Chem 2019; 17:1277-1283. [DOI: 10.1039/c8ob02709a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA dumbbell tiles of AO(E) and BO(E), with stem spans of 11 and 16 bp twisting two head loop motifs of each tile into parallel and antiparallel conformations respectively, were constructed to grow planar nanoribbon arrays and nanotubes as well.
Collapse
Affiliation(s)
- Mashooq Ali
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Noshin Afshan
- Institute of Molecular Medicine
- Renji Hospital Affiliated To Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200001
- China
| | - Chuan Jiang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Shou-Jun Xiao
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| |
Collapse
|
25
|
Klimavicz JS, Röder K, Wales DJ. Energy Landscapes of Mini-Dumbbell DNA Octanucleotides. J Chem Theory Comput 2018; 14:3870-3876. [PMID: 29792700 DOI: 10.1021/acs.jctc.8b00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-stranded DNA structures play a significant role in biological systems, in particular during replication, translation, and DNA repair. Tracts of simple repetitive DNA are associated with slipped-strand mispairing, which can lead to genetic diseases. Recent NMR studies of TTTA and CCTG repeats have shown that these sequences form mini-dumbbells (MDBs), leading to frameshift mutations. Here we explore the energy landscapes of (CCTG)2 and (TTTA)2, which are currently the smallest known molecules to form MDBs. While (CCTG)2 MDBs are stable, (TTTA)2 exhibits numerous other structures with lower energies. A key factor identified in the stabilization of MDB structures is the bonding strength between residues 1 and 4, and 5 and 8.
Collapse
Affiliation(s)
- James S Klimavicz
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom.,Department of Entomology , Iowa State University , Ames , Iowa 50011 , United States
| | - Konstantin Röder
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
26
|
Abstract
The DNA minidumbbell (MDB) is a recently identified non-B structure. The reported MDBs contain two TTTA, CCTG, or CTTG type II loops. At present, the knowledge and understanding of the sequence criteria for MDB formation are still limited. In this study, we performed a systematic high-resolution nuclear magnetic resonance (NMR) and native gel study to investigate the effect of sequence variations in tandem repeats on the formation of MDBs. Our NMR results reveal the importance of hydrogen bonds, base-base stacking, and hydrophobic interactions from each of the participating residues. We conclude that in the MDBs formed by tandem repeats, C-G loop-closing base pairs are more stabilizing than T-A loop-closing base pairs, and thymine residues in both the second and third loop positions are more stabilizing than cytosine residues. The results from this study enrich our knowledge on the sequence criteria for the formation of MDBs, paving a path for better exploring their potential roles in biological systems and DNA nanotechnology.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories Hong Kong
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories Hong Kong
| |
Collapse
|
27
|
Abstract
The minidumbbell (MDB) is a new type of native DNA structure. At neutral pH, two TTTA or CCTG repeats can fold into the highly compact MDB with a melting temperature of ∼22 °C. Owing to the relatively low thermodynamic stability, MDBs have been proposed to be the structural intermediates that lead to efficient DNA repair escape and thus repeat expansions. In this study, we reveal that two CCTG repeats can also form an extraordinarily stable MDB with a melting temperature of ∼46 °C at pH 5.0. This unusual stability predominantly results from the formation of a three hydrogen bond C+·C mispair between the two minor groove cytosine residues. Due to the drastic stability change, the CCTG MDB, when combined with its complementary sequence, shows instant and complete structural conversions when the pH switches between 5.0 and 7.0, making the system serve as a simple and efficient pH-controlled molecular switch.
Collapse
Affiliation(s)
- Pei Guo
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| |
Collapse
|
28
|
Liu Y, Guo P, Lam SL. Formation of a DNA Mini-Dumbbell with a Quasi-Type II Loop. J Phys Chem B 2017; 121:2554-2560. [DOI: 10.1021/acs.jpcb.7b00556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Pei Guo
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
29
|
Guo P, Lam SL. The competing mini-dumbbell mechanism: new insights into CCTG repeat expansion. Signal Transduct Target Ther 2016; 1:16028. [PMID: 29263904 PMCID: PMC5661647 DOI: 10.1038/sigtrans.2016.28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022] Open
Abstract
CCTG repeat expansions in intron 1 of the cellular nucleic acid-binding protein gene are associated with myotonic dystrophy type 2. Recently, we have reported a novel mini-dumbbell (MDB) structure formed by two CCTG or TTTA repeats, which potentially has a critical role in repeat expansions. Here we present a mechanism, called the competing MDB mechanism, to explain how the formation of MDB can lead to efficient mismatch repair (MMR) escape and thus CCTG repeat expansions during DNA replication. In a long tract of CCTG repeats, two competing MDBs can be formed in any segment of three repeats. Fast exchange between these MDBs will make the commonly occupied repeat behave like a mini-loop. Further participations of the 5'- or 3'-flanking repeat in forming competing MDBs will make the mini-loop shift in the 5'- or 3'-direction, thereby providing a pathway for the mini-loop to escape from MMR. To avoid the complications due to the formation of hairpin conformers in longer CCTG repeats, we made use of TTTA repeats as model sequences to demonstrate the formation of competing MDBs and shifting of mini-loop in a long tract of repeating sequence.
Collapse
Affiliation(s)
- Pei Guo
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
30
|
Guo P, Lam SL. Unusual structures of CCTG repeats and their participation in repeat expansion. Biomol Concepts 2016; 7:331-340. [DOI: 10.1515/bmc-2016-0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/01/2016] [Indexed: 11/15/2022] Open
Abstract
AbstractCCTG repeat expansion in intron 1 of the cellular nucleic acid-binding protein (CNBP) gene has been identified to be the genetic cause of myotonic dystrophy type 2 (DM2). Yet the underlying reasons for the genetic instability in CCTG repeats remain elusive. In recent years, CCTG repeats have been found to form various types of unusual secondary structures including mini-dumbbell (MDB), hairpin and dumbbell, revealing that there is a high structural diversity in CCTG repeats intrinsically. Upon strand slippage, the formation of unusual structures in the nascent strand during DNA replication has been proposed to be the culprit of CCTG repeat expansions. On the one hand, the thermodynamic stability, size, and conformational dynamics of these unusual structures affect the propensity of strand slippage. On the other hand, these structural properties determine whether the unusual structure can successfully escape from DNA repair. In this short overview, we first summarize the recent advances in elucidating the solution structures of CCTG repeats. We then discuss the potential pathways by which these unusual structures bring about variable sizes of repeat expansion, high strand slippage propensity and efficient repair escape.
Collapse
Affiliation(s)
- Pei Guo
- 1Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Sik Lok Lam
- 1Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|