1
|
Liu Y. A comprehensive solute-medium interaction model for anisotropic NMR data prediction. Phys Chem Chem Phys 2025; 27:3960-3977. [PMID: 39903045 DOI: 10.1039/d4cp04136d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Prediction of order parameters and hence anisotropic NMR data of a molecule dissolved in a dilute alignment medium can provide a unique means of solving certain challenging structural elucidation problems. Here, a comprehensive prediction model based on solute-medium interactions is developed featuring the use of medium-specific parameters as only fitting variables to depict intermolecular interactions in an alignment system, including repulsive, dispersive, and electrostatic interactions between the solute and the medium polymer, as well as their interactions with implicit solvent. This model is implemented on the framework of a surface decomposition method previously designed to formalize medium-induced solute alignment without a priori knowledge of the medium structure. Having descriptors for all interactions, the new model performs significantly better than the original hard-body model when the medium and solute exhibit strong electrostatic and dispersion interactions. This model offers a general method to extract the physical properties of a medium polymer by combining the experimental NMR data of different model compounds and then use these properties to predict the NMR data of other molecules of interest.
Collapse
Affiliation(s)
- Yizhou Liu
- Analytical Research and Development, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, USA.
| |
Collapse
|
2
|
Ren GA, Li HZ, Duan YM, Wang CT, Luan YY, Jiao RQ, Liu XY. Stereoselective Synthesis of Conjugated Dienes via Aryl-to-Vinyl 1,4-Nickel Migration and Reductive Cross-Coupling. Org Lett 2025. [PMID: 39899413 DOI: 10.1021/acs.orglett.4c04604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Selective functionalization of remote C-H bonds via metal/hydride shift and cross-coupling represents a powerful strategy in modern synthetic chemistry. Herein, we report a highly efficient aryl-to-vinyl 1,4-nickel migration coupled with a reductive cross-coupling for the stereoselective synthesis of conjugated dienes. This tandem process proceeds under mild conditions, accommodates a wide range of substrates, and achieves excellent regioselectivity and Z/E stereoselectivity, offering a valuable method for constructing multisubstituted conjugated dienes.
Collapse
Affiliation(s)
- Guo-An Ren
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Hong-Zhe Li
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yi-Ming Duan
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Cui-Tian Wang
- College of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China
| | - Yu-Yong Luan
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | | | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
3
|
Xue D, Xu M, Madden MD, Lian X, Older EA, Pulliam C, Hui Y, Shang Z, Gupta G, Raja MK, Wang Y, Sardi A, Long Y, Chen H, Fan D, Bugni TS, Testerman TL, Wu Q, Li J. Discovery of a Chimeric Polyketide Family as Cancer Immunogenic Chemotherapeutic Leads. J Am Chem Soc 2025; 147:265-277. [PMID: 39731542 DOI: 10.1021/jacs.4c09582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Discovery of cancer immunogenic chemotherapeutics represents an emerging, highly promising direction for cancer treatment that uses a chemical drug to achieve the efficacy of both chemotherapy and immunotherapy. Herein, we report a high-throughput screening platform and the subsequent discovery of a new class of cancer immunogenic chemotherapeutic leads. Our platform integrates informatics-based activity metabolomics for the rapid identification of microbial natural products with both novel structures and potent activities. Additionally, we demonstrate the use of microcrystal electron diffraction (MicroED) for direct structure elucidation of lead compounds from partially purified mixtures. Using this strategy to screen geographically and phylogenetically diverse microbial metabolites against pseudomyxoma peritonei, a rare and severe cancer, we discovered a new class of leads, aspercyclicins. The aspercyclicins feature an unprecedented tightly packed polycyclic polyketide scaffold that comprises continuous fused, bridged, and spiro rings. The biogenesis of aspercyclicins involves two distinct biosynthetic pathways, leading to formation of chimeric compounds that cannot be predicted by bottom-up approaches mining natural product biosynthetic genes. With comparable potency to some clinically used anticancer drugs, aspercyclicins are active against multiple cancer cell types by inducing immunogenic cell death (ICD), including the release of damage-associated molecular patterns and subsequent phagocytosis of cancer cells. The broad-spectrum ICD-inducing activity of aspercyclicins, combined with their low toxicity to normal cells, represents a new class of potential cancer immunogenic chemotherapeutics and, particularly, the first drug lead for pseudomyxoma peritonei treatment.
Collapse
Affiliation(s)
- Dan Xue
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mingming Xu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael D Madden
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Xiaoying Lian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ethan A Older
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Conor Pulliam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Yvonne Hui
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Zhuo Shang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gourab Gupta
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Manikanda K Raja
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Yuzhen Wang
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Armando Sardi
- Department of Surgical Oncology, The Institute for Cancer Care at Mercy, Mercy Medical Center, Baltimore, Maryland 21202, United States
| | - Yaoling Long
- Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, South Carolina 29117, United States
| | - Hexin Chen
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Traci L Testerman
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Qihao Wu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
4
|
Xue D, Xu M, Madden MD, Lian X, Older EA, Pulliam C, Hui Y, Shang Z, Gupta G, Raja MK, Wang Y, Sardi A, Long Y, Chen H, Fan D, Bugni TS, Testerman TL, Wu Q, Li J. Discovery of A Chimeric Polyketide Family as Cancer Immunogenic Chemotherapeutic Leads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622009. [PMID: 39574732 PMCID: PMC11580922 DOI: 10.1101/2024.11.05.622009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Discovery of cancer immunogenic chemotherapeutics represents an emerging, highly promising direction for cancer treatment that uses a chemical drug to achieve the efficacy of both chemotherapy and immunotherapy. Herein we report a high-throughput screening platform and the subsequent discovery of a new class of cancer immunogenic chemotherapeutic leads. Our platform integrates informatics-based activity metabolomics for rapid identification of microbial natural products with both novel structures and potent activities. Additionally, we demonstrate the use of microcrystal electron diffraction (MicroED) for direct structure elucidation of the lead compounds from partially purified mixtures. Using this strategy to screen geographically and phylogenetically diverse microbial metabolites against pseudomyxoma peritonei, a rare and severe cancer, we discovered a new class of leads, aspercyclicins. The aspercyclicins feature an unprecedented tightly packed polycyclic polyketide scaffold that comprises continuous fused, bridged, and spiro rings. The biogenesis of aspercyclicins involves two distinct biosynthetic pathways, leading to formation of chimeric compounds that cannot be predicted by bottom-up approaches mining natural products biosynthetic genes. With comparable potency to some clinically used anticancer drugs, aspercyclicins are active against multiple cancer cell types by inducing immunogenic cell death (ICD), including the release of damage-associated molecular patterns and subsequent phagocytosis of cancer cells. The broad-spectrum ICD-inducing activity of aspercyclicins, combined with their low toxicity to normal cells, represents a new class of potential cancer immunogenic chemotherapeutics and particularly the first drug lead for pseudomyxoma peritonei treatment.
Collapse
|
5
|
Silva Elipe MV, Ndukwe IE, Navarro-Vázquez A. Anisotropic NMR data acquisition with a prototype 400 MHz cryogen-free NMR spectrometer. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:530-543. [PMID: 37530063 DOI: 10.1002/mrc.5380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023]
Abstract
High-temperature superconducting (HTS) materials have recently been incorporated into the construction of HTS cryogen-free magnets for nuclear magnetic resonance (NMR) spectroscopy. These HTS NMR spectrometers do not require liquid cryogens, thereby providing significant cost savings and facilitating easy integration into chemistry laboratories. However, the optimal performance of these HTS magnets against standard cryogen NMR magnets must be evaluated, especially with demanding modern NMR applications such as NMR in anisotropic media. The stability of the HTS magnets over time and their performance with complex pulse sequence experiments are the main unknown factors of this new technology. In this study, we evaluate the utility of our prototype 400 MHz cryogen-free power-driven HTS NMR spectrometer, installed in the fumehood of a chemistry laboratory, for stereochemical analysis of three commercial natural products (artemisinin, artemether, and dihydroartemisinin) via measurement of anisotropic NMR data, in particular, residual dipolar couplings. The accuracy of measurement of the anisotropic NMR data with the HTS magnet spectrometer is evaluated through the CASE-3D fitting protocol, as implemented in the Mestrenova-StereoFitter software program.
Collapse
Affiliation(s)
| | | | - Armando Navarro-Vázquez
- Departmento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
6
|
Han W, Wu Z, Zhong Z, Williams J, Jacobsen SE, Sun Z, Tang Y. Assessing the Biosynthetic Inventory of the Biocontrol Fungus Trichoderma afroharzianum T22. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37471583 DOI: 10.1021/acs.jafc.3c03240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Natural products biosynthesized from biocontrol fungi in the rhizosphere can have both beneficial and deleterious effects on plants. Herein, we performed a comprehensive analysis of natural product biosynthetic gene clusters (BGCs) from the widely used biocontrol fungus Trichoderma afroharzianum T22 (ThT22). This fungus encodes at least 64 BGCs, yet only seven compounds and four BGCs were previously characterized or mined. We correlated 21 BGCs of ThT22 with known primary and secondary metabolites through homologous BGC comparison and characterized one unknown BGC involved in the biosynthesis of eujavanicol A using heterologous expression. In addition, we performed untargeted transcriptomics and metabolic analysis to demonstrate the activation of silent ThT22 BGCs via the "one strain many compound" (OSMAC) approach. Collectively, our analysis showcases the biosynthetic capacity of ThT22 and paves the way for fully exploring the roles of natural products of ThT22.
Collapse
Affiliation(s)
- Wenyu Han
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Zhongshou Wu
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, California 90095, United States
- Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, United States
| | - Zhenhui Zhong
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, California 90095, United States
- Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, United States
| | - Jason Williams
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Steven E Jacobsen
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, California 90095, United States
- Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, United States
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, California 90095, United States
- Department of Biological Chemistry, University of California, Los Angeles, California 90095, United States
| | - Zuodong Sun
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Wang Y, Fan A, Cohen RD, Dal Poggetto G, Huang Z, Yang H, Martin GE, Sherer EC, Reibarkh M, Wang X. Unequivocal identification of two-bond heteronuclear correlations in natural products at nanomole scale by i-HMBC. Nat Commun 2023; 14:1842. [PMID: 37012241 PMCID: PMC10070429 DOI: 10.1038/s41467-023-37289-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
HMBC is an essential NMR experiment for determining multiple bond heteronuclear correlations in small to medium-sized organic molecules, including natural products, yet its major limitation is the inability to differentiate two-bond from longer-range correlations. There have been several attempts to address this issue, but all reported approaches suffer various drawbacks, such as restricted utility and poor sensitivity. Here we present a sensitive and universal methodology to identify two-bond HMBC correlations using isotope shifts, referred to as i-HMBC (isotope shift detection HMBC). Experimental utility was demonstrated at the sub-milligram / nanomole scale with only a few hours of acquisition time required for structure elucidation of several complex proton-deficient natural products, which could not be fully elucidated by conventional 2D NMR experiments. Because i-HMBC overcomes the key limitation of HMBC without significant reduction in sensitivity or performance, i-HMBC can be used as a complement to HMBC when unambiguous identifications of two-bond correlations are needed.
Collapse
Affiliation(s)
- Yunyi Wang
- Analytical Research & Development, Merck & Co. Inc, Rahway, NJ, 07065, USA
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Ryan D Cohen
- Analytical Research & Development, Merck & Co. Inc, Rahway, NJ, 07065, USA
| | | | - Zheng Huang
- Process Research & Development, Merck & Co. Inc, Rahway, NJ, 07065, USA
| | - Haifeng Yang
- Process Research & Development, Merck & Co. Inc, Rahway, NJ, 07065, USA
| | - Gary E Martin
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, 07079, USA
| | - Edward C Sherer
- Analytical Research & Development, Merck & Co. Inc, Rahway, NJ, 07065, USA
| | - Mikhail Reibarkh
- Analytical Research & Development, Merck & Co. Inc, Rahway, NJ, 07065, USA.
| | - Xiao Wang
- Analytical Research & Development, Merck & Co. Inc, Rahway, NJ, 07065, USA.
| |
Collapse
|
8
|
Cohen RD, Wood JS, Lam YH, Buevich AV, Sherer EC, Reibarkh M, Williamson RT, Martin GE. DELTA50: A Highly Accurate Database of Experimental 1H and 13C NMR Chemical Shifts Applied to DFT Benchmarking. Molecules 2023; 28:molecules28062449. [PMID: 36985422 PMCID: PMC10051451 DOI: 10.3390/molecules28062449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Density functional theory (DFT) benchmark studies of 1H and 13C NMR chemical shifts often yield differing conclusions, likely due to non-optimal test molecules and non-standardized data acquisition. To address this issue, we carefully selected and measured 1H and 13C NMR chemical shifts for 50 structurally diverse small organic molecules containing atoms from only the first two rows of the periodic table. Our NMR dataset, DELTA50, was used to calculate linear scaling factors and to evaluate the accuracy of 73 density functionals, 40 basis sets, 3 solvent models, and 3 gauge-referencing schemes. The best performing DFT methodologies for 1H and 13C NMR chemical shift predictions were WP04/6-311++G(2d,p) and ωB97X-D/def2-SVP, respectively, when combined with the polarizable continuum solvent model (PCM) and gauge-independent atomic orbital (GIAO) method. Geometries should be optimized at the B3LYP-D3/6-311G(d,p) level including the PCM solvent model for the best accuracy. Predictions of 20 organic compounds and natural products from a separate probe set had root-mean-square deviations (RMSD) of 0.07 to 0.19 for 1H and 0.5 to 2.9 for 13C. Maximum deviations were less than 0.5 and 6.5 ppm for 1H and 13C, respectively.
Collapse
Affiliation(s)
- Ryan D Cohen
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| | - Jared S Wood
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28409, USA
| | - Yu-Hong Lam
- Department of Computational and Structural Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Alexei V Buevich
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Edward C Sherer
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - R Thomas Williamson
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28409, USA
| | - Gary E Martin
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
9
|
Crouch RC, Pelmuş M, Raab JG, Tischenko E, Frey M, Wang Y, Reibarkh M, Williamson RT, Martin GE. J-modulated 19 F- and 1 H-detected dual-optimized inverted 1 J CC 1,n-ADEQUATE: A universal ADEQUATE experiment. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:169-179. [PMID: 36349476 DOI: 10.1002/mrc.5324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The recently reported 19 F-detected dual-optimized inverted 1 JCC 1,n-ADEQUATE experiment and the previously reported 1 H-detected version have been modified to incorporate J-modulation, making it feasible to acquire all 1,1- and 1,n-ADEQUATE correlations as well as 1 JCC and n JCC homonuclear scalar couplings in a single experiment. The experiments are demonstrated using N,N-dimethylamino-2,5,6-trifluoro-3,4-phthalonitrile and N,N-dimethylamino-3,4-phthalonitrile.
Collapse
Affiliation(s)
- Ronald C Crouch
- Analytical Instruments, JEOL USA Inc., Peabody, Massachusetts, USA
| | - Marius Pelmuş
- Department of Chemistry, Seton Hall University, South Orange, New Jersey, USA
| | - Jeffrey G Raab
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Evgeny Tischenko
- Analytical Instruments, JEOL USA Inc., Peabody, Massachusetts, USA
| | - Michael Frey
- Analytical Instruments, JEOL USA Inc., Peabody, Massachusetts, USA
| | - Yunyi Wang
- Analytical Research and Development, Merck and Co., Inc., Rahway, New Jersey, USA
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck and Co., Inc., Rahway, New Jersey, USA
| | - R Thomas Williamson
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Gary E Martin
- Department of Chemistry, Seton Hall University, South Orange, New Jersey, USA
| |
Collapse
|
10
|
Kuai CS, Teng BH, An DL, Zhao Y, Wu XF. Palladium-Catalyzed Regioselective Carbonylation of 2-Trifluoromethyl-1,3-enynes to Multisubstituted Conjugated Dienes. Org Lett 2023; 25:682-687. [PMID: 36656103 DOI: 10.1021/acs.orglett.2c04331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this communication, a palladium-catalyzed regio- and stereoselective carbonylation of 2-trifluoromethyl-1,3-enynes to afford multisubstituted conjugated dienes has been realized. This protocol features excellent regio- and exclusive (E)-stereoselectivity and a broad substrate scope with both amines and alcohols as the suitable reaction partners and has shown promising functional group tolerance.
Collapse
Affiliation(s)
- Chang-Sheng Kuai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing-Hong Teng
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China.,School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Da-Lie An
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
11
|
Xiang XB, Wang S, Xu T, Chen S. Palladium(II)-Catalyzed Regioselective Hydroesterification of 1,3-Conjugated Enynes with Aryl Formates. Org Lett 2023; 25:587-591. [PMID: 36656106 DOI: 10.1021/acs.orglett.2c04103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An effective Pd-catalyzed regioselective hydroesterification of 1,3-conjugated enynes with aryl formates was developed. Under the Pd-CyDPEphos catalytic system, the conjugated enynes reacted with phenyl formates and selectively provided the 2-ester-substituted 1,3-dienes in good yields with excellent regioselectivities.
Collapse
Affiliation(s)
- Xia-Bin Xiang
- Division of Applied Chemistry, School of Natural Sciences, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Sheng Wang
- Division of Applied Chemistry, School of Natural Sciences, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Teng Xu
- Division of Applied Chemistry, School of Natural Sciences, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Shanshan Chen
- Division of Applied Chemistry, School of Natural Sciences, Anhui Agricultural University, Hefei, Anhui 230036, P. R. China
| |
Collapse
|
12
|
Guo R, Li G, Zhang Z, Peng X. Structures and Biological Activities of Secondary Metabolites from Trichoderma harzianum. Mar Drugs 2022; 20:701. [PMID: 36355024 PMCID: PMC9696559 DOI: 10.3390/md20110701] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2023] Open
Abstract
The biocontrol fungus Trichoderma harzianum, from both marine and terrestrial environments, has attracted considerable attention. T. harzianum has a tremendous potential to produce a variety of bioactive secondary metabolites (SMs), which are an important source of new herbicides and antibiotics. This review prioritizes the SMs of T. harzianum from 1988 to June 2022, and their relevant biological activities. Marine-derived SMs, especially terpenoids, polyketides, and macrolides compounds, occupy a significant proportion of natural products from T. harzianum, deserving more of our attention.
Collapse
Affiliation(s)
- Rui Guo
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Zhao Zhang
- Department of Hand and Foot Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaoping Peng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|
13
|
Hwang GJ, Jang M, Son S, Kim GS, Lee B, Heo KT, Kim GJ, Choi H, Hur JS, Jang JP, Ko SK, Hong YS, Ahn JS, Jang JH. Ulleungdolin, a Polyketide-Peptide Hybrid Bearing a 2,4-Di- O-methyl-β-d-antiarose from Streptomyces sp. 13F051 Co-cultured with Leohumicola minima 15S071. JOURNAL OF NATURAL PRODUCTS 2022; 85:2445-2453. [PMID: 36197044 DOI: 10.1021/acs.jnatprod.2c00682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new secondary metabolite, ulleungdolin (1), was isolated from the co-culture of an actinomycete, Streptomyces sp. 13F051, and a fungus, Leohumicola minima 15S071. Based on the NMR, UV, and MS data, it was deduced that the planar structure of 1 comprised an isoindolinone (IsoID) with an octanoic acid, a tripeptide, and a sugar. The tripeptide has the unprecedented amino acids norcoronamic acid, 3-hydroxy-glutamine, and 4-hydroxy-phenylglycine and is linked by a C-N bond with IsoID. The absolute configurations were determined by chemical derivatization, extensive spectroscopic methods, and electronic circular dichroism calculations and supported by bioinformatic analyses. Bioactivity evaluation studies indicated that 1 had an antimigration effect on MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Gwi Ja Hwang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, South Korea
| | - Mina Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Sangkeun Son
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Gil Soo Kim
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, South Korea
| | - Byeongsan Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Kyung Taek Heo
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, South Korea
| | - Geum Jin Kim
- College of Pharmacy and Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Hyukjae Choi
- College of Pharmacy and Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, South Korea
| | - Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
| | - Sung-Kyun Ko
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, South Korea
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, South Korea
| | - Jong Seog Ahn
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, South Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, South Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
14
|
Zeng YZ, Wang JB, Qin HL. A reductive dehalogenative process for chemo- and stereoselective synthesis of 1,3-dienylsulfonyl fluorides. Org Biomol Chem 2022; 20:7776-7780. [PMID: 36168842 DOI: 10.1039/d2ob01434c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the mild and efficient synthesis of 1,3-dienylsulfonyl fluorides was developed via dehalogenation of α-halo-1,3-dienylsulfonyl fluorides in the presence of zinc powder and acetic acid, achieving exclusive chemo- and stereoselectivities. This protocol was successfully applied to the synthesis of heterocyclic dienylsulfonyl fluorides and polyene sulfonyl fluoride.
Collapse
Affiliation(s)
- Yu-Zhen Zeng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Jian-Bai Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China. .,Changyi Tianyu Pharm. Co., Ltd., Weifang 261399, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
15
|
Aniebok V, Shingare RD, Wei‐Lee H, Johnstone TC, MacMillan JB. Biomimetic Total Synthesis and Investigation of the Non-Enzymatic Chemistry of Oxazinin A. Angew Chem Int Ed Engl 2022; 61:e202208029. [PMID: 35881566 PMCID: PMC9479274 DOI: 10.1002/anie.202208029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/07/2022]
Abstract
We report the first total synthesis of an antimycobacterial natural product oxazinin A that takes advantage of a multi-component cascade reaction of anthranilic acid and a precursor polyketide containing an aldehyde. The route utilized for the synthesis of the pseudodimeric oxazinin A validates a previously proposed biosynthetic mechanism, invoking a non-enzymatic pathway to the complex molecule. We found a 76 : 10 : 9 : 5 ratio of oxazinin diastereomers from the synthetic cascade, which is an identical match to that found in the fermentation media from the fungus Eurotiomycetes 110162. Further investigation of the non-enzymatic formation of oxazinin A using 1 H-15 N HMBC NMR spectroscopy allowed for a plausible determination of the stepwise mechanism. The developed route is highly amenable for the synthesis of diverse sets of analogs around the oxazinin scaffold to study structure-activity relationships (SAR).
Collapse
Affiliation(s)
- Victor Aniebok
- Department of Chemistry and BiochemistryUC Santa CruzSanta CruzCA 95064USA
| | - Rahul D. Shingare
- Department of Chemistry and BiochemistryUC Santa CruzSanta CruzCA 95064USA
| | - Hsiau Wei‐Lee
- Department of Chemistry and BiochemistryUC Santa CruzSanta CruzCA 95064USA
| | | | - John B. MacMillan
- Department of Chemistry and BiochemistryUC Santa CruzSanta CruzCA 95064USA
| |
Collapse
|
16
|
Bouthillette LM, Aniebok V, Colosimo DA, Brumley D, MacMillan JB. Nonenzymatic Reactions in Natural Product Formation. Chem Rev 2022; 122:14815-14841. [PMID: 36006409 DOI: 10.1021/acs.chemrev.2c00306] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biosynthetic mechanisms of natural products primarily depend on systems of protein catalysts. However, within the field of biosynthesis, there are cases in which the inherent chemical reactivity of metabolic intermediates and substrates evades the involvement of enzymes. These reactions are difficult to characterize based on their reactivity and occlusion within the milieu of the cellular environment. As we continue to build a strong foundation for how microbes and higher organisms produce natural products, therein lies a need for understanding how protein independent or nonenzymatic biosynthetic steps can occur. We have classified such reactions into four categories: intramolecular, multicomponent, tailoring, and light-induced reactions. Intramolecular reactions is one of the most well studied in the context of biomimetic synthesis, consisting of cyclizations and cycloadditions due to the innate reactivity of the intermediates. There are two subclasses that make up multicomponent reactions, one being homologous multicomponent reactions which results in dimeric and pseudodimeric natural products, and the other being heterologous multicomponent reactions, where two or more precursors from independent biosynthetic pathways undergo a variety of reactions to produce the mature natural product. The third type of reaction discussed are tailoring reactions, where postmodifications occur on the natural products after the biosynthetic machinery is completed. The last category consists of light-induced reactions involving ecologically relevant UV light rather than high intensity UV irradiation that is traditionally used in synthetic chemistry. This review will cover recent nonenzymatic biosynthetic mechanisms and include sources for those reviewed previously.
Collapse
Affiliation(s)
- Leah M Bouthillette
- Deparment of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Victor Aniebok
- Deparment of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Dominic A Colosimo
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 United States
| | - David Brumley
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 United States
| | - John B MacMillan
- Deparment of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 United States
| |
Collapse
|
17
|
Li Y, Zhang L, Wang W, Liu Y, Sun D, Li H, Chen L. A review on natural products with cage-like structure. Bioorg Chem 2022; 128:106106. [PMID: 36037599 DOI: 10.1016/j.bioorg.2022.106106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
Natural products with diverse structures and significant biological activities are essential sources of drug lead compounds, and play an important role in the research and development of innovative drugs. Cage-like compounds have various structures and are widely distributed in nature, especially caged xanthones isolated from Garcinia genus, paeoniflorin and its derivatives isolated from Paeonia lactiflora Pall, tetrodotoxin (TTX) and its derivatives, and so on. In recent years, the development and utilization of cage-like compounds have been a research hotspot in chemistry, biology and other fields due to their special structures and remarkable biological activities. In this review, we mainly summarized the cage-like compounds with various structures found and isolated from natural drugs since 1956, summarized its broad biological activities, and introduced the progress in the biosynthesis of some compounds, so as to provide a reference for the discovery of more novel compounds, and the development and application of innovative drugs.
Collapse
Affiliation(s)
- Yutong Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linlin Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wang Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
18
|
Aniebok V, Shingare R, Wei-Lee H, Johnstone T, MacMillan J. Biomimetic Total Synthesis and Investigation of the Non‑Enzymatic Chemistry of Oxazinin A. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Victor Aniebok
- University of California Santa Cruz Chemistry and Biochemistry UNITED STATES
| | - Rahul Shingare
- University of California Santa Cruz Chemistry and Biochemistry UNITED STATES
| | - Hsiau Wei-Lee
- University of California Santa Cruz Chemistry and Biochemistry UNITED STATES
| | - Timothy Johnstone
- University of California Santa Cruz Chemistry and Biochemistry UNITED STATES
| | - John MacMillan
- University of California Santa Cruz Chemistry and Biochemistry 1156 High St. 95064 Santa Cruz UNITED STATES
| |
Collapse
|
19
|
Yan W, Ji W, Ping C, Zhang T, Li Y, Wang B, Chen T, He B, Ye Y. (+)- and (-)-trichodermatrione A: a pair of enantiomers with a cyclobutane-containing skeleton from the endophytic fungus Trichoderma sp. EFT2. PHYTOCHEMISTRY 2022; 196:113087. [PMID: 35026690 DOI: 10.1016/j.phytochem.2022.113087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
(±)-trichodermatrione A, a pair of cyclobutane-containing enantiomers with an undescribed tricyclic 6/4/6 skeleton, was isolated from Trichoderma sp. EFT2, an endophytic fungus from Euonymus fortunei (Turcz.) Hand.-Mazz (Celastraceae). The racemates were separated by chiral HPLC with the structures elucidated by a combination of MS, NMR, ECD calculation and X-ray crystallography analyses. (±)- trichodermatrione A and enantiomers were found to be antibacterial against phytopathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc).
Collapse
Affiliation(s)
- Wei Yan
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Wenxia Ji
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Chuan Ping
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Tianyi Zhang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Yu Li
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Biao Wang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Tianyu Chen
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Bo He
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Yonghao Ye
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China.
| |
Collapse
|
20
|
Pacheco-Tapia R, Vásquez-Ocmín P, Duthen S, Ortiz S, Jargeat P, Amasifuen C, Haddad M, Vansteelandt M. Chemical modulation of the metabolism of an endophytic fungal strain of Cophinforma mamane using epigenetic modifiers and amino-acids. Fungal Biol 2022; 126:385-394. [DOI: 10.1016/j.funbio.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/03/2022] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
|
21
|
Tang Y, Jingchun L, Shuang X. Biomimetic Diels-Alder Reactions in Natural Product Synthesis: A Personal Retrospect. Synlett 2022. [DOI: 10.1055/a-1748-4744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nature has been recognized for her super capability of constructing complex molecules with remarkable efficiency and elegancy. Among nature’s versatile synthetic toolkits, Diels-Alder reaction is particularly attractive since it allows for rapid generation of molecular complexity from simple precursors. For natural products biosynthetically formed through Diels-Alder reactions, the most straightforward way to access them should build on biomimetic Diels-Alder reactions. However, the implementation of biomimetic Diels-Alder reactions in a laboratory setting may encounter considerable challenges, particularly for those suffering from complicated reactivity and selectivity issues. Indeed, the translation of a biosynthetic hypothesis into a real biomimetic synthesis entails the orchestrated combination of nature’s inspiration and chemist’s rational design. In this account, we will briefly summarize our recent progress on the application of biomimetic Diels-Alder reactions in natural product synthesis. As shown in the discussed stories, rational manipulation of the structures of biosynthetic precursors plays a crucial role for the successful implementation of biomimetic Diels-Alder reactions.
1 Introduction
2 Biomimetic Synthesis of Rossinone B
3 Biomimetic Synthesis of Homodimericin A
4 Biomimetic Synthesis of Polycyclic and Dimeric Xanthanolides
5 Biomimetic Synthesis of Periconiasins and Pericoannosins
6 Biomimetic Synthesis of Merocyctochalasans
7 Conclusion and outlook
Collapse
Affiliation(s)
- Yefeng Tang
- Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Liu Jingchun
- Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xi Shuang
- Department of Pharmacology & Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Selective Ni-catalyzed cross-electrophile coupling of alkynes, fluoroalkyl halides, and vinyl halides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Wu M, Wei H, Ma K, Cui P, Zhu S, Lai D, Ren J, Wang W, Fan A, Lin W, Su H. ThpacC Acts as a Positive Regulator of Homodimericin A Biosynthesis and Antifungal Activities of Trichoderma harzianum 3.9236. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12695-12704. [PMID: 34677054 DOI: 10.1021/acs.jafc.1c04330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Pal/Rim pathway and its key transcription factor PacC play important roles in fungal adaptation to ambient pH regarding growth, secondary metabolism, and virulence. However, the effect of PacC on the secondary metabolism of the important biocontrol fungus Trichoderma harzianum remains elusive. To answer this question, ThpacC deletion (KO-ThpacC) and overexpression (OE-ThpacC) mutants of T. harzianum 3.9236 were constructed. Transcriptomic analysis of T. harzianum and KO-ThpacC suggested that ThpacC acted as both a positive and a negative regulator for secondary metabolite (SM) production. Further investigation revealed that deletion of ThpacC abolished homodimericin A and 8-epi-homodimericin A production. Moreover, ThpacC plays a role in the antagonism of T. harzianum against Sclerotinia sclerotiorum. 8-epi-Homodimericin A demonstrated moderate inhibitory activity against S. sclerotiorum. Our results contribute to a deeper understanding of the ThpacC function on SM production and the antifungal activity of T. harzianum.
Collapse
Affiliation(s)
- Mengyue Wu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, Beijing 100029, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Huiling Wei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, Beijing 100029, P. R. China
| | - Ke Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Peiqi Cui
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, Beijing 100029, P. R. China
| | - Shaozhou Zhu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, Beijing 100029, P. R. China
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Aili Fan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, Beijing 100029, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, P. R. China
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, Beijing 100029, P. R. China
| |
Collapse
|
24
|
Elyashberg M, Argyropoulos D. Computer Assisted Structure Elucidation (CASE): Current and future perspectives. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:669-690. [PMID: 33197069 DOI: 10.1002/mrc.5115] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
The first efforts for the development of methods for Computer-Assisted Structure Elucidation (CASE) were published more than 50 years ago. CASE expert systems based on one-dimensional (1D) and two-dimensional (2D) Nuclear Magnetic Resonance (NMR) data have matured considerably by now. The structures of a great number of complex natural products have been elucidated and/or revised using such programs. In this article, we discuss the most likely directions in which CASE will evolve. We act on the premise that a synergistic interaction exists between CASE, new NMR experiments, and methods of computational chemistry, which are continuously being improved. The new developments in NMR experiments (long-range correlation experiments, pure-shift methods, coupling constants measurement and prediction, residual dipolar couplings [RDCs]), and residual chemical shift anisotropies [RCSAs], evolution of density functional theory (DFT), and machine learning algorithms will have an influence on CASE systems and vice versa. This is true also for new techniques for chemical analysis (Atomic Force Microscopy [AFM], "crystalline sponge" X-ray analysis, and micro-Electron Diffraction [micro-ED]), which will be used in combination with expert systems. We foresee that CASE will be utilized widely and become a routine tool for NMR spectroscopists and analysts in academic and industrial laboratories. We believe that the "golden age" of CASE is still in the future.
Collapse
|
25
|
Kong D, Hu B, Yang M, Xia H, Chen D. Cobalt-Catalyzed (E)-Selective Hydrosilylation of 1,3-Enynes for the Synthesis of 1,3-Dienylsilanes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Degong Kong
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Bowen Hu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Min Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Dafa Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
26
|
Nazarski RB. Summary of DFT calculations coupled with current statistical and/or artificial neural network (ANN) methods to assist experimental NMR data in identifying diastereomeric structures. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Bae M, Mevers E, Pishchany G, Whaley SG, Rock CO, Andes DR, Currie CR, Pupo MT, Clardy J. Chemical Exchanges between Multilateral Symbionts. Org Lett 2021; 23:1648-1652. [PMID: 33591189 DOI: 10.1021/acs.orglett.1c00068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein is a report on the molecular exchange occurring between multilateral symbiosis partners-a tit-for-tat exchange that led to the characterization of two new metabolites, conocandin B (fungal-derived) and dentigerumycin F (bacterial-derived). The structures were determined by NMR, mass spectrometry, genomic analysis, and chemical derivatizations. Conocandin B exhibits antimicrobial activity against both the bacterial symbionts of fungus-growing ant and human pathogenic strains by selectively inhibiting FabH, thus disrupting fatty acid biosynthesis.
Collapse
Affiliation(s)
- Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Mevers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Gleb Pishchany
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sarah G Whaley
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Monica T Pupo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
Soengas RG, Rodríguez-Solla H. Modern Synthetic Methods for the Stereoselective Construction of 1,3-Dienes. Molecules 2021; 26:molecules26020249. [PMID: 33418882 PMCID: PMC7825119 DOI: 10.3390/molecules26020249] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/16/2022] Open
Abstract
The 1,3-butadiene motif is widely found in many natural products and drug candidates with relevant biological activities. Moreover, dienes are important targets for synthetic chemists, due to their ability to give access to a wide range of functional group transformations, including a broad range of C-C bond-forming processes. Therefore, the stereoselective preparation of dienes have attracted much attention over the past decades, and the search for new synthetic protocols continues unabated. The aim of this review is to give an overview of the diverse methodologies that have emerged in the last decade, with a focus on the synthetic processes that meet the requirements of efficiency and sustainability of modern organic chemistry.
Collapse
|
29
|
Wang K, Chen S, Li Y, Li D, Bao H. Iron-Catalyzed Decarboxylative Heck-Type Alkylation of Conjugate 1,3-Dienes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
|
31
|
Zou Y, Yang S, Sanders JN, Li W, Yu P, Wang H, Tang Z, Liu W, Houk KN. Computational Investigation of the Mechanism of Diels-Alderase PyrI4. J Am Chem Soc 2020; 142:20232-20239. [PMID: 33190496 DOI: 10.1021/jacs.0c10813] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We studied the mechanisms of activation and stereoselectivity of a monofunctional Diels-Alderase (PyrI4)-catalyzed intramolecular Diels-Alder reaction that leads to formation of the key spiro-tetramate moiety in the biosynthesis of the pyrroindomycin family of natural products. Key activation effects of PyrI4 include acid catalysis and an induced-fit mechanism that cooperate with the unique "lid" feature of PyrI4 to stabilize the Diels-Alder transition state. PyrI4 enhances the intrinsic Diels-Alder stereoselectivity of the substrate and leads to stereospecific formation of the product.
Collapse
Affiliation(s)
- Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Song Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Wei Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Peiyuan Yu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Hongbo Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
32
|
Fernandes RA, Kumar P, Choudhary P. Evolution of Strategies in Protecting‐Group‐Free Synthesis of Natural Products: A Recent Update. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rodney A. Fernandes
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| | - Praveen Kumar
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| | - Priyanka Choudhary
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai, Powai Maharashtra India
| |
Collapse
|
33
|
Structure elucidation of small organic molecules by contemporary computational chemistry methods. Arch Pharm Res 2020; 43:1114-1127. [DOI: 10.1007/s12272-020-01277-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
|
34
|
Lesot P, Gil RR, Berdagué P, Navarro-Vázquez A. Deuterium Residual Quadrupolar Couplings: Crossing the Current Frontiers in the Relative Configuration Analysis of Natural Products. JOURNAL OF NATURAL PRODUCTS 2020; 83:3141-3148. [PMID: 32970418 DOI: 10.1021/acs.jnatprod.0c00745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The determination of the 3D structure (configuration and preferred conformation) of complex natural and synthetic organic molecules is a long-standing but still challenging task for chemists, with various implications in pharmaceutical sciences whether or not these substances have specific bioactivities. Nuclear magnetic resonance (NMR) in aligning media, either lyotropic liquid crystals (LLCs) or polymer gels, in combination with molecular modeling is a unique framework for solving complex structural problems whose analytical wealth lies in the establishment of nonlocal structural correlations. As an alternative to the already well-established anisotropic NMR parameters, such as RDCs (residual dipolar couplings) and RCSAs (residual chemical shift anisotropies), it is shown here that deuterium residual quadrupolar couplings (2H-RQCs) can be extracted from 2H 2D-NMR spectra recorded at the natural abundance level in samples oriented in a homopolypeptide LLCs (poly-γ-benzyl-l-glutamate (PBLG)). These 2H-RQCs were successfully used to address nontrivial structural problems in organic molecules. The performance and scope of this new tool is examined for two natural chiral compounds of pharmaceutical interest (strychnine and artemisinin). This is the first report in which the 3D structure/relative configuration of complex bioactive molecules is unambiguously determined using only 2H-RQCs, which, in this case, are at 2H natural abundance.
Collapse
Affiliation(s)
- Philippe Lesot
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15 rue du Doyen, Georges Poitou, F-91405 Orsay, France
- Centre National de la Recherche Scientifique (CNRS), 3 rue Michel Ange, F-75016 Paris, France
| | - Roberto R Gil
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Philippe Berdagué
- Université Paris-Saclay, UFR d'Orsay, RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Bât. 410, 15 rue du Doyen, Georges Poitou, F-91405 Orsay, France
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, CEP 50.740-540 Recife, Pernambuco, Brazil
| |
Collapse
|
35
|
Pang G, Sun T, Yu Z, Yuan T, Liu W, Zhu H, Gao Q, Yang D, Kubicek CP, Zhang J, Shen Q. Azaphilones biosynthesis complements the defence mechanism of
Trichoderma guizhouense
against oxidative stress. Environ Microbiol 2020; 22:4808-4824. [DOI: 10.1111/1462-2920.15246] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Guan Pang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
- National Engineering Research Center for Organic‐Based Fertilizers Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Tingting Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
- National Engineering Research Center for Organic‐Based Fertilizers Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Zhenzhong Yu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
- National Engineering Research Center for Organic‐Based Fertilizers Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Tao Yuan
- The Laboratory of Effective Substances of Jiangxi Genuine Medicinal Materials, College of Life Sciences Jiangxi Normal University Nanchang Jiang xi 330022 China
| | - Wei Liu
- Key Lab of Natural Product Chemistry and Application at Universities of Education Department of Xinjiang Uygur Autonomous Region Yili Normal University Yining Xinjiang 835000 China
| | - Hong Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
- National Engineering Research Center for Organic‐Based Fertilizers Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Qi Gao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
- National Engineering Research Center for Organic‐Based Fertilizers Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Dongqing Yang
- Department of Public Health Nanjing University of Chinese Medicine Nanjing Jiangsu 210023 China
| | - Christian P. Kubicek
- Institute of Chemical Environmental and Bioscience Engineering TU Wien Vienna 1060 Austria
| | - Jian Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
- National Engineering Research Center for Organic‐Based Fertilizers Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
- National Engineering Research Center for Organic‐Based Fertilizers Nanjing Agricultural University Nanjing Jiangsu 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization Nanjing Agricultural University Nanjing Jiangsu 210095 China
| |
Collapse
|
36
|
Sun M, Chen W, Wu H, Xia X, Yang J, Wang L, Shen G, Wang Z. Vinylogous Elimination/C-H Functionalization/Allylation Cascade Reaction of Allenoate Adducts: Synthesis of Ring-Fused Dihydropyridinones. Org Lett 2020; 22:8313-8319. [PMID: 33044826 DOI: 10.1021/acs.orglett.0c02956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A palladium-catalyzed cascade reaction of β'-allenoate adducts with aryl/heteroaryl carboxamides through a vinylogous elimination/C-H functionalization/intramolecular allylation reaction sequence has been developed with high Z stereoselectivity. Various ring-fused dihydropyridinones bearing an α,β-unsaturated ester substituent are obtained. It is the first example of application of the allenoate adducts to C-H functionalization annulations as practical precursors of hard-to-get functionalized electron-deficient 1,3-butadienes. Using air as the terminal oxidant also shows a great advantage in environmental friendliness.
Collapse
Affiliation(s)
- Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Weida Chen
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Xiangyu Xia
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Guodong Shen
- School of Chemistry and Chemical Engineering, School of Pharmacy, Liaocheng University, Liaocheng 252000, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| |
Collapse
|
37
|
Zhang ZW, Wang SM, Fang WY, Lekkala R, Qin HL. Protocol for Stereoselective Construction of Highly Functionalized Dienyl Sulfonyl Fluoride Warheads. J Org Chem 2020; 85:13721-13734. [DOI: 10.1021/acs.joc.0c01877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zai-Wei Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Shi-Meng Wang
- School of Life Science, Wuchang University of Technology, Wuhan 430223, P. R. China
| | - Wan-Yin Fang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Ravindar Lekkala
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
38
|
Ndukwe IE, Lam YH, Pandey SK, Haug BE, Bayer A, Sherer EC, Blinov KA, Williamson RT, Isaksson J, Reibarkh M, Liu Y, Martin GE. Unequivocal structure confirmation of a breitfussin analog by anisotropic NMR measurements. Chem Sci 2020; 11:12081-12088. [PMID: 34094423 PMCID: PMC8162999 DOI: 10.1039/d0sc03664a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Structural features of proton-deficient heteroaromatic natural products, such as the breitfussins, can severely complicate their characterization by NMR spectroscopy. For the breitfussins in particular, the constitution of the five-membered oxazole central ring cannot be unequivocally established via conventional NMR methods when the 4′-position is halogenated. The level of difficulty is exacerbated by 4′-iodination, as the accuracy with which theoretical NMR parameters are determined relies extensively on computational treatment of the relativistic effects of the iodine atom. It is demonstrated in the present study, that the structure of a 4′-iodo breitfussin analog can be unequivocally established by anisotropic NMR methods, by adopting a reduced singular value decomposition (SVD) protocol that leverages the planar structures exhibited by its conformers. Structural features of proton-deficient heteroaromatic natural products, such as the breitfussins, can severely complicate their characterization by NMR spectroscopy.![]()
Collapse
Affiliation(s)
- Ikenna E Ndukwe
- Analytical Research & Development, (Rahway), Merck & Co. Inc. Kenilworth NJ USA
| | - Yu-Hong Lam
- Computational and Structural Chemistry, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Sunil K Pandey
- Department of Chemistry and Centre for Pharmacy, University of Bergen Allégaten 41 NO-5020 Bergen Norway
| | - Bengt E Haug
- Department of Chemistry and Centre for Pharmacy, University of Bergen Allégaten 41 NO-5020 Bergen Norway
| | - Annette Bayer
- Department of Chemistry, UiT the Arctic University of Tromsø NO-9037 Tromsø Norway
| | - Edward C Sherer
- Analytical Research & Development, (Rahway), Merck & Co. Inc. Kenilworth NJ USA
| | - Kirill A Blinov
- MestReLab Research S. L. Santiago de Compostela A Coruna 15706 Spain
| | - R Thomas Williamson
- Analytical Research & Development, (Rahway), Merck & Co. Inc. Kenilworth NJ USA
| | - Johan Isaksson
- Department of Chemistry, UiT the Arctic University of Tromsø NO-9037 Tromsø Norway
| | - Mikhail Reibarkh
- Analytical Research & Development, (Rahway), Merck & Co. Inc. Kenilworth NJ USA
| | - Yizhou Liu
- Analytical Research & Development, (Rahway), Merck & Co. Inc. Kenilworth NJ USA
| | - Gary E Martin
- Analytical Research & Development, (Rahway), Merck & Co. Inc. Kenilworth NJ USA
| |
Collapse
|
39
|
Qin S, Jiang Y, Sun H, Liu H, Zhang A, Lei X. Measurement of Residual Dipolar Couplings of Organic Molecules in Multiple Solvent Systems Using a Liquid‐Crystalline‐Based Medium. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Si‐Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Yan Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Han Sun
- Section of Structural Biology Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) 13125 Berlin Germany
| | - Han Liu
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| | - Ai‐Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Xinxiang Lei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| |
Collapse
|
40
|
Qin S, Jiang Y, Sun H, Liu H, Zhang A, Lei X. Measurement of Residual Dipolar Couplings of Organic Molecules in Multiple Solvent Systems Using a Liquid‐Crystalline‐Based Medium. Angew Chem Int Ed Engl 2020; 59:17097-17103. [DOI: 10.1002/anie.202007243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Si‐Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Yan Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Han Sun
- Section of Structural Biology Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) 13125 Berlin Germany
| | - Han Liu
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| | - Ai‐Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Xinxiang Lei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| |
Collapse
|
41
|
Ndukwe IE, Wang X, Lam NYS, Ermanis K, Alexander KL, Bertin MJ, Martin GE, Muir G, Paterson I, Britton R, Goodman JM, Helfrich EJN, Piel J, Gerwick WH, Williamson RT. Synergism of anisotropic and computational NMR methods reveals the likely configuration of phormidolide A. Chem Commun (Camb) 2020; 56:7565-7568. [PMID: 32520016 PMCID: PMC7436192 DOI: 10.1039/d0cc03055d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Characterization of the complex molecular scaffold of the marine polyketide natural product phormidolide A represents a challenge that has persisted for nearly two decades. In light of discordant results arising from recent synthetic and biosynthetic reports, a rigorous study of the configuration of phormidolide A was necessary. This report outlines a synergistic effort employing computational and anisotropic NMR investigation, that provided orthogonal confirmation of the reassigned side chain, as well as supporting a further correction of the C7 stereocenter.
Collapse
Affiliation(s)
- Ikenna E Ndukwe
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Xiao Wang
- Analytical Research & Development, Merck & Co. Inc, Rahway, NJ, USA
| | - Nelson Y S Lam
- University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kristaps Ermanis
- University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kelsey L Alexander
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA and Department of Chemistry, University of California, San Diego, CA, USA
| | - Matthew J Bertin
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Gary E Martin
- Department of Chemistry, Seton Hall University, South Orange, NJ, USA
| | - Garrett Muir
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Ian Paterson
- University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | | | - Eric J N Helfrich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - William H Gerwick
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - R Thomas Williamson
- Department of Chemistry & Biochemistry, University of North Carolina Wilmington, Wilmington, NC, USA.
| |
Collapse
|
42
|
Roginkin MS, Ndukwe IE, Craft DL, Williamson RT, Reibarkh M, Martin GE, Rovnyak D. Developing nonuniform sampling strategies to improve sensitivity and resolution in 1,1-ADEQUATE experiments. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:625-640. [PMID: 31912914 DOI: 10.1002/mrc.4995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Nonuniform sampling (NUS) strategies are developed for acquiring highly resolved 1,1-ADEQUATE spectra, in both conventional and homodecoupled (HD) variants with improved sensitivity. Specifically, the quantile-directed and Poisson gap methods were critically compared for distributing the samples nonuniformly, and the quantile schedules were further optimized for weighting. Both maximum entropy and iterative soft thresholding spectral estimation algorithms were evaluated. All NUS approaches were robust when the degree of data reduction is moderate, on the order of a 50% reduction of sampling points. Further sampling reduction by NUS is facilitated by using weighted schedules designed by the quantile method, which also suppresses sampling noise well. Seed independence and the ability to specify the sample weighting in quantile scheduling are important in optimizing NUS for 1,1-ADEQUATE data acquisition. Using NUS yields an improvement in sensitivity, while also making longer evolution times accessible that would be difficult or impractical to attain by uniform sampling. Theoretical predictions for the sensitivity enhancements in these experiments are in the range of 5-20%; NUS is shown to disambiguate weak signals, reveal some n JCC correlations obscured by noise, and improve signal strength relative to uniform sampling in the same experimental time. This work presents sample schedule development for applying NUS to challenging experiments. The schedules developed here are made available for general use and should facilitate the broader utilization of ADEQUATE experiments (including 1,1-, 1,n-, and HD- variants) for challenging structure elucidation problems.
Collapse
Affiliation(s)
- Mark S Roginkin
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | - Ikenna E Ndukwe
- Merck Research Laboratories, Analytical Research and Development, Merck and Co., Inc., Kenilworth, NJ, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - D Levi Craft
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| | - R Thomas Williamson
- Merck Research Laboratories, Analytical Research and Development, Merck and Co., Inc., Kenilworth, NJ, USA
- Department of Chemistry, University of North Carolina at Wilmington, Wilmington, NC, USA
| | - Mikhail Reibarkh
- Merck Research Laboratories, Analytical Research and Development, Merck and Co., Inc., Kenilworth, NJ, USA
| | - Gary E Martin
- Merck Research Laboratories, Analytical Research and Development, Merck and Co., Inc., Kenilworth, NJ, USA
- Department of Chemistry & Biochemistry, Seton Hall University, South Orange, NJ, USA
| | - David Rovnyak
- Department of Chemistry, Bucknell University, Lewisburg, PA, USA
| |
Collapse
|
43
|
Park HB, Goddard TN, Oh J, Patel J, Wei Z, Perez CE, Mercado BQ, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. Bacterial Autoimmune Drug Metabolism Transforms an Immunomodulator into Structurally and Functionally Divergent Antibiotics. Angew Chem Int Ed Engl 2020; 59:7871-7880. [PMID: 32097515 PMCID: PMC7200298 DOI: 10.1002/anie.201916204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/01/2023]
Abstract
Tapinarof is a stilbene drug that is used to treat psoriasis and atopic dermatitis, and is thought to function through regulation of the AhR and Nrf2 signaling pathways, which have also been linked to inflammatory bowel diseases. It is produced by the gammaproteobacterial Photorhabdus genus, which thus represents a model to probe tapinarof structural and functional transformations. We show that Photorhabdus transforms tapinarof into novel drug metabolism products that kill inflammatory bacteria, and that a cupin enzyme contributes to the conversion of tapinarof and related dietary stilbenes into novel dimers. One dimer has activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE), and another undergoes spontaneous cyclizations to a cyclopropane-bridge-containing hexacyclic framework that exhibits activity against Mycobacterium. These dimers lack efficacy in a colitis mouse model, whereas the monomer reduces disease symptoms.
Collapse
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- These authors contributed equally: Hyun Bong Park, Tyler N. Goddard
| | - Tyler N. Goddard
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- These authors contributed equally: Hyun Bong Park, Tyler N. Goddard
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jaymin Patel
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Zheng Wei
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Corey E. Perez
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical and Biophysical Instrumentation Center, Yale University, New Haven, CT 06520, USA
| | - Rurun Wang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Thomas P. Wyche
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Grazia Piizzi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
44
|
Fukuda TTH, Cassilly CD, Gerdt JP, Henke MT, Helfrich EJN, Mevers E. Research Tales from the Clardy Laboratory: Function-Driven Natural Product Discovery. JOURNAL OF NATURAL PRODUCTS 2020; 83:744-755. [PMID: 32105475 DOI: 10.1021/acs.jnatprod.9b01086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past 70 years, the search for small molecules from nature has transformed biomedical research: natural products are the basis for half of all pharmaceuticals; the quest for total synthesis of natural products fueled development of methodologies for organic synthesis; and their biosynthesis presented unprecedented biochemical transformations, expanding our chemo-enzymatic toolkit. Initially, the discovery of small molecules was driven by bioactivity-guided fractionation. However, this approach yielded the frequent rediscovery of already known metabolites. As a result, focus shifted to identifying novel scaffolds through either structure-first methods or genome mining, relegating function as a secondary concern. Over the past two decades, the laboratory of Jon Clardy has taken an alternative route and focused on an ecology-driven, function-first approach in pursuit of uncovering bacterial small molecules with biological activity. In this review, we highlight several examples that showcase this ecology-first approach. Though the highlighted systems are diverse, unifying themes are (1) to understand how microbes interact with their host or environment, (2) to gain insights into the environmental roles of microbial metabolites, and (3) to explore pharmaceutical potential from these ecologically relevant metabolites.
Collapse
Affiliation(s)
- Taise T H Fukuda
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Chelsi D Cassilly
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joseph P Gerdt
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Matthew T Henke
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Eric J N Helfrich
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Mevers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
45
|
Park HB, Goddard TN, Oh J, Patel J, Wei Z, Perez CE, Mercado BQ, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. Bacterial Autoimmune Drug Metabolism Transforms an Immunomodulator into Structurally and Functionally Divergent Antibiotics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Tyler N. Goddard
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Joonseok Oh
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Jaymin Patel
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Molecular, Cellular, and Developmental Biology Yale University New Haven CT 06520 USA
| | - Zheng Wei
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Immunobiology Yale University School of Medicine New Haven CT 06520 USA
| | - Corey E. Perez
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Brandon Q. Mercado
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical and Biophysical Instrumentation Center Yale University New Haven CT 06520 USA
| | - Rurun Wang
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Thomas P. Wyche
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Grazia Piizzi
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Richard A. Flavell
- Department of Immunobiology Yale University School of Medicine New Haven CT 06520 USA
- Howard Hughes Medical Institute Yale University School of Medicine New Haven CT 06520 USA
| | - Jason M. Crawford
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Microbial Pathogenesis Yale School of Medicine New Haven CT 06536 USA
| |
Collapse
|
46
|
Affiliation(s)
- Jiaxu Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
47
|
Liu Z, Zhao JY, Sun SF, Li Y, Liu YB. Fungi: outstanding source of novel chemical scaffolds. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:99-120. [PMID: 30047298 DOI: 10.1080/10286020.2018.1488833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
A large number of remarkable studies on the secondary metabolites of fungi have been conducted in recent years. This review gives an overview of one hundred and sixty-seven molecules with novel skeletons and their bioactivities that have been reported in seventy-nine articles published from 2013 to 2017. Our statistical data showed that endophytic fungi and marine-derived fungi are the major sources of novel bioactive secondary metabolites.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing-Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Sen-Feng Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
48
|
Xu Q, Zheng B, Zhou X, Pan L, Liu Q, Li Y. Photoinduced C(sp 2)-H/C(sp 2)-H Cross-Coupling of Alkenes: Direct Synthesis of 1,3-Dienes. Org Lett 2020; 22:1692-1697. [PMID: 31944775 DOI: 10.1021/acs.orglett.9b04201] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A highly concise route to substituted 1,3-dienes from vinylarenes and ketene dithioacetals under photoinduced cross-coupling reaction is described. The reaction proceeded in a highly regio- and stereoselective manner and showed broad functional group tolerance. More than 35 substituted 1,3-dienes were synthesized with good to excellent yields through the construction of the Csp2-Csp2 bond without using noble metal and external oxidants, and natural sunlight could also induce the reaction to afford gram-scale synthesis under ambient conditions.
Collapse
Affiliation(s)
- Qi Xu
- Jilin Province Key Laboratory of Organic Functional Molecules, Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Baihui Zheng
- Jilin Province Key Laboratory of Organic Functional Molecules, Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoxuan Zhou
- Jilin Province Key Laboratory of Organic Functional Molecules, Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecules, Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecules, Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecules, Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
49
|
Han WB, Wang GY, Tang JJ, Wang WJ, Liu H, Gil RR, Navarro-Vázquez A, Lei X, Gao JM. Herpotrichones A and B, Two Intermolecular [4 + 2] Adducts with Anti-Neuroinflammatory Activity from a Herpotrichia Species. Org Lett 2019; 22:405-409. [DOI: 10.1021/acs.orglett.9b04099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Guang-Yi Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Wen-Ji Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Han Liu
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, Hubei 430074, People’s Republic of China
| | - Roberto R. Gil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco 50670-901, Brazil
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, Hubei 430074, People’s Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| |
Collapse
|
50
|
Mevers E, Saurí J, Helfrich EJN, Henke M, Barns KJ, Bugni TS, Andes D, Currie CR, Clardy J. Pyonitrins A-D: Chimeric Natural Products Produced by Pseudomonas protegens. J Am Chem Soc 2019; 141:17098-17101. [PMID: 31600443 PMCID: PMC6823628 DOI: 10.1021/jacs.9b09739] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bacterial symbionts frequently provide chemical defenses for their hosts, and such systems can provide discovery pathways to new antifungals and structurally intriguing metabolites. This report describes a small family of naturally occurring small molecules with chimeric structures and a mixed biosynthesis that features an unexpected but key nonenzymatic step. An insect-associated Pseudomonas protegens strain's activity in an in vivo murine candidiasis assay led to the discovery of a family of highly hydrogen-deficient metabolites. Bioactivity- and mass-guided fractionation led to the pyonitrins, highly complex aromatic metabolites in which 10 of the 20 carbons are quaternary, and 7 of them are contiguous. The P. protegens genome revealed that the production of the pyonitrins is the result of a spontaneous reaction between biosynthetic intermediates of two well-studied Pseudomonas metabolites, pyochelin and pyrrolnitrin. The combined discovery of the pyonitrins and identification of the responsible biosynthetic gene clusters revealed an unexpected biosynthetic route that would have prevented the discovery of these metabolites by bioinformatic analysis alone.
Collapse
Affiliation(s)
- Emily Mevers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Josep Saurí
- Structure Elucidation Group, Process and Analytical Research and Development , Merck & Co., Inc. , 33 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Eric J N Helfrich
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Matthew Henke
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Kenneth J Barns
- Pharmaceutical Sciences Division, School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Tim S Bugni
- Pharmaceutical Sciences Division, School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - David Andes
- Department of Medicine , University of Wisconsin School of Medicine and Public Health , Madison , Wisconsin 53705 , United States
| | - Cameron R Currie
- Department of Bacteriology , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|